- 陈敏,韦来生. 线性模型中回归系数的可估函数和误差方差同时的Bayes估计及优良性. 应用数学学报,2014, 37(5): 865-877.
- Wei Laisheng. A summary of some research on PC and Bayesian PC criterion in china. Comm. Statist. Theor. Meth., 2014, 43(18): 3866-3892.
- Chen Ling, Wei Laisheng. The Superiorities of Empirical Bayes Estimation of Variance Components in Random Effects Model. Comm. Statist. Theor. And Meth., 2013, 42:4017-4033.
- 仇丽莎,韦来生. 正态总体均值和误差方差同时的经验Bayes估计. 中科院研究生院学报,2013,30(4): 454-461.
- 张倩,韦来生. 刻度指数族参数的经验Bayes双边检验问题--加权损失函数情形. 中国科技大学学报, 2013, 43(2):156-161.
- 陈玲,韦来生. 线性模型中回归系数和误差方差同时的经验Bayes估计及其优良性. 应用概率统计,2012,28 (6): 583-600.
- Chen Ling,Wei Laisheng. The superiority of empirical Bayes estimation of the error variance in linear model. Front. Math. China, 2012, 7(4): 629–644.
- Zhang Weiping and Wei Laisheng. The superiorities of Bayes linear unbiased estimation
in multivariate linear model. Acta Mathematicae Applicatae Sinica, English Series,
2012, 28(2): 383-394.
- 陈玲, 韦来生. 线性模型中回归系数和误差方差同时的Bayes估计及其优良性. 数学年刊,2011, 32 A(6): 763-774.
- Zhang Weiping, Wei Laisheng. Chen Yu. The superiorities of Bayes linear unbiased estimation in partitioned linear model. Journal of Systems Science and Complexity,2011, 24(5): 945-954.
- 李 翔,韦来生. 指数分布定数截尾数据下刻度参数的经验Bayes估计. 中国科学院研究生院学报,2011,28(2): 147-153.
- 李琪琪,韦来生. 半参数回归模型参数的Bayes估计. 中国科技大学学报, 2010, 40(9): 881-886.
- 陈 玲,韦来生.连续型单参数指数族参数的经验Bayes检验, 系统科学与数学,2009,29(8): 1142-1152.
- 王鹏远,韦来生. 回归系数一类线性估计的小样本性质. 中科院研究生院学报, 2009, 26(3): 296-302.
- 周静雯,韦来生.生长曲线模型中参数的Bayes 线性无偏估计. 应用概率统计, 2008,24(6): 639-647.
- Zhang Weiping and Wei Laisheng.The superiorities of empirical Bayese stimation of parameters in partitioned normal linear model. Acta Mathematica Scientia, 2008, 28B (4): 955-962.
- 洪 坚,韦来生. 刻度指数族参数的经验Bayes估计收敛速度的改进.工程数学学报, 2008, 25(5): 867-877.
- 童楠, 韦来生. 单向分类方差分析模型中参数的Bayes估计及其小样本性质. 中国科学技术大学学报, 2008, 38(9): 1084-1088.
- 周 雁, 韦来生. 刻度指数族参数的经验Bayes检验函数收敛速度的改进. 高校应用数学学报, 2008, 23(2): 219-226.
- 霍涉云, 韦来生. 一类线性模型参数的Bayes估计及其优良性. 中国科学技术大学学学报, 2007, 37(7): 773-776.
- Wei L.S. and Zhang W.P. The superiorities of bayes linear minimum risk estimation in linear model. Commum. Statist. Theor. Meth., 2007, 36: 917-926.
- Singh, R.S. and Wei L.S.. Nonparametric empirical Bayes two-tail tests for scale exponential family: When random variables in the sequence are negatively associated. Bayesian Statistics and Its Applications, Edited by S.K. Upadhyay, U.Singh and D.K.Dey,AnaMaya Publication, New Delhi, Ivdia, 407-420.
- 魏莉, 孔胜春, 韦来生. 刻度指数族参数的经验Bayes检验的收敛速度. 中国科学院研究生院学报,2007,24(1): 9-17.
- 韦来生, 张伟平. 错误先验假定下Bayes线性无偏估计的稳健性. 应用概率统计, 2007, 23(1): 59-67.
- Karunamuni R.J. and Laisheng Wei. On Empirical Bayes estimation of multivariate regression coefficients. International.Journal of Mathematics and Mathematical Science (Int. J. Math. Sci.), Article,ID 51695, pages 18.
- 洪 坚, 韦来生. 指数分布定数截尾样本下经验Bayes双侧检验问题. 中国科学技术大学学报, 2006, 36 (12): 1289-1293.
- Wang Lichun, Wei Laisheng. Asymptotically optimal empirical Bayes decision. 应用数学,2006,19(2): 356-362.
- 宋慧明,韦来生. 线性模型中回归系数混合估计的相对效率. 中国科学技术大学学报, 2006,36(9): 932-935.
- 陈玲,韦来生. 连续型单参数指数族参数的经验Bayesg估计问题:NA样本情形,数学研究,2006,39(1): 44-50.
- Wang Lichun and Wei Laisheng. Empirical Bayes estimation of variance components in two-way classification random effects model.中国科学院研究生院学报,2005, 22: 545-553.
- 丁晓, 韦来生. 双指数分布位置参数经验Bayes估计问题. 数学杂志, 2005, 25(4): 413-420.
- Zhang Weiping , Wei Laisheng. On Bayes linear unbiased estimation of estimable functions for the singular linear model. Since in China,2005, 48(7): 898-903.
- 张伟平,韦来生. 单向分类随机效应模型中方差分量的渐近最优经验Bayes估计. 系统科学与数学, 2005, 25: 106-117.
- Wei Laisheng and Zhang Weiping. Empirical Bayes test problems for variance
components in random effects model. Acta Mathematica Scientia, 2005, 25B: 274-282.
- Zhang Weiping , Wei Laisheng, Yang Yanning. The Superiority of Empirical Bayes Estimator of Parameters in Linear Model. Statistics and Probability Letter, 2005, 72: 43-50.
- 韦来生, 王立春. 随机效应模型中方差分量渐近最优的经验Bayes计. 数学研究与评论, 2004, 24(4): 653-664.
- Wei Laisheng and Ding Xiao. On empirical Bayes estimation of variance components in random effects model. Journal of Statistical Planning and Inferences, 123 (2004), 374-384.
- 魏莉, 韦来生. 刻度指数族参数的经验Bayes检验问题. 中国科学技术大学学报, 2004, 34(1): 1-10.
Wei Li, Wei L. S.. Empirical Bayes test for scale exponential family. Frontiers of Mathematics in china, 2006, 1(2): 303-315.
- 陈玲, 韦来生. 连续型单参指数族参数的经验Bayes检验问题. 应用数学,2004,17(2): 263-270.
- 韦来生, 王立春. 随机效应模型中方差分量的经验Bayes检验问题. 高校应用数学学报, 2004, 19: 97-108.
- 韦来生, 袁家成. 指数分布定数截尾情形失效率函数的经验Bayes检验问题. 应用概率统计,2003, 19: 130-138.
- Wei Laisheng and Chen Jiahua. Empirical Bayes estimation and its superiority for two-way classification model. Statistics and Probability Letter, 2003, 63: 165-175.
- 王立春, 韦来生. 刻度指数族参数的经验 Bayes 估计的收敛速度. 数学年刊, 2002, 23A(5):
555-564.
Wang Lichun and Wei Laisheng. Convergence Rates of Empirical estimation for the Parameter in Scale-Exponential Family. Chinese Journal of Contemporary Mathematics, 2002, 23(4): 337-346.
- 林明,韦来生. 回归系数 Stein 压缩估计的小样本性质. 应用数学学报, 2002, 25(3): 497-504.
- Lin Ming and Wei Laisheng. The small sample properties of the principal components estimator for regression coefficients. Commum. Statist. Theor. Meth., 2002, 31(2): 271-283.
- 王立春, 韦来生. 刻度指数族参数的渐近最优的经验 Bayes 估计. 中国科学技术大学学报, 32(1), 2002. 62-69.
- 韦来生,NA 样本情形概率密度函数核估计的相合性. 系统科学与数学, 2001, 21: 79-87.
- 缪柏奇,戴小莉,韦来生等. 课堂教学评估问卷的统计分析. 中国高等教育评估, 2000, 2: 31-35.
- Singh, R.S and Wei Laisheng. Nonparametrioc empirical Bayes procedure, asymptotic optimality and rates of convergence for two-tail tests in exponential family. Nonparametric Statistics, 2000, 12: 475-501.
- 韦来生. 刻度指数族参数的经验BAYES检验问题:NA样本情形. 应用数学学报, 2000, 23: 403-412.
- 黄元亮,陈桂景,韦来生. 广义G-M 模型参数估计的相对效率. 数学研究与评论,2000, 20(1): 103-108
- 韦来生. 错误先验假定下回归系数 Bayes 估计的小样本性质. 应用概率统计,2000, 16: 71-80.
- 韦来生. 一类线性模型中参数的经验 Bayes 检验问题. 数学年刊,1999, 20A(5): 617-628.
Wei Laisheng. Empirical Bayes test problems for parameters in a class of linear
Models. Chinese Journal of Contemporary Mathematics, 1999, 20(4): 501-514.
- 韦来生,林明.错误指定模型中回归系数混合估计的小样本性质. 中国科学技术大学学报, 1999, 29: 253-259.
- Zhang Shunpu and Wei Laisheng. A note about convergence rates for empirical Bayes estimation of parameters in multi-parameter exponential families. Commum. Statist. Theor. Meth., 1999, 28(6): 1273-1291.
- Wei Laisheng, Asymptotically optimal empirical Bayes estimation in one-way ANOVA model, Systems Science and Mathematical Sciences, 1999, 12(1): 13-22.
- Wei Laisheng. Convergence rates of empirical Bayesian estimation in a class of linear models. Statistica Sinica, 1998, 8: 589-605.
- Tamaschke, S., G. Trenkler and Wei, L.S.. Mean square error matrix properties of Bayes estimation for incorrect prior information under misspecification. Journal of the Italian Statistical Society, 1997, 6(3): 273-284.
- 韦来生, 杨亚宁. PC 准则下回归系数的一类线性估计的优良性. 应用概率统计, 1997, 13: 225-234.
- 韦来生. 方差分析模型中参数的经验 Bayes 估计及其优良性问题. 高校应用数学学报, 1997, 12A: 163-174.
- Wei Laisheng.Empirical Bayes estimation for estimablefunction of regression coefficient in a multiple linear regression model. Acta Mathematica Scientia, 1996, Supp. 16: 22-33.
- 韦来生. PC 准则下错误指定模型中回归系数有约束 LS 估计的优良性.中国科学技术大学学报, 1996, 26: 277-283.
- Gotz Trenkler and Wei Laisheng. The Bayes estimators in a misspecified linear regression model. Test, 1996, 5: 113-123.
- Yang Yaning and Wei Laisheng. Asymptotically optimal empirical Bayes estimation for the parameters of multi-parameter discrete exponential family. Acta Mathematica Scientia, 1996, 16: 15-22.
- Yang Yaning and Wei Laisheng. Convergence rtaes of asymptotically optimal empirical Bayes estimation for parameters of multi-parameter discrete exponential family. 应用概率统计, 1995, 11: 92-102.
- Wei Laisheng and Gotz trenkler. Mean square error matrix superiority of empirical Bayes estimators under misspecification. Test, 1995, 4: 187-205.
- Wei Laisheng and Zhang Shunpu. The converrgence rates of empirical Bayes estimation in multiple linear regression model. Ann. Inst. Statist. Math., 1995, 47: 81-97.
- Zhang Shunpu and Wei Laisheng. Asymptotically optimal empirical Bayes estimation in multiple linear regression model. Appl. Math, A Journal of Chinese Universitys, 1994, 9B: 245-258.
- 韦来生. 二项分布参数的经验Bayes检验问题. 数学杂志, 1993, 13: 21-28.
- Singh, R.S. and Wei Laisheng. Empirical Bayes with rates and best rates of convergence in u(x)c(θ)exp{-x/θ}-family: Estimation Case. Ann. Inst. Statist. Math., 1992, 44: 435-449.
- 韦来生. 一类离散型单参数指数簇参数的双侧的经验 Bayes 检验问题. 应用概率统计, 1991, 7: 299-310.
- Wei Laisheng. Empirical Bayes test of regression coefficient in a multiple linear regression model. Acta Mathematicae Applicatae Sinica, 1990, 6:251-262.
- Wei Laisheng. An empirical Bayes two-sided test problem for continuous one-parameter exponential families. Systems Science and Mathematical Sciences, 1989, 2: 369-384.
- Wei Laisheng. The convergence rates of empirical Bayes estimation for parameters of two-sided truncation distribution families, Acta Mathematica Scientia, 1989, 9: 403-413.
- Wei Laisheng. Asymptotically optimal empirical Bayes estimation for parameters of two-sided truncation distribution families. Chin. Ann. of Math., 1989, 10B(1): 94-104.
- 韦来生. 连续形多参数指数簇参数的经验 Bayes 估计的收敛速度. 数学学报, 1987,30: 272-279.
- Wei Laisheng. On the pointwise Lpconvergence rates of nearest neighbor estimate ofnonparametric regression function. Journal of Mathematical Research & Exposition, 1986, 6: 117-124.
- 韦来生. 连续形多参数指数簇参数的渐近最优的经验 Bayes 估计. 应用概率统计, 1985, 1: 127-133.
- Wei Laisheng and Su Chun. The convergence rates of asymptotically Bayes discrimination. Acta Mathematica Scientia, 1985,5: 68-78.
- 韦来生. 单边截断型分布簇位置参数的经验 Bayes 估计的收敛速度. 数学年刊, 1985, 6A: 193-202.
- Wei Laisheng. On the Lp convergence rates of kernal estimate of nonparametric regression function. Journal of China University of Science & Technology, 1984, 14: 339-346.
- 方兆本, 李金平, 张念范,韦来生. 一类均匀分布参数的经验 Bayes 估计的收敛速度, 应用数学学报, 1983, 6: 476-484.
- 韦来生. 一类 Gamma 分布位置参数的经验 Bayes 估计的收敛速. 中国科学技术大学学报, 1983, 13: 143-152.
- 韦来生. 均匀分布簇 U(0,θ) 参数的经验 Bayes 估计的收敛速度. 应用数学学报, 1983, 6: 485-493.
- Wei Laisheng, Fang Zhaoben, Li Jingping. The asymptotically optimalempirical Bayes estimation about a class of Uniform distrbution. Journal of Mathematical Research & Exposition. 1983, 3: 150-152.
- 陈玲,韦来生,随机效应模型中方差分量的Bayes估计及其优良性,应用概率统计, 2016, 32(1): 51-61.
- Yuan Min,Wan Chongli,Wei Laisheng. The superiority of empirical Bayes estimator of the mean vector in multivariate normal distribution, Science China Mathematics,June 2016, 59(6), 1175-1186, dio:10.1007/s11425-5098-x.
- Yuan Min, Wei Laisheng. Two-sided empirical Bayes test for location parameter
in the Gamma distribution,accepted by Comm.Statist.Theo. and Meth., 2017, 46(9):4215-4225..
- Yuan Min, Zhang Qian, Wei Laisheng. One-sided empirical Bayes test for location parameter in Gamma distribution. Appl. Math. J. Chinese Univ.,2018,33(3),
287-297.
|