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Randomized Component and Its Application to
(t ,m,n)-Group Oriented Secret Sharing
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Abstract— A basic (t ,n)-secret sharing (SS) scheme allows
a secret s to be divided into n shares and shared among
n shareholders. In the scheme, any t or more than t shareholders
can recover the secret while fewer than t shareholders cannot
obtain the secret s. But an adversary without any valid share
may obtain the secret if there are over t participants in the
secret reconstruction. To address this type of attack, we first
introduce the notion of randomized component (RC), which binds
a share with all participants and protects the share from being
exposed to outside without any computational assumption; at the
same time, RCs can be used to reconstruct the secret. As one
of the applications of RCs, a (t ,m,n)-group oriented SS scheme
is proposed to cope with the attack in basic (t ,n)-SSs, in which
once m (m ≥ t) participants form a tightly couple group by
generating RCs, the secret can be recovered only if all m RCs
are correct, which requires each participant to have a valid share
in advance. Moreover, the scheme can secure the secret without
any user authentication or share verification. Analyses show the
proposed (t ,m,n)-group oriented SS is asymptotically perfect and
unconditionally secure. RCs can also be applied to build other
schemes in a simple way, such as multi-SS, group authentication,
and so on.

Index Terms— Threshold secret sharing, group oriented secret
sharing, randomized component, share protection, asymptotically
perfect.

I. INTRODUCTION

AS A SOLUTION to safeguard cryptographic keys, Secret
Sharing (SS) Schemes were first proposed separately

by Shamir [1] and Blakley [2] in 1979 and later were
studied extensively in the literature. Today, SS has become
a basic cryptographic tool which is widely used in group
based applications such as group signature [3], [4], group
encryption [5], secure multi-party computation [6] etc. As the
most popular SS, Shamir’s (t, n) SS is constructed based on
the Lagrange interpolation polynomial. In the Shamir’s (t, n)
SS, the dealer, a trusted third party, divides a secret s into n
shares and distributes each share to a shareholder secretly.
The scheme guarantees that any group of t or more than t
shareholders are able to reconstruct the secret s while less
than t shareholders cannot do that.
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In addition to Shamir’s SS, other types of SSs were
also proposed based on different mathematical tools. For
example, Blakely’s scheme [2] is based on geometry;
Massey’s scheme [7] is based on linear codes while
Mignotte’s scheme [8] and Asmuth-Bloom’s scheme [9]
are based on the Chinese remainder theorem (CRT).
Blakley’s scheme [2] defines a threshold scheme based on
hyperplane intersections, the hyperplanes of t dimensions
allow any group of t hyperplanes to intersect at a single point
in a finite field. Massey’s scheme [7] uses a linear code to
split a secret into equal-size shares, the minimal codewords
in the dual code completely specify the access structure of
the secret-sharing scheme, and conversely; Mignotte’s (t, n)
SS scheme [8] and Asmuth-Bloom’s (t, n) SS scheme [9]
use a series of moduli in an increasing sequence and define
schemes based on a specified threshold range of integers. The
upper bound and the lower bound of the range are the product
of t smallest moduli and the product of t − 1 largest moduli
respectively. If t − 1 shares are known, Mignotte’s scheme
leaks more information about the secret than Asmuth-Bloom’s
scheme does, but the latter scheme limits the secret in a smaller
range when both schemes have the same threshold range.

Most SSs, such as Shamir’s (t, n) SS, Mignotte’s (t, n) SS
and Asmuth-Bloom’s (t, n) SS, are unconditionally secure.
Unconditional security means that the security holds
even if the adversary has unbounded computing power.
Research on developing cryptographic schemes/protocols with
unconditionally secure has received wide attention recently.

Actually, these above basic (t, n) SSs are far from practical.
Let us consider the scenario, there are m(m ≥ t + 1) partici-
pants in a secret reconstruction, and one of these participants is
an adversary who does not possess any valid share. However,
the adversary can still obtain the secret by collecting enough
valid shares from the other m − 1 ≥ t participants to restore
the secret.

That is, it is possible for an adversary without any valid
share to figure out the secret when there are more than t
participants in the secret reconstruction. In some cases, legal
participants care more about secret leak rather than recovering
the correct secret, i.e. they would rather give up recovering the
secret than leak it to adversaries. Therefore, how to prevent
the above adversary from obtaining the secret is of great
importance.

A solution to the above problem is user authentication,
which guarantees only valid shareholders can participate in
the secret reconstruction. However, this method makes the
scheme more complicated because each participant needs to
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be authenticated by another one, which means t (t − 1) user
authentications are needed among t participants. To prevent
illegal users from participating in a secret reconstruction,
in 1985, Chor et al. [10] proposed the notion of verifiable
secret sharing (VSS). VSS enables shareholders to prove that
their shares are valid without revealing them. There are many
papers on VSS [11]–[15] in the literature. Feldman in [11]
pointed out that problems such as secret bidding, fair voting,
leader election and flipping a fair coin have simple one-round
reductions to VSS. There is a constant-round reduc-
tion from Byzantine Agreement to non-interactive VSS.
Harn and Liu [12] proposed a strong (n, t, n) VSS,
which ensures that any subset of t shares can recover
the same secret. Pederson in [13] gave a non-interactive
(t, n) VSS with the information rate 1/2 and the dis-
tribution of the secret in Zq together with the verifica-
tion of a share needs no more than 2|q|t multiplication
modulo p. In [14], a perfect verifiable (t, n)-SS based
on symmetric bivariate polynomial was proposed that sup-
ports less than n/4 − 1 adversaries. Besides, a result was
shown in [15] that less than n/3 adversaries are allowed
to exist in an information-theoretically secure (t, n)-VSS.
Although VSS can be used to check the validity of each share;
but it is very complicated and requires additional information
and processing time.

To prevent the above attack in a simpler way, Harn [16]
proposed a (t, n) secure secret reconstruction scheme using
the linear combination of shares based on the property of
homomorphism [17] of Lagrange interpolation polynomials.
The scheme uses k(k ≥ 2) polynomials to generate k shares
for each shareholder, i.e. each shareholder holds k shares.
It requires kt > n − 1, which means the total number of
coefficients of all polynomials has to be no less than that
of shareholders. In other words, the threshold t is restricted
by the numbers of polynomials and shareholders, and thus
Harn’s scheme is not flexible enough.

Perfect secrecy [18], [19] is an important metric of the
security in a SS scheme. It means that any unqualified subset
of participants does not have any more information about
the secret than an adversary without any valid share in the
scheme. Quisquater et al. [18] developed the notion of asymp-
totically perfect secrecy, and pointed out that both Mignotte’s
scheme [8] and Asmuth-Bloom’s scheme [9] are neither per-
fect nor asymptotically perfect. Moreover, they proved that
the SS scheme in [23] is asymptotically perfect; the scheme
is based on CRT with consecutive prime moduli.

In this paper, we first propose the notion of randomized
component (RC) which binds a participant’s share with
the public information of all participants during the secret
reconstruction. A RC can protect the share from being
exposed to the outside and enable a shareholder to use its
share more than once if necessary. RCs can also be used to
build multi-SS schemes [20], [24] and group authentication
schemes [21] in a simple and efficient way. As one of
the applications, a (t, m, n)-group oriented SS scheme is
proposed. In the scheme, once m (m ≥ t) participants form
a tightly coupled group by generating RCs, recovering the
secret requires a participant to collect all m correct RCs,

which in turn requires each participant to possess a valid share
in advance. Moreover, the proposed scheme does not depend
on user authentication or share verification mechanism, and
is asymptotically perfect and unconditionally secure.

The rest of the paper is organized as follows. Some
preliminaries are given in the next section. In Section III, we
introduce the notion of randomized components and construct
an example based on polynomial. As one of the applications
of RCs, the (t, m, n)-group oriented SS is proposed in
section IV. In section V, security analyses of the proposed
scheme are given, section VI makes some comparisons with
related work, and section VII concludes the paper.

II. PRELIMINARIES

In this section, we will introduce some definition related to
secret sharing. The following notations will be used throughout
the paper, In is the integer set {1, 2, . . . , n}, p, q are positive
prime numbers, Fp = Z p = {0, 1, 2, . . . , p−1} is a finite field
with p elements, F∗

p
= {1, 2, . . . , p − 1} is the multiplicative

group of Fp; r ∈R Zq means that r is randomly and uniformly
selected in Zq , i.e. r has a uniform distribution in Zq ; � is
the set of all shares generated by a SS scheme, S denotes the
secret space and Si is referred to as the share space.

A. Some Definitions

Informally, in a (t, n) secret sharing scheme, n shares are
generated from a secret s and each share is distributed to the
corresponding shareholder privately. Any subset of at least t
shareholders can reconstruct the secret s with their shares
while fewer than t shareholders cannot get the secret.

Definition 1 ((t,n) SS): Let integers p, q(p ≥ q) be security
parameters, S = Zq and Si = Z p denote the secret space
and the share space respectively; a (t, n) SS is a pair of
algorithms {G, R}:

1) Share Generation Algorithm: G(p,q,t,n)(s,U) is a
probabilistic polynomial time algorithm taking as input a
secret s ∈ S as well as a group of shareholders U = {Ui |Ui ∈
Z , i ∈ In}, with the corresponding public information
X = {xi |xi ∈ Z p, i ∈ In}, and generating as output a set
of n shares � = {si |si ∈ Si , i ∈ In};

2) Secret Reconstruction Algorithm: R(p,q,t,n)(�Im ,UIm )
is a polynomial time algorithm taking as input any share
set �Im = {si |si ∈ Si , i ∈ Im} in combination with the
corresponding shareholder set UIm = {Ui |Ui ∈ Z , i ∈ Im}
and producing the secret s as output, where Im ⊆ In,
|Im | = m ≥ t, |Im | is the cardinality of Im .

Now we need to introduce some basic terms in information
theory, suppose X is a discrete-time discrete valued random
variable with a sample space SP . The entropy of X is
denoted as

H (X) = E(− log2 P(X)) =
∑

x∈SP
−P(x) log2 P(x).

Where E is the expectation operator and P(.) is the
probability distribution function of X . In following part
of this paper, we will write log2 P(x) as log P(x) for
simplicity.
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Definition 2 (Perfect (t, n) SS): Let H(.) be the information
entropy function, �(s; a) denotes the entropy loss of s gen-
erated by the knowledge of a. A (t, n) SS, {G(p,q,t,n)(s,U),
R(p,q,t,n)(�Im ,UIm )}, with the share set � = {si |si ∈ Si ,
i ∈ In}, is perfect with respect to the set of probability
distributions P(.) on the secret space S if

1) H (s) ≥ 0 and
2) �(s; �J ) = H (s) − H (s|�J) = 0,

where J is a subset of In with |J | < t , �J = {si |si ∈ �,
i ∈ J } denotes any subset of less than t shares.

Informally, compared with an outside adversary who does
not have any valid share, any subset of less than t shareholders
gets no additional information about the secret in a perfect
(t, n) SS. Loosening the perfect (t, n) SS a little bit, we get
the definition of asymptotically perfect (t, n) SS as follows.

Definition 3 (Asymptotically Perfect (t, n) SS [13]): A
(t, n) SS, {G(p,q,t,n)(s,U),R(p,q,t,n)(�Im ,UIm )} , with the
share set � = {si |si ∈ Si , i ∈ In}, is asymptotically perfect
with respect to the set of probability distributions P(.) on the
secret space S if, for any positive value ε, there exists an
integer q0 such that for all S = Zq with q > q0 and all
J ⊆ In with |J | < t, we have

1) H (s) > 0 and
2) |�(s; �J )| < ε.

Where �J = {si |si ∈ �, i ∈ J } denotes any subset of less
than t shares.

Remark 2.1: In some cases, �(s; �J ) may be negative, but
it is positive and the absolute value operator can be removed
if the secret s is uniformly distributed on S.

B. Shamir’s (t, n)-SS Scheme [1]

Shamir’s (t, n) SS scheme is based on a polynomial of
degree at most t − 1, in which there are n shareholders,
U = {U1, U2, . . . , Un} and a dealer D.

1) Share Generation: The dealer D picks a random
polynomial f (x) of degree at most t − 1: f (x) = a0 +
a1x + · · · + at−1xt−1mod p, such that the secret is
s = f (0) = a0 and all coefficients, ai (i = 0, 1, . . . , t−1)
are in the finite field Fp , where p is a large prime number.
D generates the share set, � = {si |si = f (xi), i ∈ In}, where
xi is the public information associated with shareholder Ui .
Then, it distributes each share si to the corresponding
shareholder Ui secretly. This step corresponds to the
algorithm G(p,p,t,n)(a0,U).

2) Secret Reconstruction: If m participants UJm =
{U j |U j ∈ U, j ∈ Jm} need to recover the secret s, they pool
their shares �Jm = {s j |s j ∈ �, j ∈ Jm} privately to compute
the secret as s = f (0) = ∑

j∈Jm

s j
∏

r∈Jm,r �= j

−xr
x j −xr

mod p. where

Jm ⊆ In, |Jm | = m, t ≤ m ≤ n.
This step actually corresponds to the algorithm

R(p,p,t,n)(�Jm ,UJm ).
Shamir’s (t, n) SS is unconditionally secure since the

scheme works without any computational assumption, such
as DLP assumption or one-way function assumption.

Proposition 1: The above Shamir’s (t, n) SS,
{G(p,p,t,n)(a0,U), R(p,p,t,n)(�Jm ,UJm )}, is not perfectly

secure if the polynomial f (x) is exactly of degree t − 1.
Formally, there exists some K , K ⊆ In with |K | < t such
that, if the coefficient at−1 in the polynomial is not zero, we
have

1) H (s) > 0 and
2) |�(s;SK )| > 0.

Where SK denotes {sk |sk ∈ �, k ∈ K }, some set of less
than t shares.

Proof: Here we need only to consider the case that t − 1
participants conspire to reconstruct the secret. If the entropy
loss of the secret generated by the knowledge of t −1 shares is
larger than zero, we are assured that the Shamir’s (t, n) SS is
not perfect with respect to the set of probability distributions
P(.) on the secret space S.

Suppose f (x) = a0 + a1x + · · · + at−1xt−1mod p is the
polynomial in the Shamir’s (t, n) SS, K ⊂ In with |K | = t −1
and SK = {sk |sk ∈ �, k ∈ K } is any group of t − 1 shares
generated by f (x). We will examine, P(s|SK ), the probability
of the secret s with the knowledge of t − 1 shares in the case
of at−1 �= 0.

The t − 1 shareholders, UK = {Uk |Uk ∈ U, k ∈ K }, with
t −1 shares SK can reconstruct a new polynomial of degree at
most t − 2, g(x) = b0 + b1x + . . .+ bt−2xt−2mod p, using the
Lagrange interpolation, with sk = f (xk) = g(xk) (k ∈ K ) but
f (0) �= g(0), where xk (xk �= 0) is the public information of
the shareholder Uk . That is because if f (0) = g(0) holds [19],
at−1 = 0 will happen, which contradicts the precondition
at−1 �= 0. In this case, the t − 1 shareholders UK , can
exclude g(0) ∈ Fp from the secret space, and thus P(s|SK ),
the probability of the secret now becomes 1/(p−1). Thus
we have

�(s;SK ) = H (s) − H (s|SK )

= logp − log(p − 1) = log
p

p − 1
> 0. (2-1)

Therefore, we conclude that (t, n) Shamir’s SS is not perfect
in the case of at−1 �= 0 [19].

C. Secure Secret Reconstruction Scheme

To cope with the above mentioned attack without using
user authentication or VSS, Harn [16] proposed a (t, n)
secure secret reconstruction scheme in 2013. It consists of
the following 2 steps.

1) Share Generation: Suppose there are n shareholders
Ur (r = 1, 2, . . . , n), the dealer D selects k(kt > n−1) random
polynomials fl(x)(l = 1, 2, . . . , k) with degree t − 1 each
and generates shares, fl(xr ), l = 1, 2, . . . , k, for each share-
holder Ur (r = 1, 2, . . . , n). For any secret s, the dealer can
always find integers wl , dl(l = 1, 2, . . . , k) in Fp , such that

s =
k∑

l=1
dl fl(wl), where wi �= w j and wi /∈ {x1, x2, . . . , xn},

for every pair of i and j , xi is the public information
of shareholder Ui . The dealer makes these integers
wl , dl(l = 1, 2, . . . , k) publicly known.

2) Secret Reconstruction: Suppose j out of n shareholders
Uri (i = 1, 2, . . . , j) want to recover the secret, each
participant Uri uses his shares fl(xri )(l = 1, 2, . . . , k)
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to compute and release one Lagrange component,

cri =
k∑

l=1
dl fl(xri )

j∏
v=1,v �=i

wl−xrv
xri −xrv

mod p, to all other

participants secretly.
After knowing cri , i = 1, 2, . . . , j, each participant

computes s =
j∑

i=1
cri mod p.

The scheme requires kt > n−1, where n is the total number
of shareholders, t is the threshold and k is the number of
polynomials needed in the scheme.

III. RANDOMIZED COMPONENT

From the attack, we are motivated to protect each share by
binding it with all participants in a secret reconstruction. We
use Randomized Components to attain this goal.

A. Definition of Randomized Component

Definition 4 (Randomized Component-RC): In the (t, n)
SS scheme (G(p,q,t,n)(s,U),R(p,q,t,n)(�Im ,UIm )), suppose
C = Z p is the space of randomized components and
g: Si × U × Zq → C is a function, ci = g(si , I N FIm , ri )
is called the Randomized Component of the participant,
Ui (Ui ∈ UIm ), where si is the share of Ui ; I N FIm is the public
information of UIm , the group of all m participants in a secret
reconstruction; ri is a random integer uniformly distributed
in Zq .

A RC should have the following properties:
Property 1 (Share Inseparability): Suppose

ci = g(si , I N FIm , ri ) is a randomized component, si ∈ Si

and ri ∈R Zq , given ci , we have

P{si |ci = g(si , I N FIm , ri )} = 1/q.

Remark 3.1: The property of share inseparability implies
that the RC, ci , binds the share si with I N FIm , which actually
represents the whole group of all m participants, and thus all
these m participants form a tightly coupled group. Roughly
speaking, given ci , one cannot figure out the share si when
q is extremely large. Thanks to this property, on one hand,
the share si is protected by the RC ci and can be used more
than once in several secret sharing based schemes, such as
multi-secret sharing [20], multi-group authentication [21], and
so on. On the other hand, the RC ci binds the share si with the
group UIm , as a result, it can be used in some group-oriented
applications, such as group authentication [21] schemes and
the (t, m, n) group-oriented secret sharing scheme which will
be given in section IV.

Property 2 (Secret Recoverability): Suppose there are
totally m(m ≥ t) RCs in a secret reconstruction, the
secret can be recovered only with all m RCs; otherwise,
the secret cannot be obtained. Formally, suppose that
CIm = {ci |ci = g(si , I N FIm , ri ), i ∈ Im} is the RC set
generated by all m shareholders in UIm and C ′ is the RC set
available in the secret reconstruction with C ′ ∩ CIm �= �, the
probability of deriving the secret s from C ′ is

P(s|C ′)
{= 1 i f C ′ = CIm , |CIm | = m ≥ t

�1/ q otherwi se,

where �1/q denotes converging to 1/q while q converges to
infinity.

B. Polynomial-Based Randomized Component (PRC)

As an instance, a type of RC for (t, n) SS scheme can be
constructed based on polynomial interpolation as follows.

1) Setup: Suppose there are n shareholders,
U = {U1, U2, . . . , Un}, and a dealer D in the system. D picks
a random polynomial: f (x) = a0+a1x +. . .+at−1xt−1mod p,
such that the secret is s = f (0) = a0 ∈ Fq , other coefficients,
ai , i = 1, . . . , t − 1, are in the finite field Fp with at−1 �= 0
and p > q + nq2, both p and q are primes.

2) Share Generation: D computes n shares, f (xi),
i = 1, 2, . . . , n, where xi is the public information asso-
ciated with shareholder Ui . Then, D distributes each share,
e.g., f (xi ), to the corresponding shareholder Ui secretly.

3) Share Randomization: If m(m ≥ t) participants,
UAm = {Ua1, Ua2, . . . , Uam }, (UAm ⊆ U), need to recover the
secret s, each participant, e.g. Uai , (Uai ∈ UAm ), constructs
the RC as

cai = ( f (xai )

m∏

v=1,v �=i

−xav

xai −xav

+ rai q)mod p, (rai ∈R Zq).

(3-1)

In term of the definition of RC, ci = g(sk, I N FIm , ri ),
m∏

v=1,v �=i

−xav
xai −xav

in (3-1) corresponds to I N FIm , the public

information of all participants in UAm .
Now let us first observe the property 1 of RC, the property 2

will be proved in section V.
Theorem 1: For a polynomial-based RC

ci = ( f (xi )
m∏

v=1,v �=i

−xv
xi−xv

+ ri q)mod p, suppose p, q are

primes with p > nq2 + q , integer ri is uniformly distributed
in Fq , and the share f (xi ) is in Fp . Given ci , the RC of
participant Ui , the probability of deriving the share f (xi) is
1/q , where xi is the public information of participant Ui .
Formally,

P( f (xi)|ci ) = 1
/

q.

Proof: From ci = ( f (xi )
m∏

v=1,v �=i

−xv
xi−xv

+ ri q)mod p, we have

f (xi ) = (

m∏

v=1,v �=i

−xv

xi−xv
)−1(ci − ri q)mod p (3-2)

Let h(r) = (ci − rq)mod p be a function with respect
to r(r ∈ Fq ), with the domain D = Fq and the range
R = {h(r)|r ∈ Fq }. Hence, h(r) is a 1-to-1 function from
D to R, which means, given ci , p and q , h(ri ) = h(r j ) if
and only if ri = r j for ri , r j ∈ Fq .

To prove the necessity, let us assume there exist ri and r j in
Fq , h(ri ) = h(r j ) means (ri − r j )q = kp for some integer k.
It follows p|(ri − r j ) since p, q are primes, thus we have
ri = r j for ri , r j ∈ Fq and p > nq2 + q .

To prove the sufficiency, given ri = r j , (ri , r j ∈ Zq), it
obviously follows that h(ri ) is equivalent to h(r j ).
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If we view r as a variable for a specific xi , (3-2) can be
rewritten as

fxi (r) = (

t∏

v=1,v �=i

−xv

xi−xv
)−1h(r)mod p (3-3)

Now that h(r) is a 1-to-1 function with respect to r ∈ Fq ,
each distinct r produces a different value of fxi (r) in (3-3)

since (
t∏

v=1,v �=i

−xv
xi−xv

)−1mod p is a fixed value and coprime to p,

which means the probability of deriving fxi (r) in (3-3), i.e.
f (xi) in (3-2) from ci is 1/q because r is uniformly distributed
in Fq . �

Theorem 1 implies that, given the RC ci , an adversary never
has a chance more than 1/q to obtain the covered share f (xi),
which is not easier than directly guessing the secret s inFq

if s is uniformly distributed in the secret space, S = Fq .
Therefore, the polynomial based RC possesses the properties
of Share Inseparability.

We will demonstrate property 2, secret recoverability, in the
following (t, m, n)−Group Oriented SS scheme.

IV. (t, m, n)−GROUP ORIENTED SS SCHEME BASED

ON RANDOMIZED COMPONENT

As one of applications of RCs, the (t, m, n)− Group
Oriented SS is proposed in this section to prevent an adversary
without any valid share from obtaining the secret when there
are more than t participants in the secret reconstruction.

A. Definition of (t, m, n)−Group Oriented SS

Definition 5 ((t, m, n)−Group Oriented SS): Let primes
p and q , (p ≥ q), be security parameters, S = Fq , Si = Fp

and RC = Fp denote the secret space, share space and
randomized component space respectively; a (t, m, n)−Group
Oriented SS scheme is a group of algorithms {G, C, R}:

1) Share Generation Algorithm: G(p,q,t,n)(s,U) is a
probabilistic polynomial time algorithm taking as input
a secret s ∈ S as well as a group of shareholders
U = {Ui |Ui ∈ Z p, i ∈ In} and generating as output a set
of n shares � = {si |si ∈ Si , i ∈ In};

2) Randomized Component Construction Algorithm:
C(p,q,t,n)(�Im ,UIm ) is a probabilistic polynomial time
algorithm taking any share set �Im = {si |si ∈ Si , i ∈ Im} and
the corresponding shareholder set UIm = {Ui |Ui ∈ U, i ∈ Im}
as input and producing a RC set CIm = {ci |ci ∈ RC, i ∈ Im}
as output, where Im ⊆ In and t ≤ |Im | = m ≤ n.

3) Secret Reconstruction Algorithm: R(p,q,t,n)(CIm ) is a
polynomial time algorithm taking the above RC set CIm as
input and producing the secret s as output.

The (t, m, n)− Group Oriented SS, {G(p,q,t,n)(s,U),
C(p,q,t,n)(�Im ,UIm ), R(p,q,t,n)(CIm )}, possesses the
following property:

P(s = R(p,q,t,n)(C ′))
{ = 1 i f C ′ = CIm , |CIm | = m ≥ t

�1/ q otherwi se,

where C ′ is the RC set used in the secret reconstruction
and C ′ ∩ CIm �= �, �1/q denotes converging to 1/q while
q converges to infinity.

Remark 4.1: Compared with basic SS schemes, a
(t, m, n)−Group Oriented SS possesses the extra property of
security, that is, once m(m ≥ t) shareholders form a tightly
coupled group by generating RCs, recovering the correct secret
requires a participant to collect all the m valid RCs, which,
in turn, requires each participant in the group to have a valid
share in advance even if m is much larger than t . Otherwise,
figuring out the secret is almost as hard as guessing it randomly
in the secret space. That is, if the secret is recovered by
RCs instead of shares, the threshold actually becomes m,
the number of participants. Of course, the threshold t still
requires that a qualified tightly coupled group consists of at
least t shareholders, i.e. the number of participants m is no less
than the threshold t . However, for a basic (t, n) SS scheme
such as Shamir’s (t, n) SS, the secret can be reconstructed by
using any group of t valid shares and the reconstruction does
not require all shares to be used substantially when more than
t shares are available.

In the following, a (t, m, n)−Group Oriented SS scheme
will be proposed based on PRC.

B. Entities and Model

In the proposed (t, m, n)−Group Oriented SS, there are
3 types of entities: 1) one dealer, 2) n shareholders and
3) some adversaries.

1) Dealer: The dealer is the coordinator trusted by all
shareholders, and responsible for the initialization of the
scheme such as deciding system parameters, choosing
the secret, generating and distributing shares and so on.
The dealer is supposed to be honest, which means that it
selects parameters to make the scheme secure enough, keeps
critical parameters secret, generates and distributes shares
securely.

2) Shareholders: In a(t, m, n)−Group Oriented SS, there
are totally n shareholders. We call shareholders participants
when they are participating in a secret reconstruction;
there is a dedicated private channel between each pair of
shareholders, but some of these channels may be cracked
by adversaries. Each shareholder also has a secure channel
with the dealer and the channel is assumed to be secure,
because in our scheme the channel is used only for share
distribution which can be accomplished off-line. We also
assume that a share is always kept private within the
shareholder, and can never be obtained from inside the
shareholder.

Each shareholder receives a share from the dealer via the
secure channel. To recover the secret, m(m ≥ t) shareholders
first form a tightly coupled group by generating a RC each
for the secret, then each releases its RC to the others through
private channels and finally reconstructs the secret.

3) Adversaries: In our scheme, adversaries are divided
into 2 types according to whether they have valid shares
or not.

a) Outsider: An adversary without any valid share. There
are 2 cases with an Outsider, i) an Outsider stays outside
the tightly coupled group, but it could crack some private
channels of the group and intercept RCs transmitted over
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these channels. In this case, we assume that all Outsiders
could obtain no more than m − 1 correct RCs in a secret
reconstruction, note that m may be much larger than the
threshold t . ii) an Outsider may also manage to personate some
absent participant in the group but without the required valid
share. In this case, the Outsider acts as a malicious participant
and can communicate with the others to obtain at most m − 1
correct RCs. The proposed scheme aims to prevent Outsiders
from obtaining the secret even if they may have access to up to
m − 1 RCs.

b) Insider: An Insider is actually a legal shareholder with
a valid share. However, less than t shareholders may conspire
and try to recover the secret. In this case, these misbehaved
shareholders are called Insiders. We assume that at most t − 1
Insiders conspire in the proposed scheme.

Of course, within a tightly coupled group, if a dishonest
participant (with a valid share) releases a wrong RC to
the others but uses a correct RC to recover the secret for
itself, then only it can obtain the correct secret while the
others recover a wrong one. This is actually about Cheater
Detection/Identification [25] and Fairness in secret sharing,
which goes beyond the scope of the paper.

C. Our Proposed Scheme

Our scheme focuses on how to simply employ RCs to
prevent Outsiders from obtaining the secret even if there are
over t participants in the secret reconstruction.

The proposed scheme needs to keep the basic properties of
SS schemes, i.e. i) any group of at least t legal shareholders is
able to recover the secret, but ii) less than t legal shareholders
cannot obtain the secret.

Moreover, the scheme needs to ensure that, in order to
recover the secret, all participants must be legal shareholders
necessarily (i.e. have a valid share each). Otherwise, the secret
should not be figured out.

To achieve these goals, each participant cannot simply
release the share and compute the secret as it does in basic
(t, n) SS schemes. Instead, every participant must bind its
share with the whole group and make them inseparable.
In this case, recovering the correct secret requires all
participants to necessarily have a valid share each.

The proposed scheme consists of 3 algorithms, 1) Share
Generation 2) Randomized Component Construction and
3) Secret Reconstruction as indicated in Figure 1.

1) Share Generation: Suppose there are n shareholders,
U = {U1, U2, . . . , Un}, and a dealer D. D chooses 2 positive
prime numbers p and q with p > q + nq2, and a polynomial
f (x): f (x) = a0 +a1x + . . .+at−1xt−1mod p, with the secret
s = a0 ∈ Fq and coefficients, ai ∈R Fp, for i = 1, . . . , t−1,
with at−1 �= 0.D computes n shares, f (xi ), (i ∈ In),
and distributes each share, e.g. f (xi ), to the corresponding
shareholder Ui secretly, where xi is the public information
associated with Ui .

This step corresponds to the algorithm G(p,q,t,n)(a0,U) and
the output is the share set � = { f (xi )|i ∈ In}.

2) Randomized Component Construction: If a group of
m shareholders, UIm = {Ui j |Ui j ∈ U, i j ∈ Im},

Fig. 1. (t, m, n)-Group oriented SS based on PRC.

(Im ⊆ In , |Im | = m ≥ t), wants to recover the secret s, each
participant, e.g. Ui j (i j ∈ Im), randomly picks an integer ri j

in Fq , (i.e.,ri j ∈R Fq ), and computes the RC as

ci j = ( f (xi j )
m
�

v=1,v �= j

−xiv

xi j − xiv
+ ri j q)mod p.

This step corresponds the algorithm C(p,q,t,n)(�Im ,UIm ),
where �Im denotes the share set { f (xi j )|i j ∈ Im}; the output
is the RC set CIm = {ci j |i j ∈ Im}.

3) Secret Reconstruction: Each participant,
e.g. Ui j (i j ∈ Im), releases its RC, ci j ∈ CIm , to all the
other participants through private channels. After receiving
(m − 1) RCs from the others, it computes the secret as

s = f (0) = (
∑

i j ∈Im

ci j mod p)modq.

This step corresponds to the algorithm R(p,q,t,n)(CIm ).
Due to the following fact, the (t, m, n)−Group Oriented SS

is bound to restore the secret s correctly.

(
∑

i j ∈Im

ci j mod p)mod q

=
m∑

j=1

( f (xi j )

m∏

v=1,v �= j

−xiv

xi j −xiv
+ ri j q)mod p mod q

= ( f (0) +
m∑

j=1

ri j q)mod p mod q (4-1)
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= ( f (0) +
m∑

j=1

ri j q)mod q (4-2)

= f (0)

Step (4-1) is equivalent to step (4-2) because of

f (0) ∈ Fq ,
m∑

j=1
ri j q ≤

n∑
j=1

ri j q<nqq = nq2 and thus

( f (0) +
m∑

j=1
ri j q)<q + nq2 < p.

V. SECURITY ANALYSIS

In the (t, m, n)−Group Oriented SS scheme, we use RCs
to protect the share of each participant because each RC binds
the share and all participants’ public information together in
the secret reconstruction. To obtain the secret, adversaries
use either at least t shares or m(m ≥ t) RCs if there are
totally m participants in the secret reconstruction. We have
already demonstrated that a share cannot be derived from a
given RC by Theorem 1. In this case, Outsiders, without any
valid share, have to use RCs it collects by interception or
personation to recover the secret, we use Theorem 2 to prove
that Outsiders, even with m − 1 RCs, are still unable to get
the secret. However, Insiders, with a valid share each, may
collaborate and try to obtain the secret by using their shares
instead of RCs, Theorem 3 assures us that up to t −1 Insiders
are still unable to reconstruct the secret.

As stated in the adversary model, Outsiders have access to at
most m −1 RCs in a secret reconstruction with m participants.
The following theorem 2 demonstrates the security of our
scheme against Outsiders.

Lemma 1: Suppose that random variable x is uniformly
distributed in Fp , for any value t ∈ F∗

p
, xt has a uniform

distribution over Fp .
Proof: It is easy to see that t ∈ Fp and gcd(t, p) = 1

are true. Suppose x1 and x2 are 2 distinct values of x in Fp ,
tx1, tx2 ∈ Fp follows; if tx1 = tx2 mod p holds, then we have
p|(x1 − x2) due to gcd(t, p) = 1; it is followed by x1 = x2
because of x1, x2 ∈ Fp , which is contradictory to x1 �= x2.
Therefore, tx1 �= tx2 mod p holds if x1 �= x2. That is, all
values of xt is a permutation of {0, 1, 2, . . . , p − 1} because
x is uniformly distributed in Fp , i.e.,xt is also uniformly
distributed over Fp . �

Lemma 2: Suppose that p is a prime number and random
variables x[i ], (i = 1, 2, . . . , k), are uniformly distributed in

Fp ,
k∑

i=1
ti x[i ] has a uniform distribution in Fp for values

ti ∈ F∗
p
, i = 1, 2, . . . , k.

Proof: Let us first consider the case of k = 2, then
generalize it to the case of k being any value.

1) From Lemma 1, we know that both t1x[1] and t2x[2]
are uniformly distributed in Fp , to prove t1x[1]+ t2x[2]
is uniformly distributed in Fp , we assume that
x[1]1 and x[1]2 are 2 random distinct values of
variable x[1]. It is obvious that t1x[1]1 and t1x[1]2
are also distinct in Fp for gcd(t1, p) = 1. Besides,
t1x[1]1 + t2x[2] is a permutation of t2x[2] in Fp ,
which is also a permutation of x[2] over Fp when

x[2] ranges from 0 to p−1, while t1x[1]2 + t2x[2] is
a distinct permutation of x[2] in Fp . That is, for any
value, e.g., x[1]i of random variable x[1], t1x[1]i +
t2x[2] is bound to be a permutation of x[2] in Fp .
i.e., t1x[1] + t2x[2] produces a sequence in which
each value xi ∈ Fp appears p times when x[1]
and x[2] range from 0 to p−1. Therefore, t1x[1] +
t2x[2] is uniformly distributed in Fp .

2) Now that t1x[1] + t2x[2] is uniformly distributed in Fp ,
by iterating the process in 1), we have the result that

k∑
i=1

ti xi has a uniform distribution in Fp . �

Corollary 1: If p is a prime number, random vari-
ables, x[i ], (i = 1, 2, . . . , k), are uniformly distributed over
Fp and random variable y is uniformly distributed in Zw,

(w is an integer with w < p), then
k∑

i=1
ti x[i ]+ y has a uniform

distribution in Fp for values ti ∈ F∗
p
, i = 1, 2, . . . , k.

Theorem 2: Suppose there are m(m ≥ t) participants
collaborating to recover the secret s in our proposed (t, m, n)-
Group Oriented SS; For an Outsider with less than m RCs,
the scheme is asymptotically perfect with respect to the set of
probability distributions P(.) on the secret space S. Formally,
suppose the participants’ RC set is � with |�| = m, and
an Outsider has already known CIk = {ci j |ci j ∈ �, i j ∈ Ik,
|Ik | = k < m}, any subset of � with k(k < m) RCs. For any
positive value ε, there exists an integer q0 such that for any
q > q0 with S = Zq , we have

�(s; CIk ) = H (s) − H (s|CIk ) ≤ ε.

Proof: First, suppose there are m participants,
{U1, U2, . . . , Um}(m ≥ t), with m RCs, {c1, c2, . . . , cm}.
Without losing generality, we assume that the Outsider have
obtained k(k < m) out of m RCs, e.g., CIk = {c1, c2, . . . , ck},
and recovered the value s′ as s′ =

k∑
i=1

ci mod pmodq , where

ci = ( f (xi )
m∏

v=1,v �=i

−xv
xi−xv

+ ri q)mod p, ri ∈R Zq and xi is the

public information of Ui (1 ≤ i ≤ m).
Let us examine the probability of s = s′, e.g., P(s|CIk ),

the probability of the secret s with the knowledge of CIk .

s = s′ means
m∑

i=1
ci mod pmodq =

k∑
i=1

ci mod pmodq , that is

(

m∑

i=k+1

ci mod p +
k∑

i=1

ci mod p)mod p −
k∑

i=1

ci mod p = λq,

(5-1)

where λ is an integer.

Remark 5.1: s = s′ means
m∑

i=1
ci mod pmodq =

k∑
i=1

ci mod pmodq . On one hand, as we will prove later,

m∑
i=1

ci mod p,
k∑

i=1
ci mod p and (

m∑
i=1

ci −
k∑

i=1
ci )mod p are uni-

formly distributed over Fp; moreover, each RC contains a
random multiple of q . To some extent, it means s and s′
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are virtually independent of each other. On the other hand,
RCs make shares inseparable from all participants’ public
information. As a result, Outsiders are unable to use shares
contained in these RCs directly as they do in Shamir’s SS but
are forced to use RCs themselves. Therefore, there is no better
way for Outsiders to get the secret except to assume s′ = s.

Second, we will show that
m∑

i=k+1
ci mod p is uniformly

distributed over Fp when some coefficients of f (x) are
uniformly distributed in Fp . To begin with, let us examine
the probability distribution of

ci =( f (xi )

m∏

v=1,v �=i

−xv

xi−xv
+ ri q)mod p, f or i = 1, 2, . . . , m.

(1) Note that, for the Outsider, f (xi ) has the form of

f (xi) =
t−1∑
j=0

a j x j
i mod p with a j ( j = 1, . . . , t − 2) uni-

formly distributed in Fp and gcd(x j
i , p) = 1 holds for

j = 1, . . . , t − 1 due to xi ∈ F∗
p

and the primality of p,

(i.e., x j
i

∈ F∗
p
). As a result, f (xi ) =

t−1∑
j=0

a j x
j
i mod p is

uniformly distributed over Fp according to Corollary 1.

(2) Let � be
m∏

v=1,v �=i

−xv
xi−xv

mod p,� is a fixed value for a

specific group of participants and also coprime to p
due to the properties of a field. More specifically, for
xv ∈ Fp, xv �= 0, (v = 1, . . . m) and prime number p,
we have, i) (−xv)mod p ∈ F∗

p (v = 1, 2, . . . , m) and ii)
(xi−xv)mod p ∈ F∗

p
due to xi �= xv and the additive clo-

sure of Fp . Consequently, (xi−xv)
−1mod p ∈ F∗

p
is true

because it is the multiplicative inverse of (xi−xv)mod p.
It follows from i) and ii) that −xv

xi−xv
mod p ∈ F∗

p
(for

v = 1, 2, . . . , m, xv �= xi ) and
m∏

v=1,v �=i

−xv
xi−xv

mod p ∈ F∗
p

hold due to the multiplicative closure of F∗
p

.

From (1) and (2), we further have that

f (xi)
m∏

v=1,v �=i

−xv
xi−xv

mod p is uniformly distributed over

Fp for the Outsider in the light of Lemma 1. Moreover, for

a specific RC, e.g. ci = ( f (xi )
m∏

v=1,v �=i

−xv
xi−xv

+ ri q)mod p, ci

also has a uniform distribution in Fp from the proof of

Lemma 2. As a result,
m∑

i=k+1
ci mod p is uniformly distributed

in Fp according to the additive closure of the field Fp .
Third, let us observe the probability P(s|CIk ), i.e., the

probability with which (5-1) holds, where CIk is any subset

of � with k RCs. Now that
m∑

i=k+1
ci mod p has a uniform

distribution in Fp , the left side of (5-1) varies uniformly within

the range (−
k∑

i=1
ci mod p, p −

k∑
i=1

ci mod p), which consists of

p consecutive integer values. As a result, the largest number of
possible values of λ in (5-1) is p/q�+1 and thus P(s|CIk ) is
at most (p/q�+1)/p. Recall s = a0 ∈R Fq and P(s) = 1/q,

therefore, the entropy loss of the secret satisfies

�(s; CIk ) = H (s)−H (s|CIk) ≤ log q−log
p

p/q�+1

= log
q(p/q�+1)

p
< log

p+q

p
= log

p/q + 1

p/q
<ε

(5-2)

That is, �(s; CIk ) converges to zero as q converges to
infinity because p/q is a value larger than 1 + nq due to
q + nq2 < p. As a result, our proposed scheme is asymptoti-
cally perfect with respect to the set of probability distributions
P(.) on the secret space S. �

Remark 5.2: (5-2) suggests that �(s; CIk ), the entropy loss
of the secret caused by the knowledge of less than m RCs,
basically equals zero for sufficiently large prime number q .
That is, knowing up to (m − 1) RCs hardly helps Outsiders
obtain the secret.

Remark 5.3: Theorem 2 also indicates that the secret can
be restored only if all RCs used are correct, which further
requires each participant to have a valid share; otherwise, it
is almost impossible to obtain the secret more easily than to
guess it directly in the secret space. This attribute is obviously
enabled by the properties of RCs.

An Insider is actually a legal shareholder and up to t − 1
Insiders may form a group and try to recover the secret.
As Theorem 3 indicates, the proposed (t, m, n)-Group
Oriented SS remains secure even if up to t − 1 Insiders
conspire.

Theorem 3: In our proposed (t, m, n)-Group Oriented SS,
for less than t Insiders, the scheme is asymptotically perfect
with respect to the set of probability distributions P(.) on the
secret space S. Formally, suppose that the set of the shares
available for Insiders is SKd = {ski = f (xki )|ki ∈ Kd},
(Kd ⊆ In, |Kd | = d < t), for any positive value ε, there exists
an integer q0 such that for any q > q0 with S = Zq , we have

�(s;SKd ) = H (s) − H (s|SKd ) ≤ ε.

Proof: Note that our proposed (t, m, n)-Group Oriented SS
uses the polynomial, f (x) = a0 + a1x + . . .+ at−1xt−1mod p,
with ai ∈ Fp, for i = 1, . . . , t − 1, at−1 �= 0, the secret
s = a0 ∈ Fq and p > q + nq2. Suppose there are
d(d = |Kd | < t) Insiders, UKd = {Uki |Uki ∈ U, ki ∈ Kd},
with d shares SKd = {ski = f (xki )|ki ∈ Kd}, where xki is the
public information of Uki .UKd can conspire to compute

s′ =
∑

ki ∈Kd

ski

∏

k j ∈ Kd

k j �= ki

−xk j

xki − xk j

mod p.

Next, the upper bound of P(s|SKd ), the probability of the
secret with the knowledge of SKd , will be identified.

We just need to consider the case of d = t − 1, in which
P(s|SKd ), has the largest value.

In this case, if s′ < q happens, we are assured that s′ �= s is
true from proposition 1. As a result, the maximum P(s|SKd )
is 1/(q −1) since the value s′ can be excluded from the secret
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space S = Fq . Recall that s is randomly selected in Fq and
thus P(s) is 1/q. As a result, we have

�(s;SKd ) = H (s) − H (s|SKd )

≤ log q − log(q − 1) = log
q

q − 1
< ε. (5-3)

That is, �(s;SKd ) converges to zero as q converges to
infinity. Therefore, the proposed (t, m, n)-Group Oriented SS,
for less than t Insiders, is asymptotically perfect with respect
to the set of probability distributions P(.) on the secret
space S. �

Theorem 4: The proposed (t, m, n)-Group Oriented SS is
asymptotically perfect with respect to the set of probability
distributions on the secret space.

In our security model, we conclude from Theorem 2 and 3
that the proposed (t, m, n)-Group Oriented SS is asymptoti-
cally perfect with respect to the set of probability distributions
on the secret space, because both types of adversaries hardly
get any information when they fail to have enough correct
RCs or valid shares available. Formally, entropy losses of the
secret for both types of adversaries converge to zero as the
secret space converges to infinity.

VI. PROPERTIES AND COMPARISONS

RCs bring our scheme new features although the scheme
is based on Shamir’s SS. Distinct from Verifiable SSs and
similar to the proposed scheme, Harn’s scheme [16] is the one
solving the above mentioned attack without user authentication
or share verification. In this section, we will summarize the
properties of our scheme and make some comparisons with
Harn’s scheme and traditional SS schemes.

A. Properties

1) Single Share: Harn’s scheme [16] uses k(k ≥ 2)
polynomials and each shareholder holds k shares; but our
proposed scheme requires each participant to hold only one
share. In many VSS schemes, share verification is required.
As a result, each participant needs 2 items in a secret recon-
struction, one is the share, and the other is the verification
component.

2) Group Oriented: In basic (t, n)-SSs, a participant is able
to recover the secret as long as it collects no less than t
valid shares, i.e. it does not have to get all the shares of
participants in the reconstruction. Thus this type of SSs are
share oriented. Compared with this type, the proposed scheme
can be called group oriented SS, that is because all participants
form a tightly coupled group before the secret reconstruction
by generating a RC each, which binds a participant with the
others in the group. Recovering the correct secret requires each
participant to not only have a valid share but also belong to
the group (i.e. a participant Ui belonging to a group means the
public information xi of Ui is used by all participants in the
group when constructing their RCs). Otherwise, a shareholder,
even with a valid share but outside the group, is unable to
generate a correct RC of the group and thus cannot recover
the secret within the group.

It is the group oriented property which prevents an adversary
without a valid share (e.g. the Outsider in our scheme) from
obtaining the secret.

3) Unconditionally Secure: The security of our scheme does
not depend on any assumption of hard problems such as
Discrete Logarithm Problem or one way functions, i.e. its
security holds even if the adversary have infinite computing
power or storage capacity.

4) Without User Authentication or Share Verification: The
proposed scheme solves the problem in basic (t, n)-SSs
without using any user authentication or share verification
needed in most Verifiable SSs.

B. Security Comparisons

Compared with basic (t, n)-SSs, such as Shamir’s SS,
Mignotte’s SS, Asmuth-Bloom’s SS and so on, our proposed
(t, m, n)-Group Oriented SS possesses extra security property,
which guarantees that once a group of m(m > t) shareholders,
agrees to work together, the secret can be reconstructed only
if each participant necessarily has a valid share.

However, basic (t, n)-SSs allow the secret to be recovered
as long as there are at least t valid shares available, it is
possible for a participant without a valid share to obtain the
secret when more than t shareholders participate in the secret
reconstruction.

Moreover, the RC in our scheme also plays the role of
protecting the share. Therefore, RCs can be used to construct
some other secret sharing based schemes such as multi-secret
SS [16], Group authentication [21] and so on.

C. Performance Comparisons

Let us use the ratio of the size of the secret space to
that of the share space to measure the information ratio of
SS schemes. For a shareholder, information ratio reflects the
efficiency of sharing a secret with others.

Roughly speaking, In Shamir’s SS, the information ratio
is 1 because both the secret and the share are from the same
domain; while in Asmuth-Bloom’s SS, the information ratio
is always less than 1 because the secret space is the smallest
compared with moduli of shareholders. The information ratio
of our proposed scheme is log q/ log p, which can be con-
trolled between 1/2 and 1/3 because we can select p and q
such that q3 > p > nq2+q , note that q is much larger than n.
It means the information ratio of our scheme is lower than that
of Shamir’s SS, which is just the cost our scheme pays for the
above extra security.

As mentioned above, Harn’s (t, n)-secure secret recon-
struction scheme provides the security similar to our scheme,
but each participant in Harn’s scheme uses multiple shares to
form a component before recovering the secret. The scheme
uses k polynomials over Fp to generate k shares for each
shareholder and requires kt > n − 1 to guarantee the security,
where n is the total number of shareholders, t is the threshold.
Consequently, the information ratio of Harn’s scheme is 1/k.
In the case of k > 3, the information ratio is lower than that
of our proposed scheme; In the case of k = 2, its information
ratio is 1/2 which is a little higher than that of our scheme,
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however, 2t > n − 1 means that, to recover the secret, at
least one half of shareholders are required to participate in
the secret reconstruction. This restriction makes it impractical
in applications with a large number of shareholders.

In computation effort, the proposed scheme is almost the
same as Shamir’s (t, n)-SS except for the extra operation
mod q in the last step of secret reconstruction.

VII. CONCLUSION

We observed an attack against basic (t, n)-SS schemes, in
which a malicious participant, even without a valid share,
may obtain the secret when there are more than t participants
in the secret reconstruction. To cope with the attack, we
first introduced the notion of Randomized Components.
A randomized component binds the share with the information
of all participants and can protect the share from being
exposed; at the same time, randomized components can be
used to reconstruct the secret. As one of the applications
of Randomized Components, a (t, m, n)-Group Oriented
SS scheme was proposed. In the scheme, once m (m ≥ t)
participants form a tightly coupled group by generating RCs;
the secret can be recovered only if all participants necessarily
have valid shares. The scheme does not depend on any user
authentication or share verification mechanism and is uncon-
ditionally secure. Analyses show the scheme is asymptotically
perfect.

Moreover, the Randomized Component can be viewed as a
tool and used in some other scenarios. For example, multi-SSs
allow a group of members, with only one or two shares each,
to collaborate to reconstruct more secrets. In this case, each
participant can use the RC instead of the share to recover each
secret while keeping the share secure. Group authentication
allows one to authenticate a group of members in only one step
rather than authenticate them one by one. The Inseparability
of RC can also simplify the design of group authentication.
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