Randomized Component and Group Oriented \((t,m,n)\)-Secret Sharing

Miao Fuyou
School of Computer Sci. & Tech., USTC
2016.4.10
Outline

- (t,n)-Secret Sharing
- 2 Attacks Against (t,n)-SS
- Randomized Component
- (t,m,n)-Group Oriented Secret Sharing
- Asynchronous Group Authentication
- Key Agreement with Authentication
- Ideal (t,m,n)-Group Oriented Secret Sharing
What is \((t,n)\)-Secret Sharing \((SS)\)

- \((t,n)\)-Secret Sharing \((t \leq n)\)
 - a secret \(s\) is divided into \(n\) shares such that:
 - (1) any \(t\) or more than \(t\) shares \(\rightarrow s\);
 - (2) less than \(t\) shares \(\rightarrow s\);

- Applications
 - Threshold Encryption/Signature
 - Secure Multiparty Computation
 - …
Fig 1. An example of (3,100)-SS
Typical (t,n)-SS

- Shamir’s (t,n)-SS (1979)
 - Dealer D: $f(x) = a_0 + a_1x + \ldots + a_{t-1}x^{t-1} \mod p$,
 $$s = f(0) = a_0 \quad a_j \in F_p, \quad j = 0, 1, 2, \ldots, t - 1$$
 - Share Distribution:
 - n shareholders: $\{U_1, U_2, \ldots, U_m, \ldots, U_n\}$,
 - Dealer D: $f(x_i) \rightarrow U_i$, $f(x_i)$ is the share of the shareholder U_i. x_i is the public information.
 - Secret Reconstruction
 - m shareholders $U_{jm} = \{U_1, U_2, \ldots, U_m\}$, $(m \geq t)$
 $$s = f(0) = \sum_{j \in J_m} s_j \prod_{r \in J_m, r \neq j} \frac{0 - x_r}{x_j - x_r} \mod p.$$
Other (t,n)-SS

- Mignotte’s SS and Asmuth-Bloom's SS (CRT based)
- Blakely’s SS (Geometry based)
- Massey’s SS (Linear Code based)
Communication Model

Symmetrical Private Channel (or SPC) between each pair of shareholders (participants)
Fig 3. more than 3 participants recover the secret in (3,100)-SS
Illegal Participant Attack-IP

Fig. 4 IP attack against (3, 100)-SS
Private Channel Cracking Attack - PCC

Only to crack $t/2$ SPCs to obtain S even if much more than t participants recover S.

How to improve the robustness?

Fig.5 PCC attack against $(3,n)$-SS
How to thwart IP attack and improve the robustness against PCC attack?
Existing Countermeasures against IP attack

- Verifiable Secret Sharing
 - verify each share of participant before secret reconstruction

- Participant Authentication
 - verify the identity of participants
Existing way to improve the robustness against PCC attack

- **Full-shuffling**

 Each participant needs to exchange a random number with every other participant. \(m(m-1)/2 \) random numbers to exchange. Lower bound: \(m/2 \) SPCs.

- **Partial-shuffling**

 \(m \) random numbers need to be exchanged. Lower bound: \(t \) SPCs.
Existing way to improve the robustness against PCC attack

- **Harn’s secure secret reconstruction**
 - Use multiple polynomials + linear combination to bind all participant together. For example,
 - Secret $s = af(0) + bg(1) \mod p$
 - Share s_i: \{f(x_i), g(x_i)\}

 \[
 c_i = \left\{ af(x_i) \prod_{r \in J_m, r \neq j} \frac{0 - x_r}{x_j - x_r} + bg(x_i) \prod_{r \in J_m, r \neq j} \frac{1 - x_r}{x_j - x_r} \right\} \mod p.
 \]

 $s = af(0) + bg(1) = \sum_{j \in J_m} c_j \mod p.$

 - Solve the above 2 problems

Defect:
 - Multiple shares for each shareholder
 - Parameters restriction
Our Objects

1. thwart IP attack and
 2. improve the robustness against PCC attack

• No need to exchange extra information
• Maximize the robustness
Randomized Component

- **Functionality:**
 - Protecting a share from exposure during secret reconstruction
 - Capability of secret reconstruction

\[s = f(0) = \sum_{j \in J_m} s_j \prod_{r \in J_m, r \neq j} \frac{0 - x_r}{x_j - x_r} \mod p. \]

\[RC_j = (s_j \prod_{r \in J_m, r \neq j} \frac{0 - x_r}{x_j - x_r}) + ? \mod p \quad \rightarrow \quad S \]
\[s = \left(\sum_{j=1}^{m} RC_j \mod p \right) \mod q \]
Randomized Component

Basic Idea (hide the share)

- If \(s \) is a secret value in \([0,9]\) to be hide, we can add a private random number \(r \) in \([0,9]\), to obtain a number \(c=(s+r) \mod 10 \)
- Suppose you know \(c = 3 \), what is the probability to guess \(s \)?
- Obviously it is \(1/10 \).

\(c = 3 \)

\(s = 3 \ 2 \ 1 \ 0 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \)

\(r = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \)

Guessing \(r \) is as difficult as guessing \(s \).
Randomized Component

- Basic Idea (hide the share)
 - If \(x \) is a secret value in \([0,99]\) to be hide, we add a private random number \(r \) in \([0,9]\), to obtain a number \(c=(x+r) \mod 100 \)
 - Suppose you know \(c = 33 \), what is the probability to guess \(x \) and \(s=(x \mod 10) \)?
 - Obviously it is 1/100 and 1/10 respectively.
 - If \(c=33 \) then
 - \(x \): 33 32 31 30 29 28 27 26 25 24
 - \(r \): 0 1 2 3 4 5 6 7 8 9
 - Guessing \(r \) is easier than guessing \(x \), but is as difficult as guessing \(s=x \mod 10 \).
Randomized Component

- \(g : F_p \times F_p \times F_q \rightarrow F_p \) is a function,
 \(c_i = g(s_k, INF_{I_m}, r_i) \) is called the Randomized Component of the participant \(U_k \), where \(s_k \) is the share of \(U_k \), \(INF_{I_m} \) is the public information related to the group of \(m \) participants in a secret reconstruction, \(r_i \) is a random integer uniformly distributed in \(F_q \).
Randomized Component

Object in design:

- Make an adversary pay equal effort in guessing a share and the secret
Polynomial-based Randomized Component (PRC)

- If m participants, $\mathcal{U}_m = \{U_{a_1}, U_{a_2}, \ldots, U_{a_m}\}$, need to recover the secret, each participant, e.g., $U_{a_i}, (U_{a_i} \in \mathcal{U}_m)$, constructs the RC as

$$c_i = (f(x_i) \prod_{v=1,v\neq i}^{m} \frac{-x_v}{x_i - x_v} + r_iq) \mod p,$$

- $p > nq^2 + q$, r_i is uniformly distributed in F_q.
- p, q are primes.
Using PRC to protect the share

Given

\[c_i = (f(x_i) \prod_{v=1,v \neq i}^{m} \frac{-x_v}{x_i - x_v} + r_i q) \mod p, \]

An adversary has the probability of 1/q to figure out the share \(f(x_i) \).
Secret Reconstruction based PRC

- Each participant, e.g., $U_{ij},(1 \leq j \leq m)$, computes the secret as

$$s = \left(\sum_{j=1}^{m} c_{ij} \mod p \right) \mod q$$
(t,m,n)-GOSS

- Group Oriented Secret Sharing with threshold t, m participants and totally n shareholders.
Set of n shareholders: $\mathcal{U} = \{ U_1, U_2, \ldots, U_n \}$ with respective public information $\{ x_1, x_2, \ldots, x_n \}$; Group of m participants: $\{ U_{i_1}, U_{i_2}, \ldots, U_{i_m} \} \subseteq \mathcal{U}$, $(m \geq t)$

Parameters:
- Primes: p, q with $p > q + nq^2$;
- Polynomial in F_p: $f(x) = a_0 + a_1 x + \ldots + a_{t-1} x^{t-1} \mod p$,
 $a_i \in F_p$, for $i = 1, \ldots, t-1$, $a_{t-1} \neq 0$, $a_0 \in F_q$;
- Secret: $s = a_0$;

Algorithms:

A. *Share Generation*

D computes and sends share $s_i = f(x_i)$ to U_i secretly, for $i = 1, 2, \ldots, n$.

B. *Randomized Component Construction*

Given $\{ U_{i_1}, U_{i_2}, \ldots, U_{i_m} \} \subseteq \mathcal{U}$, each participant, e.g., U_{i_j}, $(1 \leq j \leq m)$, constructs the RC, c_{ij} and releases it to the others through private channels:

$$c_{ij} = (f(x_{ij}) \prod_{v=1, v \neq j}^{m} \frac{-x_{iv}}{x_{ij} - x_{iv}} + r_{ij}q) \mod p$$

$$(r_{ij} \in F_q, \ \text{for} \ j = 1, 2, \ldots, m)$$

C. *Secret Reconstruction*

Each participant, e.g., U_{i_j}, $(1 \leq j \leq m)$, computes the secret as $s = (\sum_{j=1}^{m} c_{ij} \mod p) \mod q$.

Fig. 1. (t, m, n)-Group oriented SS based on PRC.
\[s = \left(\sum_{j=1}^{m} RC_j \mod p \right) \mod q \]
Correctness of \((t,m,n)\)-GOSS

\[
(\sum_{i_j \in I_m} c_{i_j} \mod p) \mod q
\]

\[
= \sum_{j=1}^{m} (f(x_{i_j}) \prod_{v=1, v \neq j}^{m} \frac{-x_{i_v}}{x_{i_j} - x_{i_v}} + r_{i_j} q) \mod p \mod q
\]

\[
= (f(0) + \sum_{j=1}^{m} r_{i_j} q) \mod p \mod q
\]

\[
= (f(0) + \sum_{j=1}^{m} r_{i_j} q) \mod q
\]

\[
= f(0)
\]

Step (4-1) is equivalent to step (4-2) because of
\(f(0) \in F_q, \sum_{j=1}^{m} r_{i_j} q \leq \sum_{j=1}^{n} r_{i_j} q < nqq = nq^2\) and thus
\((f(0) + \sum_{j=1}^{m} r_{i_j} q) < q + nq^2 < p\).
Security Analysis

- An adversary without any valid share, almost has no information about the secret in \((t,m,n)\)-GOSS even if it has up to \(m-1\) PRCs.
 - (lower bound: \(m/2\) SPCs)

- \((t-1)\) Insiders almost obtain no information about the secret even if they conspire in \((t,m,n)\)-GOSS.
Properties of \((t,m,n)\)-GOSS

- **Single share**
- Group oriented
- Unconditionally secure
- Without user authentication or share verification
• the secret can be reconstructed only if each participant has a valid share and releases its valid RC honestly.

• Information rate:
 \[IR = \frac{\text{(size of secret)}}{\text{(size of share)}} = \frac{\log q}{\log p} \quad (1/3, 1/2) \]
Conclusion of (t,n)-GOSS

- 2 attacks against (t,n)-SS
- Randomized Component
 - Protect shares
 - Bind a participant with all the others
- (t,m,n)-GOSS
 - Guarantees the secret can be recovered only if all m participants have valid shares and act honestly.
Application of GOSS

- Asynchronous Group Authentication
- Key agreement with authentication
Asynchronous Group Authentication

\[s = \left(\sum_{j=1}^{m} RC_j \mod p \right) \mod q \]

1. Dealer: Publish \(H(s) \) in advance;
2. Users: use the secret \(s \) as the authentication token
Key agreement with authentication

\[s = \left(\sum_{j=1}^{m} RC_j \mod p \right) \mod q \]

1. Dealer: Publish \(H(s) \) in advance;
2. users: use the secret \(s \) as the authentication token
3. Shared Key:
 \[k = \sum_{j=1}^{m} RC_j \mod p \]

Support different groups, multiple key agreement
Ideal \((t,m,n)\)-GOSS

- Ideal Secret Sharing
 - A share is the same as the secret in size;
 - Not information can be obtained about the secret with less than \(t\) shares

- \((t,m,n)\)-GOSS
 - Secret is in \(F_q\) while shares are in \(F_p\)
 - \(\log q/\log p < 1/2\)
How to construct an Ideal (t,m,n)-GOSS?
Randomized Component

- **Functionality:**
 - Protecting a share from exposure during secret reconstruction
 - Capability of secret reconstruction

\[
s = f(0) = \sum_{j \in J_m} s_j \prod_{r \in J_m, r \neq j} \frac{\theta - x_r}{x_j - x_r} \mod p.
\]

\[
RC_j = (s_j \prod_{r \in J_m, r \neq j} \frac{\theta - x_r}{x_j - x_r}) + r_j \mod p \rightarrow S
\]

1. \(r_j \) has the same range as \(s_j \)

2. All \(r \) can be removed finally in secret reconstruction
Ideal \((t, m, n)\)-GOSS

\[u_5 = \{ U_0, U_1, U_2, U_3, U_4 \} \]
\[v_0, w_i^1, w_i^2, r_i \in F_p \]
\[S = \{ d_1 = 1, d_2 = 2 \} \]

\[W_0^1 = w_0^1 \]
\[W_1^1 = w_0^1 + w_1^1 \]
\[W_2^1 = w_0^1 + w_2^1 \]
\[W_3^1 = w_0^1 + w_3^1 \]
\[W_4^1 = w_0^1 + w_4^1 \]

\[r_4 = w_4^1 + w_4^2 \]

\[W_0^2 = w_0^2 \]
\[W_1^2 = w_0^2 + w_1^2 \]
\[W_2^2 = w_0^2 + w_2^2 \]
\[W_3^2 = w_0^2 + w_3^2 \]
\[W_4^2 = w_0^2 + w_4^2 \]

\[r_3 = w_3^1 + w_3^2 \]

\[W_j^1 = \sum_{i=0}^{j} w_i^1 \mod p \]
\[W_j^2 = \sum_{i=0}^{j} w_i^2 \mod p \] (2j mod 5)

\[r_0 = w_0^1 + w_0^2 + v_0 \mod p \]

The 1st round

The 2nd round
Randomized Component

\[RC_j = s_j \prod_{r \in J_m, r \neq j} \frac{0 - x_r}{x_j - x_r} + r_j \mod p \]

\[s = \sum_{j=1}^{m} RC_j \mod p \]
Thanks!

Any Question?