Tightly Coupled (t,n)-Secret Sharing

0

Miao Fuyou School of Computer Sci. & Tech.,USTC 2017.9.28

\$	27B/s 🖬 😻 ଲି ⁴ .d) 92% 🎫 10:22			
← 聊天信息(88) 🔉				
承 黄翠	薛军	平步…	张永	张力
苏栋	安阳	运 蓝 胖 纸	安阳	葛云飞
送 郑轻…	一棵松	河工	》 河南…	河工
信阳	顾燕	1 1 1 1 2 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 4 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	大 连	在路上
中山	会务	17 肖静	平顶	(上午) (公告永
	Â		*	Contraction of the second
	\bigtriangledown	0		

Don't want the wrong person to get any information, How to?

- Authenticate each person one by one:
- n(n-1)/2 rounds
- How to improve the efficiency in authentication?
- \rightarrow Each person authenticates the others at once.

(t,m,n)-Tightly Coupled Secret Sharing
 -A new tool to address the problem

Outline

- (t,n)-Secret Sharing
- 2 Attacks Against (t,n)-SS
- Noisy Channel Solutions
 Information Theoretical View
- Randomized Component
- (t,m,n)-Tightly Coupled Secret Sharing

What is Secret Sharing (SS)

- (t,n)-Secret Sharing
 - a secret s is divided into n shares such that:
 - (1) any t or more than t shares \rightarrow s;
 - (2) less than t shares $\forall \rightarrow s$;
 - Applications
 - Threshold encryption/signature
 - Key Distribution
 - Secure Multiparty Computation
 - Group authentication
 - Image Processing –Visual Secret Sharing
 - Access Control

Fig I. An example of (3,n)-SS

Typical (t,n)-SS

• Shamir's (t,n)-SS

• **Dealer D:** $f(x) = a_0 + a_1 x + ... + a_{t-1} x^{t-1} \mod p$, $s = f(0) = a_0 \quad a_j \in F_p, j = 0, 1, 2, ..., t-1$

• Share distribution:

• Dealer D: for n shareholders $\{U_1, U_2, \dots, U_n\}$, $f(x_i) \rightarrow U_i$, the share of $U_i : s_i = f(x_i)$, public inf : x_i

Secret Reconstruction

• m shareholders $J_m = \{U_1, U_2, \dots, U_m\}, (n \ge m \ge t)$ $s = f(0) = \sum_{U_j \in J_m} s_j \prod_{\substack{U_j \in J_m \ j \ne r}} \frac{-x_r}{x_j - x_r} \mod p$

Other SS

- Mignotte's SS and Asmuth-Bloom's SS (CRT based)
- Blakely's SS (Geometry based)
- Massey's SS (Linear Code based)

Communication Model

Symmetrical Private Channel (or SPC) between each pair of shareholders

Fig I. An example of (3,n)-SS

Illegal Participant Attack-IP

(3,n)-SS

Private Channel Cracking Attack - PCC \mathbf{u}_0

Only to crack t/2 SPCs to obtain S Even if much more than t participants recover S.

 \mathbf{u}_1 \mathbf{u}_4 S₄ Sz \mathbf{u}_3 \mathbf{u}_2 SI s₂ **S** < (3,n)-SS

How to improve the robustness?

How to thwart IP attack and improve the robustness against PCC attack?

Existing Countermeasure against IP attack

- Verifiable Secret Sharing
 - verify each share of participant before secret reconstruction
- Participant Authentication
 - verify the identity of participants
- Weakness
 - Individual Verification, Complexity

Existing ways to improve the robustness against PCC attack

Full-shuffling

each participant needs to exchange a random number with every other participant. m(m-1)/2 random numbers to exchange. Lower bound: m/2 SPCs.

• Partial-shuffling

m random numbers need to be exchanged
lower bound: min{m/2,t} SPCs , 2 SPCs to get a
share

Disadvantage: Extra communications

Our Objects

- thwart IP attack and maximize the robustness against PCC attack
- Requirement: No need to exchange extra information $a_{u_0} \xrightarrow{s} s$

Analysis of Existing Solutions -Information Theoretical View

Analysis of Existing Solutions -Information Theoretical View

Existing Noiseless Channel Model

IP

Noisy Channel Model

Prevention from obtaining s_1 in PCC and IP attack

Noisy Channel Model

1. If $|\text{noise}(\mathbf{U}_1, \mathbf{U}_2)| \ge |\mathbf{s}_1|$, the signal \mathbf{s}_1 is completely covered/perturbed.

- 2. However, normal receiver U_2 cannot obtain the signal s_1 too.
- 3. Without extra interaction, the noise $\mathbf{r_{12}}$ cannot be removed.

- Original Objects
 - thwart IP attack and maximize the robustness against PCC attack
 - Requirement: No need to exchange extra

• How to

Remove random noise r without extra interaction in recovering the secret s ?

Information Theoretical Requirement

Randomized Component

- Functionality:
 - Protecting a share from exposure during transimition
 - Capability of secret reconstruction
 - All participants have to join in the secret reconstruction

 $s_i' = f(s_i, U, r_i), i=1,2,...,m$

How to construct the function f(.)?

Randomized Component

- Basic Idea
- If s is a secret value in [0,99] to be hide, we can add a private random number r in[0,9], to obtain a number c=(s+r) mod 100
- Suppose you know c =55, what is the probability to guess s?
- Obviously it is 1/10.

Randomized Component

• $g: F_p \times F_p \times F_q \to F_p$ is a function, $c_i = g(s_k, INF_{I_m}, r_i)$ is called the Randomized Component of the participant U_k , where s_k is the share of U_k , $INF_{I_{m}}$ is the public information related to , the group of all m participants in a secret reconstruction, r_i is a random integer uniformly distributed in F_{a} .

Polynomial-based Randomized Component (PRC)

• If m participants, $\{U_1, U_2, ..., U_m\}$ need to recover the secret $s = f(0) = a_0 \mod q$, each participant, e.g., U_i constructs the RC as

$$c_{i} = (f(x_{i}) \prod_{v=1, v \neq i}^{m} \frac{-x_{v}}{x_{i} - x_{v}} + r_{i}q) \mod p,$$

p > nq² + q, r_i is uniformly distributed in F_q.
 p, q are primes.

Using PRC to protect the share

Given

$$c_{i} = (f(x_{i}) \prod_{v=1, v \neq i}^{m} \frac{-x_{v}}{x_{i} - x_{v}} + r_{i}q) \mod p,$$

An adversary has the probability of 1/q to figure out the share $f(x_i)$.

Secret Reconstruction based PRC

• Each participant, e.g., U_{i_j} , ($1 \le j \le m$), computes the secret as

$$s = \left(\sum_{j=1}^{m} c_{i_j} \mod p\right) \mod q$$

(t,m,n)-TCSS

 Tightly Coupled Secret Sharing with threshold t, m participants and totally n shareholders.

Set of *n* shareholders: $\mathcal{U} = \{U_1, U_2, \dots, U_n\}$ with respective public information $\{x_1, x_2, \dots, x_n\}$; Group of *m* participants: $\{U_k, U_k, \dots, U_k, M \ge t\} \subseteq \mathcal{U}, (m \ge t)$ Parameters: Primes: p,q with $p > q + nq^2$; Polynomial in F_{p} : $f(x) = a_0 + a_1 x + ... + a_{i-1} x^{i-1} \mod p$, $a_i \in F_a$, for $i = 1, ..., t - 1, a_{i-1} \neq 0, a_0 \in F_a$; Secret: $s = a_a$; Algorithms: A. Share Generation D computes and sends share $s_i = f(x_i)$ to U secretly, for i = 1, 2, ..., n. B. Randomized Component Construction Given $\{U_{i}, U_{i}, \dots, U_{i_{n}}\} \subseteq \mathcal{U}$, each participant, e.g., U_{i_i} , $(1 \le j \le m)$, constructs the RC, c_{i_i} and releases it to the others through private channels: $c_{i_j} = (f(x_{i_j}) \prod_{\nu=l,\nu\neq j}^{m} \frac{-x_{i_{\nu}}}{x_{i_{\nu}} - x_{i_{\nu}}} + r_{i_j}q) \mod p$ $(r_{i_{l}} \in F_{a}, \text{ for } j = 1, 2, \dots, m)$ C. Secret Reconstruction Each participant, e.g., U_{i_l} , $(1 \le j \le m)$, computes the secret as $s = (\sum_{i=1}^{m} c_{i_j} \mod p) \mod q$.

Fig. 1. (t, m, n)-Group oriented SS based on PRC.

Correctness of (t,m,n)-TCSS

$$(\sum_{i_{j} \in I_{m}} c_{i_{j}} \mod p) \mod q$$

= $\sum_{j=1}^{m} (f(x_{i_{j}})) \prod_{\nu=1, \nu \neq j}^{m} \frac{-x_{i_{\nu}}}{x_{i_{j}} - x_{i_{\nu}}} + r_{i_{j}}q) \mod p \mod q$
= $(f(0) + \sum_{j=1}^{m} r_{i_{j}}q) \mod p \mod q$ (4-1)

$$= (f(0) + \sum_{j=1}^{m} r_{i_j} q) \mod q$$
(4-2)
= f(0)

Step (4-1) is equivalent to step (4-2) because of
$$f(0) \in F_q$$
, $\sum_{j=1}^m r_{i_j}q \leq \sum_{j=1}^n r_{i_j}q < nqq = nq^2$ and thus $(f(0) + \sum_{j=1}^m r_{i_j}q) < q + nq^2 < p$.

Security Analysis

- An adversary without any valid share, almost has no information about the secret in (t,m,n)-TCSS even if it has up to m-1 PRCs.
 - (lower bound: m/2 SPCs)
- (t-1) Insiders almost obtains no information about the secret even if they conspire in (t,m,n)-TCSS.

Properties of (t,m,n)-TCSS

- Single share
- Without user authentication or share verification
- Tightly Coupled
- Unconditionally secure
- Directly applied to Group Authentication

- the secret can be reconstructed only if each participant has a valid share and releases its valid RC honestly.
- Information rate:
 IR=(size of secret) / (size of share)
 =log q/log p (1/3, 1/2)

Conclusion

- 2 attacks against (t,n)-SS
- Noisy Channel Solutions
 Information Theoretical View
- Randomized Component
 - Protect shares
 - Bind a participant with all the others
 - Also suitable for other (t,n)-SSs
- (t,m,n)-TCSS
 - Guarantees the secret can be recovered only if all m participants have valid shares and act honestly.

Thanks!