算法基础

主讲人: 庄连生

Email: { lszhuang@ustc.edu.cn }

Spring 2018, USTC

第五讲 概率分析与随机算法

内容提要:

- □雇用问题
- □指示器随机变量
- □随机算法
- □在线雇用问题

□ 算法运行时间与输入规模和输入分布有关,如插入排序:

INSI	ERTION-SORT(A)	cost	times
1	$\mathbf{for}(j=2; j \leq \mathbf{length}[A]; j++)$	c_1	n
2	$\{ key = A[j]$	c_2	<i>n</i> -1
3	// Insert $A[j]$ into the sorted sequence $A[1j-1]$	0	<i>n</i> -1
4	i = j-1	c_4	<i>n</i> -1
5	while $(i > 0 \&\& A[i] > key)$	c_5	
6	$\{ A[i+1] = A[i]$	<i>c</i> ₆	
7	i = i-1	<i>c</i> ₇	
8	}		
9	A[i+1] = key	<i>c</i> ₈	<i>n</i> -1
10	}		

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- □ 对于运算时间与输入数据分布有关的算法,时间复杂度分析一般 有三种:最坏运行时间、最佳运行时间、平均运行时间。
- □ 平均运行时间是算法对所有可能情况的期望运行时间,与输入数据的概率分布有关。

□ 分析算法的平均运行时间通常需要对输入分布做某种假定

第五讲 概率分析与随机算法

内容提要:

- □雇用问题
- □指示器随机变量
- □随机算法
- □在线雇用问题

雇用问题

Scenario (情景): hire the best office assistant in a month

- You are using an employment agency to hire a new office assistant.
 (猎头公司帮你物色办公助理候选人)
- The agency sends you one candidate each day.
- You interview the candidate and must immediately decide whether or not to hire that person. But if you hire, you must also fire your current office assistant.
- Cost to interview is 1K per candidate (interview fee paid to agency).
 (面试一个候选人支付猎头公司 1K)
- Cost to hire is 1W per candidate (includes cost to fire current office assistant + hiring fee paid to agency).

Goal: Determine what the price of this strategy will be?

雇用问题

Pseudocode to model this scenario: Assumes that the candidates are numbered 1 to *n*. Uses a dummy candidate 0 that is worse than all others, so that the first candidate is always hired.

HIRE-ASSISTANT(n)	cost	times
$best \leftarrow 0$ // candidate 0 is a least-qualified dummy candidate		
for $i \leftarrow 1$ to n		
do interview candidate i	c_i	\boldsymbol{n}
if candidate i is better than candidate $best$		
then $best \leftarrow i$		
hire candidate i	c_h	m

Cost: *n* candidates, we hire *m* of them, cost is $O(nc_i+mc_h)$

5.1.1 Worst-case analysis

HIRE-ASSISTANT(n)	cost	times
$best \leftarrow 0$ // candidate 0 is a least-qualified dummy candidate		
for $i \leftarrow 1$ to n		
do interview candidate i	$\boldsymbol{c_i}$	n
if candidate <i>i</i> is better than candidate <i>best</i>		
then $best \leftarrow i$		
hire candidate i	c_h	m

Cost: *n* candidates, we hire *m* of them, cost is $O(nc_i+mc_h)$

- We focus on analyzing the hiring cost mc_h ? $(c_h >> c_i)$
- mc_h varies with each run: it depends on the order in which we interview the candidates.
- Worst-case analysis
 - We hire all *n* candidates. $O(nc_i+mc_h)=O(nc_h)$? When?
 - The candidates appear in increasing order of qulity.

5.1.2 Propbabilistic analysis

HIRE-ASSISTANT(n)	cost	times
$best \leftarrow 0$ // candidate 0 is a least-qualified dummy candidate		
for $i \leftarrow 1$ to n		
do interview candidate i	\boldsymbol{c}_{i}	n
if candidate <i>i</i> is better than candidate <i>best</i>	·	
then $best \leftarrow i$		
hire candidate i	c_h	m

Assume that candidates come in a random order:

- Assign a rank to each candidate: rank(i) is a unique integer in the range 1 to n. (对每一个候选人分配一个秩)
- The list $\langle rank(1), ..., rank(n) \rangle$ is a permutation of the candidate numbers $\langle 1, ..., n \rangle$, such as $\langle 5, 2, 16, 28, 9, ..., 11 \rangle$
- The ranks form a uniform random permutation: each of the possible *n*! permutations appears with equal probability.

5.1.2 Propbabilistic analysis

HIRE-ASSISTANT(n)	cost	times
$best \leftarrow 0$ // candidate 0 is a least-qualified dummy candidate		
for $i \leftarrow 1$ to n		
do interview candidate i	c_i	n
if candidate <i>i</i> is better than candidate <i>best</i>		
then $best \leftarrow i$		
hire candidate i	c_h	m

Essential idea of probabilistic analysis: We must use knowledge of, or make assumptions about, the distribution of inputs.

(概率分析的本质: 需已知或假定输入的概率分布)

- The expectation is taken over this distribution.
 (依据概率分布来求期望,期望值即是平均 hire 的人数)
- Section 5.2 contains a probabilistic analysis of the hiring problem.

Idea

- We might not know the distribution of inputs, or we might not be able to model it computationally.
 (我们不知道输入的分布,也不可能为输入的分布进行可计算的建模)
- Instead, we use randomization within the algorithm in order to impose a distribution on the inputs.

(在算法中通过对输入进行随机化处理,从而为输入强加一种分布)

- For the hiring problem, change the scenario:
 - The employment agency sends us a list of all *n* candidates in advance.

(猎头公司预先提供n个候选人列表)

 On each day, we randomly choose a candidate from the list to interview.

(每天,我们随机选取一人进行面试)

• Instead of relying on the candidates being presented to us in a random order, we take control of the process and enforce a random order. (Chap 5.3)

(无须担心候选人是否被随机提供,我们通过随机运算预 处理可以控制候选人的随机顺序)

• What makes an algorithms randomized: An algorithm is randomized if its behavior is determined in part by values produced by a *random-number generator*.

(算法随机化:由随机数产生器生成数值.....)

- **♦** RANDOM(a, b) returns an integer r, where $a \le r \le b$ and each of the b-a+1 possible values of r is equally likely.
- ◆ In practice, RANDOM is implemented by a pseudorandom-number generator, which is a deterministic method returning numbers that "look" random and pass statistical tests. (RANDOM实际上由一个确定的算法〔伪随机产生器〕产生,其结果表面上看上去像是随机数)

- Random number generator(随机数产生器)
 - Most random number generators generate a sequence of integers by the following recurrence
 - X_0 = a given integer (seed), X_{i+1} = aX_i mod M
 - For example, for $X_0=1$, a=5, M=13, we have $X_1=5\%13=5$, $X_2=25\%13=12$, $X_3=60\%13=8$. Each integer in the sequence lies in the range [0, M 1].

第五讲 概率分析与随机算法

内容提要:

- □雇用问题
- □指示器随机变量
- □随机算法
- □在线雇用问题

Given a sample space and an event A, we define the indicator random variable (给定采样空间S和事件 A, 指示随机变量...)

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occur,} \\ 0 & \text{if } A \text{ does not occur.} \end{cases}$$

□ Lemma(引理)

For an event, let $X_A = I\{A\}$. Then $E[X_A] = Pr\{A\}$. Proof Letting $\sim A$ be the complement of A, we have $E[X_A] = E[I\{A\}]$ $= 1.Pr\{A\} + 0.Pr\{\sim A\} \quad \{\text{definition of expected value}\}$ $= Pr\{A\}.$

Lemma

For an event A, let $X_A = I\{A\}$. Then $E[X_A] = Pr\{A\}$.

• Simple example: Determine the expected number of heads when we flip a fair coin one time.

(投一次硬币,正面向上的期望〔平均数〕)

- Sample space is $\{H, T\}$
- $Pr\{H\} = Pr\{T\} = 1/2$
- Define indicator random variable $X_H = I\{H\}$. X_H counts the number of heads in one flip.
- Since $Pr\{H\} = 1/2$, lemma says that $E[X_H] = 1/2$.

□ Lemma

For an event A, let $X_A = I\{A\}$. Then $E[X_A] = Pr\{A\}$.

- Slightly more complicated example: Determine the expected number of heads when in n coin flips.
 (投n次硬币,正面向上的期望〔平均数〕)
 - ◆ Let X be a random variable for the number of heads in n flips. (令随机变量 X 表示投 n 次硬币正面向上的数)
 - ◆ Then, $E[X] = \sum_{k=0}^{n} k \cdot Pr\{X = k\}$ a slightly more complicated? Yes!
 - Instead, we'll use indicator random variables.....

Lemma

For an event A, let $X_A = I\{A\}$. Then $E[X_A] = Pr\{A\}$.

• Slightly more complicated example: Determine the expected number of heads when in *n* coin flips.

(投n次硬币,正面向上的期望〔平均数〕)

- For i=1, ..., n, define $X_i=I\{\text{the } i\text{th flip results in event } H\}$
- Then, $X = \sum_{i=1}^{n} X_i$
- Lemma says that $E[X_i] = Pr\{H\} = 1/2$ for i=1, 2, ..., n
- Expected number of heads is

$$E[X] = E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}] = \sum_{i=1}^{n} 1/2 = n/2$$

Assume that the candidates arrive in a random order.

Let *X* be a random variable that equals the number of times we hire new office assistant.

(令随机变量 X 表示我们雇用新助手的人数)

Use a probabilistic analysis

Then
$$E[X] = \sum_{i=1}^{n} x_i \Pr\{X = x_i\}$$

The calculation would be cumbersome(计算烦琐)

Assume that the candidates arrive in a random order.

random variable X = the number of times we hire new office assistant (随机变量 X 表示我们雇用新助手的人数)

- Use indicator random variables
 - Define indicator random variables $X_1, X_2, ..., X_n$, where $X_i = I\{$ candidate i is hired $\}$
 - Useful properties:

$$X = X_1 + X_2 + \dots + X_n$$

Lemma \Rightarrow E[X_i] = Pr{ candidate i is hired}.

We need to compute Pr{ candidate *i* is hired}?

HIRE-ASSISTANT(n)	cost	times
$best \leftarrow 0$ // candidate 0 is a least-qualified dummy candidate		
for $i \leftarrow 1$ to n		
do interview candidate i	$\boldsymbol{c_i}$	n
if candidate i is better than candidate $best$		
then $best \leftarrow i$		
hire candidate i	c_h	m

We need to compute Pr{ candidate *i* is hired}?

- i is hired $\Leftrightarrow i$ is better than each of candidates $1, 2, \ldots, i-1$.
- Assumption that the candidates arrive in random order => any one of these candidates is equally likely to be the best one.

(若候选人随机到来,则每一个候选人为最佳人选的概率相等)

• Thus, $E\{X_i\} = Pr\{ \text{ candidate } i \text{ is the best so far} \} = 1/i$?

HIRE-ASSISTANT(n)	cost	times
$best \leftarrow 0$ // candidate 0 is a least-qualified dummy candidate		
for $i \leftarrow 1$ to n		
do interview candidate i	$\boldsymbol{c_i}$	n
if candidate <i>i</i> is better than candidate <i>best</i>		
then $best \leftarrow i$		
hire candidate i	c_h	m

We need to compute Pr{ candidate *i* is hired}?

- *i* is hired \Leftrightarrow *i* is better than each of candidates 1, 2, ..., *i*-1.
- Assumption that the candidates arrive in random order => any one of these candidates is equally likely to be the best one.

(若候选人随机到来,则每一个候选人为最佳人选的概率相等)

• Thus, $E\{X_i\} = Pr\{ \text{ candidate } i \text{ is the best so far} \} = 1/i$?

Then

$$E[X] = E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}] = \sum_{i=1}^{n} 1/i = \ln n + O(1)$$

Thus, the expected hiring cost is $O(c_h \ln n)$, which is much better than the worst-case cost of $O(nc_h)$.

第五讲 概率分析与随机算法

内容提要:

- □雇用问题
- □指示器随机变量
- □随机算法
- □在线雇用问题

5.3.1 The hiring problem

For the hiring problem, the algorithm is deterministic.

- For any given input, the number of times we hire a new office assistant will always be the same. (给定输入,则雇用的人数确定)
- The number of times we hire a new office assistant depends only on the input. (雇用的人数〔资源消费〕依赖于输入)
 - Some rank orderings will always produce a high hiring cost. Example: <1,2,3,4,5,6>, where each is hired.
 - Some will always produce a low hiring cost. Example: <6,*,*,*,*,*,, where only the first is hired.
 - Some may be in between.

5.3.1 The hiring problem

Instead of always interviewing the candidates in the order presented, what if we first randomly permuted this order.

- The randomization is now in the algorithm, not in the input distribution. (随机化过程在算法中,而不是在输入中体现)
- Given a particular input, we can no longer say what its hiring cost will be. Each time we run the algorithm, we can get a different hiring cost. (算法的运行时间与输入无关)
- No particular input always elicits worst-case behavior.
 (算法的最坏运算时间不取决于特定的输入)
- Bad behavior occurs only if we get "unlucky" numbers from the random-number generator. (只有当随机数产生器产生很不幸运 的数时,算法的运算时间最坏)

5.3.1 The hiring problem

Algorithm for randimized hiring problem

RANDOMIZED-HIRE-ASSISTANT(n)

Randomly permute the list of candidates

HIRE-ASSISTANT(n)

□ Lemma

The expected hiring cost of RANDOMIZED-HIRE-ASSISTANT is $O(c_h \ln n)$.

Proof

After permuting the input array, we have a situation identical to the probabilistic analysis of deterministic HIRE-ASSISTANT.

(对输入矩阵进行随机置换后,情况同HIRE-ASSISTANT相同)

Goal:

Produce a uniform random permutation (each of the *n*! permutations is equally likely to be produced),

that is

$$A = <1, 2, 3, ..., n>$$

The numbers of permutation of A is $P_n^n = n!$, each of that is equally likely to be produced.

(1) Permute-by-sorting — The method is not very good

- Assume the given array A contains the element 1 through n. (设数组 A = <1, 2, ..., n>)
- Assign each element A[i] a random priority P[i], then sort the elements of A according to these priorities. Example (为每个元素 A[i] 分配一个随机数 P[i] 作为其优先权,然后依据这些优先权对数组A 进行排序。)
 - If initial array is A=<1,2,3,4>, choose random priorities P=<36,3,97,19>, then produce an array B=<2,4,1,3>

PERMUTE-BY-SORTING(*A*)

We use a range of 1 to n^3 in RANDOM to make it likely that all the priorities in P are unique.(Exercise 5.3-5)

The method is better

(2) RANDOMIZE-IN-PLACE

RANDOMIZE-IN-PLACE(A, n)for $(i=1; i \le n; i++)$ swap(A[i], A[RANDOM(i, n)])

1	2	3	 n
A(1)	A(2)	A(3)	 A(n)

1	2	3		i_1		n
$A(i_1)$	A(2)	A(3)	•••	A(1)	•••	A(n)

1	2	3	 i_2	 n
$A(i_1)$	$A(i_2)$	A(3)	 A(2)	 A(n)

Idea:

- In iteration i, choose A[i] randomly from A[i ... n].
- Will never alter A[i] after iteration i. (第 i 次迭代后不再改变 A[i])

Merit:

- It runs in linear time without requiring sorting (O(n)).
- It needs fewer random bits (n random numbers in the range 1 to n rather than the range 1 to n^3) (仅需更小范围的随机数产生器)
- No auxiliary array is required. (不需要辅助空间)

(2) RANDOMIZE-IN-PLACE

RANDOMIZE-IN-PLACE(A, n)for $(i=1; i \le n; i++)$ swap(A[i], A[RANDOM(i, n)]

1	2	3	 n
A(1)	A(2)	A(3)	 A(n)

1	2	3	 i_1	 n
$A(i_1)$	<i>A</i> (2)	A(3)	 <i>A</i> (1)	 A(n)

1	2	3	 i_2	 n
$A(i_1)$	$A(i_2)$	A(3)	 A(2)	 A(n)

Correctness:

- Given a set of n elements, a k-permutation is a sequence containing k of the n elements. There are n!/(n-k)! possible k-permutations? (给定 n 个元素,从其中任取 k 个元素进行排列,则有 n!/(n-k)! 种不同的 k-排列,或 k-置换?)
- □ Lemma

$$P_n^k = C_n^k \cdot P_k^k = \frac{n!}{k!(n-k)!} \cdot k! = \frac{n!}{(n-k)!}$$

RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Use a loop invariant:

(2) RANDOMIZE-IN-PLACE

RANDOMIZE-IN-PLACE(A, n)for $(i=1; i \le n; i++)$ swap(A[i], A[RANDOM(i, n)]

1	2	3	 n
A(1)	A(2)	A(3)	 A(n)

1	2	3	•••	i_1	 n
$A(i_1)$	A(2)	A(3)	•••	<i>A</i> (1)	 A(n)

1	2	3	•••	i_2	 n
$A(i_1)$	$A(i_2)$	A(3)		A(2)	 A(n)

Lemma

RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Use a loop invariant: $1/P_n^k = 1/\frac{n!}{(n-k)!} = \frac{(n-k)!}{n!}$

Loop invariant: Just prior to the *i*th iteration of the for loop, for each possible (i-1)-permutation, subarray A[1 ... i-1] contains this (i-1)-permutation with probability (n-i+1)!/n!?

(第i次迭代之前,对(i-1)-置换,任意一个(i-1)-置换A[1...i-1]的概率为(n-i+1)!/n!?)

(2) RANDOMIZE-IN-PLACE

RANDOMIZE-IN-PLACE(A, n)for $(i=1; i \le n; i++)$ swap(A[i], A[RANDOM(i, n)]

1	2	3		•••		n
A(1)	A(2)	A(3)				A(n)
1	2	3	•••	i_1	•••	n
$A(i_1)$	A(2)	A(3)		<i>A</i> (1)		A(n)
1	2	3		i_2	•••	n
$A(i_1)$	$A(i_2)$	A(3)		A(2)		A(n)

■ *Lemma* RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Use a loop invariant:

Loop invariant: A[1 ... i-1] contains each (i-1)-permutation with probability (n-i+1)!/n!.

• Initialization: Just before first iteration, i=1. Loop invariant says for each possible 0-permutation, subarray A[1 ... 0] contains this 0-permutation with probability n!/n!=1. A[1 ... 0] is an empty subarray, and a 0-permutation has no elements. So, A[1 ... 0] contains any 0-permutation with probability 1.

(空集包含空置换的概率为1)

(2) RANDOMIZE-IN-PLACE

RANDOMIZE-IN-PLACE(A, n)for $(i=1; i \le n; i++)$ swap(A[i], A[RANDOM(i, n)]

■ **Lemma** RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Loop invariant: $Pr\{A[1 ... i-1] \text{ contains each } (i-1) \text{-permutation}\} = (n-i+1)!/n!$.

• Maintenance: Assume that prior to the *i*th iteration, $Pr\{A[1 ... i-1] \text{ contains each } (i-1)\text{-permutation}\} = (n-i+1)!/n!$, we will show that after the ith iteration, Pr(A[1 ... i] contains each i-permutation) = (n-i)!/n!.

(第i次迭代前,设(i-1)-置换A[1..i-1]中,任一置换发生的概率为 (n-i+1)!/n!,则需证明在第i次迭代后,任一i-置换的概率为(n-i)!/n!)

Consider a particular *i*-permutation $R=\langle x_1,x_2,\ldots,x_i\rangle$. It consists of an (i-1)-permutation $R'=\langle x_1,x_2,\ldots,x_{i-1}\rangle$, followed by x_i . (考虑一个特别的 *i*-置换 R,其前 *i*-1 个元素组成 (i-1)-置换 R',最后一个元素为 x_i)......

(2) RANDOMIZE-IN-PLACE

RANDOMIZE-IN-PLACE(A, n)for $(i=1; i \le n; i++)$ swap(A[i], A[RANDOM(i, n)]

■ *Lemma* RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Loop invariant: $Pr\{A[1 ... i-1] \text{ contains each } (i-1) \text{-permutation}\} = (n-i+1)!/n!$.

• Maintenance:

i-permutation $R = \langle x_1, x_2, ..., x_i \rangle = \langle x_1, x_2, ..., x_i \rangle \cup x_i = R' \cup x_i$.

Let E_1 be the event that the algorithm actually puts R' into A[1 ... i-1]. By the loop invariant, $\Pr\{E_1\}=(n-i+1)!/n!$.

Let E_2 be the event that the *i*th iteration puts x_i into A[i].

We get the *i*-Permutation R in A[1..i] if and only if both E_1 and E_2 occur => the probability that the algorithm produces R in A[1..i] is $\Pr\{E_2 \cap E_1\} = ?....$ (令事件 E_1 表示算法实际输出 (*i*-1)-置换R'为A[1..i-1],根据循环不变量, $\Pr\{E_1\} = (n-i+1)!/n!$,令事件 E_2 表示第 i 次迭代后输出 A[i] 为 x_i ,则当且仅当 E_1 和 E_2 同时发生时我们得到 i-置换 R 为A[1..i],其概率为 $\Pr\{E_2 \cap E_1\} = ?$)...

(2) RANDOMIZE-IN-PLACE

RANDOMIZE-IN-PLACE(A, n)for $(i=1; i \le n; i++)$ swap(A[i], A[RANDOM(i, n)]

■ **Lemma** RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Loop invariant: $Pr\{A[1..i-1] \text{ contains each } (i-1) \text{-permutation}\} = (n-i+1)!/n!$.

Maintenance:

• • • • •

i	<i>i</i> +1	•••	n
$A(j_i)$	$A(j_{i+1})$	•••	$A(j_n)$

$$\Pr\{E_2 \cap E_1\} = \Pr\{E_2 | E_1\} \Pr\{E_1\}$$
.

The algorithm choose x_i randomly from the n-i+1 possibilities in $A[i ... n] => \Pr\{E_2|E_1\} = 1/(n$ -i+1)? Thus,

$$\begin{split} \Pr\{E_2 \cap E_1\} &= \Pr\{E_2 \mid E_1\} \Pr\{E_1\} \\ &= \frac{1}{n-i+1} \cdot \frac{(n-i+1)!}{n!} = \frac{(n-i)!}{n!} \end{split}$$

(2) RANDOMIZE-IN-PLACE

RANDOMIZE-IN-PLACE(A, n)for $(i=1; i \le n; i++)$ swap(A[i], A[RANDOM(i, n)]

■ **Lemma** RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Loop invariant: $Pr\{A[1 ... i-1] \text{ contains each } (i-1) \text{-permutation}\} = (n-i+1)!/n!$.

Termination:

At termination, i=n+1, it is true prior to the *i*th iteration, so we conclude that A[i ... n] is a given *n*-permutation with probability (n-n)!/n! = 1/n!.

第五讲 概率分析与随机算法

内容提要:

- □雇用问题
- □指示器随机变量
- □随机算法
- □在线雇用问题

在线雇用问题

□ 情景描述:

假设现在我们不希望面试所有的应聘者来找到最好的一个, 也不希望因为不断有更好的申请者出现而不停地雇用信任解雇旧 人。我们愿意雇用接近最好的应聘者,只雇用一次。但是,我们 必须遵守猎头公司的一个规定:在每次面试之后,必须给出面试 结果,要么雇用候选人,要么拒绝。

□ Goal: 最小化面试次数和最大化雇用应聘者的质量取得平衡。

在线雇用问题

- □ 解决思路:
- □ 1) 面试一个应聘者之后,能他一个分数,令*score(i)*表示给第i 个应聘者的分数,并且假设所有应聘者得分都不相同;
- □ 2)面试前面k个(k<n)应聘者然后拒绝他们,再雇用其后比前面的应聘者更高分数的第一个应聘者。

```
ON-LINE-MAXIMUM (k, n)

bestscore← -∞

for i ← 1 to k

do if score(i) > bestscore

then bestscore ← score(i)

for i ← k+1 to n

do if score(i) > bestscore

then return i

return n
```


谢谢!

Q & A