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Abstract—Under the paradigm of Edge Computing, the enor-
mous data generated at the network edge can be processed
locally. Machine learning methods are often adopted to make
full utilization of these data, among which the deep learning is a
promising one. When considering the inherent distributed feature
of these data, it is appeal to conduct distributed deep learning
tasks directly at the edge. We focus on an edge computing system
that conduct distributed deep learning tasks using gradient-
descent based approaches. To ensure the system’s performance,
there are at least two major challenges to cope with: how
to offload the training jobs with multiple data source nodes
and how to allocate the limited resources on each edge server
among training jobs. In this paper, we jointly consider the two
challenges, aiming to maximize the system throughput while
ensuring the system’s quality of service (QoS). We formulate the
joint problem as an integer non-linear program and propose
an efficient approximation algorithm based on reformulation
and randomized rounding technique. Simulation results prove
that the proposed algorithm can improve 56% of the system
throughput and 53% of resource utilization when compared to
the conventional baseline algorithms.

Index Terms—Edge Computing, Distributed Deep Learning,
Job Offloading, Resource Allocation

I. INTRODUCTION

With the advent of paradigms like the Internet of Things

(IoT), social networking and smart city, data will be abun-

dantly available [1] at the network edge. Cisco, for example,

estimates that the IoT alone will generate over 400ZB of data

annually by 2020 [2]. To extract useful information from the

generated data, machine learning methods are often adopted.

For example, Google Cloud Speech is powered by the machine

learning framework, TensorFlow [3]. Among these machine

learning methods, deep learning is a promising one as it shows

satisfying performance for many problems with large data

set. Since model training is resource-intensive, it is naturally

required to send the data to the remote cloud with sufficient

resources to be processed [4], [5]. However, sending the

collected data to the remote cloud may introduce heavy burden

to the backbone network, resulting in undesired latency. Even

more, it may lead to privacy leakage, which contradicts with

the increasing concern about users’ data privacy. Therefore,

sending the raw data to the remote cloud is often considered

unrealistic and unnecessary.

Edge Computing [6], as a new computing paradigm, has

emerged to move data and service functions from the remote
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Fig. 1. Illustration of the system architecture, where training tasks are
generated from the data source nodes and workers are deployed on edge
servers to conduct these tasks.

cloud to the logical edge of the network, enabling local

processing of the enormous user data. Compared with cloud

computing, edge computing has two significant advantages.

First, since the raw data is only transmitted to the nearby

edge servers, i.e., without transmitting to the remote cloud,

the latency as well as the network overhead are thus reduced

considerably. Second, as the raw data no longer needs to be

transmitted to the remote cloud, user privacy can be abundantly

preserved [7]. Therefore, with the respect to latency and

privacy concerns, it is an attractive way to train the model

locally.

There are typically two kinds of ways to conduct model

training at the edge. In the first way, models are trained

separately on different edge devices using their own data even

though the models are of the same kind. Previous works [8],

[9] mainly focus on how to train the model on a single mobile

device or how to offload the training task of the mobile device

to the edge server. However, the amount of data on a single

edge device is often too small to train a model with desired

accuracy for many applications. In the second way, data from

different devices are used to train a mutual model, and the

training is often done in a distributed way. Edge devices can

either join the distributed training and process their own data

locally or upload the data to the edge servers to be processed.

Previous works [10], [11] mainly focus on the distributed

training of a single task, assuming that the data can always be

processed locally or the data are always ready on edge servers.
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While in a practical edge computing system, there are often

multiple training tasks and most data source nodes such as

sensors have to upload their data.

We consider the scenario where we deploy workers at the

edge servers to collect the data and train the model in a

distributed way, as illustrated in Fig. 1. We focus on training

models using asynchronous stochastic descent gradient (SGD)

based approaches and data parallelism under the parameter

server [12] framework. When conducting asynchronous SGD

at the edge, the workers, deployed at the edge servers, firstly

collect the data from the data nodes that are associated to

each individual job request. Each worker then divides the

collected data into mini-batches and computes the gradients

one by one. After processing several mini-batches, the worker

sends the gradients to the parameter servers. Upon receiving

the gradients from one worker, the parameter servers perform

global parameter updates, and send the updated parameters

back to the worker [11]. When the worker receives the updated

parameters, it re-computes the gradients using the following

mini-batches. After processing the entire collected data, the

worker starts another epoch to compute gradients until the

required epochs have been achieved. The training workflow is

illustrated in Fig. 2.

With the emerging of edge intelligence, the edge computing

system will face more and more distributed training jobs.

In this paper, we expect to maximize the system throughput

by performing job offloading and resource allocation in an

optimal way and focus on the two critical challenges: how

to offload the job requests with multiple data source nodes

to maximize the system throughput and how to allocate

the limited resources(e.g., computation and communication

resources) among parallel training tasks on each edge server

to ensure the system’s QoS. The main contributions of this

paper are summarized as follows:

• We look into the compelling problem of job offloading

with multiple data source nodes in edge computing,

which has rarely been studied in related previous works

as far as we know.

• We jointly consider the job offloading and resource

allocation problems and comprehensively formalize the

joint problem to maximize the system throughput while

ensuring the system’s QoS.

• We develop an efficient algorithm by randomized round-

ing to make optimal job offloading and resource alloca-

tion decisions. We further prove the algorithm’s perfor-

mance guarantee based on central limit theorem.

• We conduct extensive experiments to validate the effi-

ciency of the proposed algorithm. The results validate that

the algorithm can improve 56% of the system throughput

and 53% of resource utilization when compared to the

baseline algorithms.

The remainder of this paper is organized as follows: In Sec-

tion II, we discuss the related works. In Section III, we give the

formal definitions of the problem. In Section IV, we propose

our algorithm and analyze its performance. We validate our
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Fig. 2. Illustration of asynchronous SGD based distributed model training
workflow when adopting the Parameter Server framework and data paral-
lelism.

algorithm’s efficiency and optimum by simulations in Section

V and conclude in Section VI .

II. RELATED WORKS

Job offloading is the central topic of many previous works

about edge computing. There have been various works that

study job offloading from different points of view. To reduce

the task duration, the authors in [13] designed a hierarchical

edge computing architecture, based on which they proposed

an optimal offloading scheme. In order to keep the delay

minimized and save the battery life of user’s equipment,

works in [14] transformed the job offloading problem into

two sub-problems and proposed the respective solutions. In

[15], the authors considered the job offloading problem from

the perspective of energy saving, a novel user-centric energy-

aware mobility management scheme is developed. Works in

[16], [17] considered the job offloading from the collaboration

view. These works only consider the situation in which each

job has only one end device, the offloading of multi-node job

has rarely been studied.

Resource allocation is another important research point in

edge computing. The authors in [18] proposed efficient algo-

rithms to choose the data centers, meanwhile, by making use

of structured network in data center, they developed optimal

algorithm for rack and server selection, they also developed

heuristic for partitioning the requested resources amongst the

selected data centers and racks. In [19], through implementing

via successive convex approximation, the authors proposed

a novel specialized resource allocation approach for such

applications as augmented reality. A joint scheduling algorithm

that allocates both radio and compute resources coordinately is

developed in [20] to avoid wasting resources. These proposed

resource allocation schemes mainly focus on generic tasks,

however, further performance gain can be obtained if we take

the feature of distributed training tasks into account.

There have been a bunch of prior works about conducting

machine learning tasks at the edge. A concept termed federated

learning is proposed in [10], in which mobile phones and IoT
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devices can be used to learn a shared model in a decentralized

approach, which is a variant of distributed gradient descent.

The authors in [11] analyzed the convergence rate of dis-

tributed gradient descent from a theoretical point of view and

proposed a control algorithm, which determines the best trade-

off between local update and global parameter aggregation.

In [21], the authors proposed distributed deep neural network

over hierarchies consisting of the cloud, the edge and end

devices, which significantly reduces the communication cost.

The authors in [22] introduced deep learning for IoTs into the

edge computing environment and designed novel offloading

strategy to optimize the performance. While these previous

works focus on conducting training tasks at the edge, they

ignored the joint optimization of job offloading and resource

allocation for these training tasks, which is of vital importance

for the resource limited edge computing environment.

III. PROBLEM FORMULATION

A. System Model

Assume we are given a set N = {1, · · · , n} of data nodes,

and a set M = {1, · · · ,m} of edge servers. With every data

node i ∈ N there are associated with some data of amount

di, which is assumed to be enough for single node model

training. Further, for each edge server j ∈ M , the amount of

its available type-γ resource is rγj , for example, the amount

of storage resource is denoted as rsj . The data from the data

nodes serve a set P = {1, · · · , p} of training job requests. In

addition, for every job request k ∈ P , its job completion time

is associated with an upper bound τk, indicating that it should

be completed within τk when accepted.

Due to some factors such as distance, each data node i ∈ N
has its own assignable edge servers, we denote the assignable

edge servers of data node i as subset Ai ⊂ M . During job

offloading, each data node can only be assigned to one of

its assignable edge servers. Meanwhile, we denote the subset

of candidate data nodes that can be assigned to edge server

j ∈ M as Bj ⊂ N and the subset of data nodes that serve

job request k ∈ P as Ck ⊂ N . These sets define a bipartite

graph G with color classes M and N , we define the degree

of data node i as |Ai| and the degree of edge server j as |Bj |.
Throughout this paper, we assume that each data node serves

only one job, i.e., Ck1 ∩ Ck2 = ∅, k1, k2 ∈ P, k1 �= k2.

B. Job Offloading

We use binary variable yk to express the admission decision

of job request k ∈ P . That is, if yk = 1, it will be accepted

and served by the system, otherwise it is rejected. Rejected

job requests can be resubmitted or queued. For an accepted

job request, we use binary variables xj
i to model the data node

assignment scheme. For data node i ∈ N , if xj
i = 1, j ∈ M ,

a worker will be deployed on edge server j (via containers

or virtual machines) to collect its data and conduct distributed

model training with the coordination of the parameter servers.

Therefore, the data collected on edge server j for job request

k can be derived as

Dk
j =

∑
i∈Ck

xj
idi (1)

C. Resource Allocation

We denote the amount of type-γ resource allocated to job

request k on edge server j as rγj,k. Specifically, we allocate

computation resource to job k on edge server j with the

amount rcj,k, and with the amount rbj,k of communication

resource. Further, we denote the time used to train the network

model for job request k on edge server j as tj,k, which consists

of the computing time tcomp
j,k and the communication time

tcomm
j,k .

The time used to train the mini-batches adds up to the

computing time. We assume that the mini-batch size of job

request k is fixed and denote it as fk. Therefore, the float

operations needed to process one mini-batch of job request k
is fixed, we denote it as gk. Further, the number of iterations

during one epoch is fixed and can be derived as
Dk

j

fk
for job

request k on edge server j. As our survey and experiment re-

sult show, the computing time has linear relationship with float

point operations and is inversely proportional to computation

resource. We calculate the computing time of job request k in

one epoch on edge server j as follows:

tcomp
j,k =

Dk
j

fk
· gk
rcj,k

(2)

We use hk to denote the parameters’ size of job request k,

with gradients’ size same as parameters’. Suppose we perform

global update every λk iterations for job request k, thus the

number of communication times during one epoch is 1
λk
· D

k
j

fk
on edge server j. Therefore, we calculate the communication

time of job request k on edge server j during one epoch as

tcomm
j,k =

1

λk
· D

k
j

fk
· hk

rbj,k
(3)

In practical, deep learning models are usually non-convex, we

can not expect the training epochs required for the model

convergence. However, different from experimental models,

production models often have been tested many times in

different situations and the hyper-parameters have been tuned

well during the experimental phase, thus they are mature

enough and can typically converge to the optimum very well

in desired training epochs. We suppose the training process of

job request k includes Tk epochs, thus the total training time

of job request k on edge server j is

tj,k = Tk · (tcomp
j,k + tcomm

j,k ) (4)

D. Joint Optimization

To maximize the system throughput and ensure the system’s

QoS, we jointly consider the Job offloading and Resource
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allocation Problem (JRP) for distributed deep learning at the

edge and formulate it as follows:

max

p∑
k=1

yk (5)

S.t.
∑
j∈Ai

xj
i = yk, ∀k ∈ P, ∀i ∈ Ck (6)

∑
i∈Bj

xj
idi ≤ rsj , ∀j ∈M (7)

p∑
k=1

rcj,k ≤ rcj , ∀j ∈M (8)

p∑
k=1

rbj,k ≤ rbj , ∀j ∈M (9)

tj,k ≤ τk, ∀k ∈ P, ∀j ∈M (10)

yk ∈ {0, 1}, ∀k ∈ P (11)

xj
i ∈ {0, 1}, ∀i ∈ N, ∀j ∈M (12)

rcj,k, r
b
j,k ≥ 0, ∀j ∈M, ∀k ∈ P (13)

In this system of constraints, Eq. (6) represents the assignment

for the data nodes of each job request. For a data node, if

its associated job request is accepted by the system, one and

only one worker will be deployed on a certain edge server

to collect its data and train the respective model. Otherwise,

it will not be assigned to any edge server. Eq. (7) indicates

that the amount of the collected data on each edge server

should not exceed its storage capacity. Eq. (8) and Eq. (9)

ensure that the resources allocated to the accepted job requests

will not exceed the capacity on each edge server. Eq. (10)

states that the completion time of each job should not exceed

the respective upper bound. Our objective is to maximize the

system throughput, as Eq. (5) indicates.

The JRP is formulated as a mixed integer non-linear pro-

gram above. Intuitively, when we regard the data nodes and

edge servers as the items and knapsacks in multiple knapsack

problem (MKP), the JRP is similar to MKP. However, there are

basically two main differences between JRP and MKP even

if we ignore the resource allocation process. On one hand, in

JRP, each data node can be assigned to only a subset of edge

servers. On the other hand, for the data nodes of the same job

request, their assignments are not independent, either all of

them are assigned or none of them is assigned. Nevertheless,

we consider a special case of JRP, in which the upper bound

of completion time τk is infinite for job request k so that we

can ignore those constraints related to the resource allocation.

Further, we assume each job request has only one data node,

and each data node can be assigned to all the edge servers. As

a result, our problem becomes MKP, thus MKP is a special

case of JRP. Since the MKP is NP-hard, JRP is thus NP-hard

in the strong sense.

IV. ALGORITHM DESCRIPTION

A. Relaxation and Reformulation

To circumvent the NP-hardness of the JRP, we relax the

integer constraints Eq. (11) and Eq. (12) to

yk ∈ [0, 1], ∀k ∈ P (14)

xj
i ∈ [0, 1], ∀i ∈ N, ∀j ∈M (15)

Meanwhile, we notice that in a practical distributed deep

learning system, in order to ensure the system’s overall per-

formance, the communication time of a job is often restricted.

Therefore, we introduce the system-wide configurable coeffi-

cient ε ∈ (0, 1), which indicates the ratio of communication

time to the total time of the accepted job requests. In order to

facilitate the non-linear constraints in Eq. (10), we transform

them into two sets of linear sub constraints by making use of

ε as follows:

TkhkD
k
j − ετkηkfkr

b
j,k ≤ 0, ∀k ∈ P, ∀j ∈M (16)

TkgkD
k
j − (1− ε)τkfkr

c
j,k ≤ 0, ∀k ∈ P, ∀j ∈M (17)

After the relaxation and reformulation, we get the linear

program with respect to x, y, rc, rb. Given an instance I of

JRP, we denote this linear program by LPI . We can solve LPI

efficiently and get the optimal vertex solution, which may not

be feasible for the integer constraints of the original problem.

Based on the solution to LPI , we propose our approximation

algorithm by adopting randomized rounding technique.

B. Approximation Algorithm

In the optimization for JRP, we consider the case in which

the set of job requests P is given. This is feasible in a typical

parallel distributed system, where we have to schedule a set of

queued job requests from time to time. For the sake of brevity,

we say job k ∈ P is non-trivial if ∀i ∈ Ck there exist at least

one edge server j ∈Mi that satisfies rsj ≥ di.
Given the instance I , we develop the algorithm in an

iterative scheme. In each iteration, we first perform pruning

on I . The pruning is performed as follows, for data node

i ∈ N , we remove edge server j from Ai and remove i
from Bj if rsj < di. For edge server j ∈ M , we first

group the remaining data nodes in Bj by the job request to

which they belong as B1
j , B

2
j , · · · , Bp

j . For the data nodes in

group Bk
j , k ∈ {1, 2, · · · , p}, we order them in non-decreasing

degree order, let bkj be the maximum data node in ordered Bk
j

such that ∑
i∈Bk

j |i≤bkj

di ≤ rsj (18)

Tkhk

∑
i∈Bk

j |i≤bkj

xj
idi − ετkηkfkr

b
j ≤ 0 (19)

Tkgk
∑

i∈Bk
j |i≤bkj

xj
idi − (1− ε)τkfkr

c
j ≤ 0 (20)

we remove the data nodes in {i ∈ Bk
j |i > bkj } from Bj and

remove j from their assignable edge server set.
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After the pruning, we reject those trivial job requests. When

a job request is rejected, we remove it and the corresponding

data nodes from I . If the current job request set P is empty,

the algorithm finishes, otherwise, we construct LPI and find

an optimal vertex solution {x̂, ŷ, r̂c, r̂b} to it. For the data

nodes in Ck, we regard ŷk as their priority in the current

iteration. In addition, we interpret the fractional values x̂j
i

as probabilities. For data node i ∈ N , we introduce the

independent discrete random variable ei, with sample space

{1, 2, · · · ,m} and probability distribution given by x̂j
i , i.e,

Pr(ei = j) = x̂j
i , (j = 1, 2, · · · ,m) and Pr(ei = 0) =

1−∑m
j=1 x̂

j
i . Therefore, based on ei we obtain the preliminary

integer data node assignment.

However, this preliminary assignment may not be feasible,

as the storage constraint or completion time constraint may be

violated. We denote the set of data nodes that are assigned to

edge server j as B′j in the preliminary assignment and order

them in non-increasing priority order. Let bj be the minimum

data node in ordered B′j such that

∑
i∈B′

j |i≥bj

di ≤ rsj (21)

Then, in order to get a feasible assignment, we only assign

the data nodes in {i ∈ B′j |i ≥ bj} to edge server j. For

a job request, if all of its data nodes are assigned, it is ac-

cepted. Further, to maintain the job completion time achieved

previously, we update resources allocated to the accepted jobs

on each server proportionally based on the solution to LPI .

Finally, we remove the accepted job requests together with

the corresponding data nodes from I and update the available

resources on each edge server. After updating I , the algorithm

goes on another iteration. The algorithm is formally described

in Alg. 1.

Proposition 1: Alg. 1 finishes in at most p iterations.

Proof: At the beginning of each iteration, the pruning on

I ensures that edge server j ∈ M can cope with the extreme

situation in which all the candidate data nodes from job request

k ∈ P are assigned to it. Thus in each iteration’s preliminary

assignment, based on the solution to LPI , the data nodes of the

job request with the highest priority can always be assigned.

As a result, there is at least one job request accepted in each

iteration or the algorithm finishes. Since the size of the initial

job requests set is p, Alg. 1 finishes in at most p iterations.

C. Theoretical Analysis

According to Eq. (6), the system throughput of the proposed

algorithm is
∑p

k=1

∑
j∈Ai

xj
i , i ∈ Ck. The iterative feature

of Alg. 1 makes it difficult to derive the approximation

performance for the system throughput directly. We notice

that the job admission decision is made based on the data

node assignment on each edge server, which enlightens us on

analyzing the performance of the proposed algorithm through

data node assignment on the edge server. We denote the total

Algorithm 1 Approximation algorithm for JRP

Input: Initial JRP instance I

1: while true do
2: PRUNE(I);

3: if P = ∅ then
4: The algorithm ends;

5: else
6: Solve LPI and get {x̂, ŷ, r̂c, r̂b};
7: Set the priority of i ∈ Ck as ŷk;

8: Obtain x̃ based on x̂ by randomized rounding;

9: for j ∈M do
10: Set B′j ← {i ∈ Bj |x̃j

i = 1};
11: Order B′j in non-increasing priority order;

12: Find minimum bj ∈ B′j such that Eq. (21) is

satisfied;

13: Set xj
i ← 1, i ∈ B′j , i ≥ bj ;

14: end for
15: for k ∈ P do
16: Set yk ← 1 if

∑
j∈M xj

i = 1, ∀i ∈ Ck;

17: if yk = 1 then
18: Update rcj,k, r

b
j,k, j ∈ M proportionally to

satisfy Eq. (16) and Eq. (17);

19: Set P ← P − {k}, N ← N − Ck;

20: end if
21: end for
22: Update I;

23: end if
24: end while
25: function PRUNE(I)

26: Set Ai ← Ai − {j ∈ Ai|rjs < di};
27: Set Bj ← Bj − {i ∈ Bj |rjs < di};
28: for k ∈ P do
29: Set Bk

j ← {i ∈ Bj |i ∈ Ck};
30: Order Bk

j in non-decreasing degree order;

31: Find maximum bkj ∈ Bk
j such that Eq. (18), Eq.

(19) and Eq. (20) are satisfied;

32: Set B̂k
j ← {i ∈ Bk

j |i > bkj };
33: Set Bj ← Bj − B̂k

j , Ai ← Ai − {j}, ∀i ∈ B̂k
j ;

34: Set P ← P − {k}, N ← N − Ck if k is trivial;

35: end for
36: end function

Output: y,x, rc, rb

data assigned to edge server j ∈ M by the preliminary

assignment as the random variable

Dj =
∑
i∈Bj

di · ϕ(ei = j) (22)

here ϕ(ei = j) is 1 if ei = j and 0 otherwise. Eq. (22)

indicates that Dj is a sum of independent random variables.

Thus we consider the data node assignment process for edge
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server j as |Bj | Poisson tests, in which data node i is

assigned to j with probability x̂j
i . We define μj = E(Dj)

and σ2
j = V ar(Dj). According to the Chernoff Bound, we

get the following probabilistic tail estimate:

Pr (Dj < (1− δ)μj) < e−
μjδ

2

2 (23)

for every δ with 0 < δ < 1. Eq. (23) gives an upper bound on

the probability that the data amount on edge server j does not

exceed a certain fraction of its expectation in the preliminary

assignment.

We analyze the lower bound of the proposed algorithm’s

performance based on the central limit theorem [23]. Firstly,

we assume n is large and the data amounts di, i ∈ N are

uniformly bounded. Suppose there is an ε such that xj
i ∈

[ε, 1− ε] is satisfied for most data nodes, which ensures that

the central limit theorem can hold. Therefore, according to the

central limit theorem, we may conclude that (Dj −μj)/σ
2
j ∼

N(0, 1). Now we formally prove the performance guarantee

of our algorithm.

Theorem 1: Let OPTI denote the optimal value of LPI and

η denote the maximum number of data nodes that any edge

server can serve. Assume that the central limit theorem can

hold for j ∈ M . The approximate performance lower bound

of the proposed algorithm is(
1− 1

2η
− 1√

2ηπ

)
·OPTI

Proof: Let D′j be the final data amount assigned to edge

server j by the proposed algorithm in each iteration. Therefore,

if Dj ≤ rjs, D′j is equal to Dj , otherwise we can only expect

D′j ≥ μj − dmax, where dmax = maxk

∑
i∈Bk

j
di. However,

when the storage constraint is violated on edge server j, we

remove those data nodes with lower priority until the storage

constraint is satisfied. After removing those data nodes, edge

server j is assigned at least 1 − 1
η of the total capacity, i.e,

D′j ≥ (1− 1
η )r

j
s. Therefore

E(D′j) ≥
∫ rjs

0

zPr(z)dz + (1− 1

η
)rjsPr(Dj > rjs) (24)

Meanwhile, we may assume that μj = rjs without generality,

since the central theorem can hold and (Dj − μj)/σ
2
j ∼

N(0, 1), we can derive that

E(D′j) ≥ (1− 1

2η
)μj − σj√

2π
(25)

σ2
j =

∑
i∈Bj

d2ix
j
i (1− xj

i ) ≤ dmaxμj ≤
μ2
j

η
(26)

Therefore,

E(D′j) ≥ (1− 1

2η
)μj − 1√

2π
· μj√

η

= (1− 1

2η
− 1√

2πη
)μj

(27)

The theorem thus follows.

V. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

For performance comparison, we adopt the following met-

rics:

• System throughput. The system throughput is the major

objective, thus we take the system throughput, i.e. number

of accepted job requests as a metric. We formally denote

the system throughput as L =
∑

k∈P yk.

• Utilization rate. To fully utilize the limited resources

on the edge servers, the storage utilization rate is of

great importance. Therefore, we take the average storage

utilization rate as another metric, which can be modeled

as κ = 1
m

∑m
j=1

∑n
i=1 xj

idi

rsj
.

Based on these two metrics, we compare the proposed

algorithm with several baseline algorithms. These baseline al-

gorithms initially follow the same philosophy to decide which

job request to accept. Intuitively, to maximize the system’s

throughput, these algorithms iteratively choose the job request

with minimum data amount and allocate the resources based

on the completion time constraints until no more job request

can be accommodated by thegt system. The difference lies

in how to assign the accepted job request’s data nodes. The

first baseline algorithm is a randomized algorithm, which

randomly chooses a qualified edge server for the data nodes

of the accepted job request. The second baseline algorithm

is a greedy load balancing algorithm. Specifically, for a data

node of the accepted job request, the algorithm orders the

data node’s assignable edge servers in non-decreasing storage

usage order and choose the first edge server that can satisfy

the time constraint for the respective job request in the

ordered sequence. Since our algorithm is based on randomized

rounding, we regard the solution of LPI in the first iteration

of Alg. 1 as the optimal solution.

B. Simulation Setup

In order to mimic a practical edge computing environment,

we simulate an area which is divided into 19 hexagonal cells,

as depicted in Fig. 3. Within each of these hexagonal cells,

there exists one edge server (typically resides in a small

cluster), on which we deploy workers for the accepted job

requests. For each edge server, we set its floating point oper-

ation capability as 150GFLOPS and set the storage capacity

between 100GB to 200GB. Further, since the edge servers and
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Fig. 3. Illustration of the simulated area.
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Fig. 4. System throughput for uniform distri-
bution.
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Fig. 5. System throughput for normal distribu-
tion.
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Fig. 6. System throughput for Pareto distribu-
tion.
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Fig. 7. Utilization rate for uniform distribution.
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Fig. 8. Utilization rate for normal distribution.
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Fig. 9. Utilization rate for Pareto distribution.

parameter servers are usually connected by dedicated fibre

networks at the edge, we set the available communication

resource of each edge server as 10Gbps.

As for the data nodes of each job request, we perform our

experiments over three kinds of data amount distributions, i.e,

uniform distribution, normal distribution and Pareto distribu-

tion, which correspond to the possible realistic application sce-

narios. We set the data amount according to [24]. Specifically,

in uniform distribution, we set the range of the distribution as

2GB to 8GB. In normal distribution, we set the mean value

of the distribution as 5GB, and the standard deviation as 1. In

Pareto distribution, we set the minimal value of the distribution

as 2GB, and set the shape value as 2. Meanwhile, we assume

that the number of the data nodes that serve the same job

request is about 15. For each data node, we randomly set the

cell where it is located within the simulated area. Moreover,

we assume that a data node can be assigned to the edge server

in the same cell and those in the neighbor cells.

Inspired by real productive models [25], we set the size

of parameters (gradients as well) for different training job

requests from 30MB to 575MB. Although data parallelism

is adopted among edge servers, model parallelism can be

adopted within each edge server to handle models of large

size. The mini-batch size is set about 6MB, depending on

different training data size. We set the number of floating

point operations during one iteration based on the respective

parameter size and mini-batch size according to the statistics

from [26]. For each job request, we set the number of iterations

between global update between 3 and 8. Moreover, we set the

job completion time ranges from 1 hour to 2 hours.

C. Numerical Results

Figs. 4-6 present the system throughput of the algorithms

in the evaluation instances with different data amount distri-

bution. We observe that when the total resource demand to the

system is moderate, these algorithms exhibit relatively close

throughput performance. As the number of job requests grows,

however, the advantage of our proposed algorithm becomes

clear. Specifically, in Fig. 4, when the data amount follows

uniform distribution, compared with greedy algorithm and

random algorithm, it is shown that the proposed algorithm can

achieve more than 24% and 56% the throughput respectively.

In Fig. 5, when the data amount follows normal distribution,

the throughput of the proposed algorithm is 25% and 50%
more than the other two algorithms respectively. Similar results

are given in Fig. 6. Meanwhile, the proposed algorithm can

achieve at least 89% of the optimal performance in terms of

system throughput.

Figs. 7-9 illustrate the algorithm performances in terms of

the average storage utilization rate. It is shown that when

the system’s resources are sufficient, the algorithms achieve

similar performance. However, with the growth of the number

of job requests, the utilization rate of each algorithm gradually

reaches their respective peaks, from which we can observe that

the proposed algorithm performs much better than the baseline

algorithms. In particular, as Fig. 7 shows, the utilization rate

of the proposed algorithm can be 25% and 53% more than

the greedy and random algorithm respectively. Similar results

can also be derived in Fig. 8 and Fig. 9. Moreover, from

the perspective of utilization rate, the proposed algorithm can

achieve at least 93% of the optimal performance.

Furthermore, we observe that the utilization rate of the
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optimal algorithm can always reach the peak near 1, while the

peaks of the other algorithms never reach that point. That is

because the assignment provided by the solution to the LPI

can contain fractional values, while in the other algorithms,

even if the storage capacity is sufficient, the completion time

constraint will limit the utilization rate. Meanwhile, it is

observed that although the throughput in Pareto distribution

is less than that in other distributions, the utilization rate is

similar or even higher, as Fig. 6 and Fig. 9 show, which is

because in the Pareto distribution, most of the data nodes’

data amount is much larger than that in other distributions.

VI. CONCLUSION

In this paper, we have studied joint job offloading and

resource allocation for distributed deep learning oriented edge

computing system. The joint problem is first formulated as

a mixed integer non-linear program to maximize the system

throughput while ensuring the system’s QoS. To make the

problem tractable, we relaxed and reformulated some con-

straints to get a linear program. Based on the linear program,

we proposed an efficient algorithm with provable performance

guarantee. As far as we know, this is the first study of job

offloading with multiple data nodes in edge computing.
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