Randomized Component and Group Oriented (t,m,n)-Secret Sharing

0

Miao Fuyou School of Computer Sci. & Tech.,USTC 2016.4.10

Outline

- (t,n)-Secret Sharing
- 2 Attacks Against (t,n)-SS
- Randomized Component
- (t,m,n)-Group Oriented Secret Sharing
- Asynchronous Group Authentication
- Key Agreement with Authentication
- Ideal (t,m,n)-Group Oriented Secret Sharing

What is (t,n)-Secret Sharing (SS)

- (t,n)-Secret Sharing (t<=n)
 - a secret s is divided into n shares such that:
 - (1) any t or more than t shares \rightarrow s;
 - (2) less than t shares --\-->s;
- Applications

0

- Threshold Encryption/Signature
- Secure Multiparty Computation

Fig I. An example of (3,100)-SS

Typical (t,n)-SS

- Shamir's (t,n)-SS (1979)
 - **Dealer D:** $f(x) = a_0 + a_1 x + ... + a_{t-1} x^{t-1} \mod p$, $s = f(0) = a_0 \quad a_j \in F_p, j = 0, 1, 2, ..., t - 1$
 - Share Distribution:
 - n shareholders : $\{U_1, U_2, \dots, U_m, \dots, U_n\}$,
 - Dealer D: $f(x_i) \rightarrow U_i$, $f(x_i)$ is the share of the shareholder U_i , x_i is the public information.
 - Secret Reconstruction
 - m shareholders $U_{Jm} = \{U_1, U_2, \dots, U_m\}, (m \ge t)$

$$s = f(0) = \sum_{j \in J_m} s_j \prod_{r \in J_m, r \neq j} \frac{\mathcal{O} - x_r}{x_j - x_r} \mod p.$$

Other (t,n)-SS

- Mignotte's SS and Asmuth-Bloom's SS (CRT based)
- Blakely's SS (Geometry based)
- Massey's SS (Linear Code based)

Communication Model

Symmetrical Private Channel (or SPC) between each pair of shareholders (participants)

Fig 3. more than 3 participants recover the secret in (3,100)-SS

Illegal Participant Attack-IP

Fig.4 IP attack against (3,100)-SS

Private Channel Cracking Attack - PCC \mathbf{u}_0

Only to crack t/2SPCs to obtain S even if much more than t participants recover S.

thwart IP attack and improve the robustness against PCC attack?

Existing Countermeasures against IP attack

- Verifiable Secret Sharing
 - verify each share of participant before secret reconstruction
- Participant Authentication
 - verify the identity of participants

Existing way to improve the robustness against PCC attack

Full-shuffling

each participant needs to exchange a random number with every other participant. m(m-1)/2 random numbers to exchange. Lower bound: m/2 SPCs.

partial-shuffling

m random numbers need to be exchanged lower bound: t SPCs

Existing way to improve the robustness against PCC attack

- Harn's secure secret reconstruction
 - Use multiple polynomials +linear combination to bind all participant together. For example,
 - Secret s=af(0)+bg(1) mod p
 - Share s_i : { $f(x_i), g(x_i)$ }

$$c_{i} = \{af(x_{i}) \prod_{r \in J_{m}, r \neq j} \frac{0 - x_{r}}{x_{j} - x_{r}} + bg(x_{i}) \prod_{r \in J_{m}, r \neq j} \frac{1 - x_{r}}{x_{j} - x_{r}}\} \mod p.$$

$$s = af(0) + bg(1) = \sum_{i \in J_m} c_i \mod p.$$

• Solve the above 2 problems Defect:

- Multiple shares for each shareholder
- Parameters restriction

Our Objects

I. thwart IP attack and
 2. improve the robustness against PCC attack

- No need to exchange extra information
- Maximize the robustness

- Functionality:
 - Protecting a share from exposure during secret reconstruction
 - Capability of secret reconstruction

$$s = f(0) = \sum_{j \in J_m} \left(s_j \prod_{r \in J_m, r \neq j} \frac{\mathcal{O} - x_r}{x_j - x_r} \right) \mod p.$$

$$RC_{j} = \left(s_{j} \prod_{r \in J_{m}, r \neq j} \frac{\mathcal{O} - x_{r}}{x_{j} - x_{r}}\right) + ? \mod p \longrightarrow S$$

- Basic Idea (hide the share)
 - If s is a secret value in [0,9] to be hide, we can add a private random number r in[0,9], to obtain a number c=(s+r) mod 10
 - Suppose you know c =3, what is the probability to guess s?
 - \circ Obviously it is 1/10.
 - c=3
 - s = 3 2 1 0 9 8 7 6 5 4
 - r = 0 1 2 3 4 5 6 7 8 9

• Guessing r is as difficult as guessing s.

- Basic Idea (hide the share)
 - If x is a secret value in [0,99] to be hide, we add a private random number r in[0,9], to obtain a number c=(x+r) mod 100
 - Suppose you know c = 33, what is the probability to guess x and s=(x mod 10) ?
 - Obviously it is 1/100 and 1/10 respectively.
 - If c=33 then
 - x 33 32 31 30 29 28 27 26 25 24
 - r 0 1 2 3 4 5 6 7 8 9
 - Guessing r is easier than guessing x, but is as difficult as guessing s=x mod 10.

• $g: F_p \times F_p \times F_q \to F_p$ is a function, $c_i = g(s_k, INF_{I_m}, r_i)$ is called the Randomized Component of the participant U_k , where s_k is the share of U_k , INF_{I_m} is the public information related to the group of m participants in a secret reconstruction, r_i is a random integer uniformly distributed in F_a .

- Object in design:
 - Make an adversary pay equal effort in guessing a share and the secret

Polynomial-based Randomized Component (PRC)

• If m participants, $\mathscr{U}_{A_m} = \{U_{a_1}, U_{a_2}, ..., U_{a_m}\}$, need to recover the secret, each participant, e.g., U_{a_i} , $(U_{a_i} \in \mathscr{U}_{A_m})$, constructs the RC as

$$c_{i} = (f(x_{i}) \prod_{v=1, v \neq i}^{m} \frac{-x_{v}}{x_{i} - x_{v}} + r_{i}q) \mod p,$$

p > nq² + q, *r_i* is uniformly distributed in *F_q*.
 p, q are primes.

Using PRC to protect the share

Given

$$c_{i} = (f(x_{i}) \prod_{v=1, v \neq i}^{m} \frac{-x_{v}}{x_{i} - x_{v}} + r_{i}q) \mod p,$$

An adversary has the probability of 1/q to figure out the share $f(x_i)$.

Secret Reconstruction based PRC

• Each participant, e.g., U_{i_j} , ($1 \le j \le m$), computes the secret as

$$s = \left(\sum_{j=1}^{m} c_{i_j} \mod p\right) \mod q$$

(t,m,n)-GOSS

 Group Oriented Secret Sharing with threshold t, m participants and totally n shareholders.

Set of *n* shareholders: $\mathcal{U} = \{U_1, U_2, \dots, U_n\}$ with respective public information $\{x_1, x_2, \dots, x_n\}$; Group of *m* participants: $\{U_k, U_k, \dots, U_k, M \ge t\} \subseteq \mathcal{U}, (m \ge t)$ Parameters: Primes: p,q with $p > q + nq^2$; Polynomial in F_p : $f(x) = a_0 + a_1 x + ... + a_{i-1} x^{i-1} \mod p$, $a_i \in F_a$, for $i = 1, ..., t - 1, a_{i-1} \neq 0, a_0 \in F_a$; Secret: $s = a_a$; Algorithms: A. Share Generation D computes and sends share $s_i = f(x_i)$ to U secretly, for i = 1, 2, ..., n. B. Randomized Component Construction Given $\{U_{i}, U_{i}, \dots, U_{i_{n}}\} \subseteq \mathcal{U}$, each participant, e.g., U_{i_i} , $(1 \le j \le m)$, constructs the RC, c_{i_i} and releases it to the others through private channels: $c_{i_j} = (f(x_{i_j}) \prod_{\nu=l,\nu\neq j}^{m} \frac{-x_{i_{\nu}}}{x_{i_{\nu}} - x_{i_{\nu}}} + r_{i_j}q) \mod p$ $(r_{i_{l}} \in F_{a}, \text{ for } j = 1, 2, \dots, m)$ C. Secret Reconstruction Each participant, e.g., U_{i_l} , $(1 \le j \le m)$, computes the secret as $s = (\sum_{i_j} c_{i_j} \mod p) \mod q$.

Fig. 1. (t, m, n)-Group oriented SS based on PRC.

Correctness of (t,m,n)-GOSS

$$\sum_{j \in I_m} c_{i_j} \mod p) \mod q$$

= $\sum_{j=1}^m (f(x_{i_j}) \prod_{\nu=1, \nu \neq j}^m \frac{-x_{i_\nu}}{x_{i_j} - x_{i_\nu}} + r_{i_j}q) \mod p \mod q$
= $(f(0) + \sum_{j=1}^m r_{i_j}q) \mod p \mod q$ (4-1)

$$= (f(0) + \sum_{j=1}^{m} r_{i_j} q) \mod q$$
(4-2)
= f(0)

Step (4-1) is equivalent to step (4-2) because of
$$f(0) \in F_q$$
, $\sum_{j=1}^m r_{i_j}q \leq \sum_{j=1}^n r_{i_j}q < nqq = nq^2$ and thus $(f(0) + \sum_{j=1}^m r_{i_j}q) < q + nq^2 < p$.

Security Analysis

- An adversary without any valid share, almost has no information about the secret in (t,m,n)-GOSS even if it has up to m-I PRCs.
 - (lower bound: m/2 SPCs)
- (t-1) Insiders almost obtains no information about the secret even if they conspire in (t,m,n)-GOSS.

Properties of (t,m,n)-GOSS

- Single share
- Group oriented
- Unconditionally secure
- Without user authentication or share verification

- the secret can be reconstructed only if each participant has a valid share and releases its valid RC honestly.
- Information rate: IR=(size of secret) / (size of share) =log q/log p (1/3, 1/2)

Conclusion of (t,n)-GOSS

- 2 attacks against (t,n)-SS
- Randomized Component
 - Protect shares
 - Bind a participant with all the others
- (t,m,n)-GOSS
 - Guarantees the secret can be recovered only if all m participants have valid shares and act honestly.

Application of GOSS

- Asynchronous Group Authentication
- Key agreement with authentication

Asynchronous Group Authentication

$$s = (\sum_{j=1}^{m} RC_j \mod p) \mod q$$

 Dealer: Publish H(s) in advance;
 Users :use the secret s as the authentication token

Key agreement with authentication

$$s = (\sum_{j=1}^{m} RC_j \mod p) \mod q$$

I. Dealer: Publish H(s) in advance;

2. users: use the secret s as the authentication token

3. Shared Key: $k = \sum_{j=1}^{m} RC_j \mod p$

Support different groups, multiple key agreement

Ideal (t,m,n)-GOSS

- Ideal Secret Sharing
 - A share is the same as the secret in size;
 - Not information can be obtained about the secret with less than t shares
- (t,m,n)-GOSS
 - Secret is in Fq while shares are in Fp
 - Log q/log p <1/2

How to construct an Ideal (t,m,n)-GOSS?

- Functionality:
 - Protecting a share from exposure during secret reconstruction
 - Capability of secret reconstruction

$$s = f(0) = \sum_{j \in J_m} \left(s_j \prod_{r \in J_m, r \neq j} \frac{\mathcal{O} - x_r}{x_j - x_r} \right) \mod p.$$

$$RC_{j} = (s_{j} \prod_{r \in J_{m}, r \neq j} \frac{\mathcal{O} - x_{r}}{x_{j} - x_{r}}) + r_{j} \mod p \longrightarrow S$$
1. \mathbb{P}_{j} has the same range as s_{j}

2. All r can be removed finally in secret reconstruction 38

Ideal (t,m,n)-GOSS

$$RC_{j} = s_{j} \prod_{r \in J_{m}, r \neq j} \frac{\mathcal{O} - x_{r}}{x_{j} - x_{r}} + r_{j} \mod p$$

$$s = \sum_{j=1}^{m} RC_j \mod p$$

Thanks!

Any Question?