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Abstract — In most (t,n)-multi-secret sharing ((t,n)-

MSS) schemes, an illegal participant, even without any

valid share, may recover secrets when there are over
t participants in secret reconstructions. To address this

problem, the paper presents the notion of Group ori-
ented (t,m,n)-multi-secret sharing (or (t,m,n)-GOMSS),

in which recovering each secret requires all m (n ≥ m ≥ t)

participants to have valid shares and actually participate in
secret reconstruction. As an example, the paper then pro-

poses a simple (t,m,n)-GOMSS scheme. In the scheme,
every shareholder has only one share; to recover a secret,

m shareholders construct a Polynomial-based randomized

component (PRC) each with the share to form a tightly
coupled group, which forces the secret to be recovered only

with all m valid PRCs. As a result, the scheme can thwart
the above illegal participant attack. The scheme is simple

as well as flexible and does not depend on conventional

hard problems or one way functions.

Key words — Multi-secret sharing, Shamirs scheme,

Tightly coupled group, Polynomial-based randomized com-

ponent (PRC).

I. Introduction

As a fundamental cryptographic tool, the first (t, n)
threshold secret sharing (t, n)-SS scheme was introduced
independently by Shamir [1] and Blakley[2] in 1979. A
(t, n)-SS scheme is used to share one secret among n

shareholders such that at least t shareholders are able
to reconstruct the secret, but fewer than t shareholders
can’t. Shareholders are usually called participants when
they participate in a secret reconstruction. However, a
(t, n)-SS scheme only allows participants to share a single
secret.

To improve the efficiency of secret sharing, (t, n)-
multi-secret sharing (or (t, n)-MSS) was proposed in the
past, in which at least t shareholders are required to re-
cover each secret and less than t shareholders cannot re-
construct any secret.

In 1994, Jakson et al.[3] classified multi-secret shar-
ing schemes into two types: one is one-time-use scheme
and the other is multi-use scheme. In a one-time-use
scheme, the dealer must redistribute new shares to ev-
ery shareholder after some particular secrets are recov-
ered. In a multi-use scheme, every participant is allowed
to use share(s) repeatedly to recover multiple secrets with-
out share redistribution.

Schemes in Refs.[4–6] are all based on two-variable
one-way function. Chien et al.’s scheme[4] shares all se-
crets by a system of linear equations, in which unknown
parameters of equations serve as secrets to be shared.
Yang et al.’s scheme[5] uses coefficients of a polynomial
as secrets and all secrets are recovered at a time. Pang et
al.’s scheme[6] employs different values of a polynomial as
secrets, and the degree of the polynomial depends on the
number of secrets and the number of shareholders.

However, if there are more than t participants in the
above (t, n)-MSS schemes and an adversary manages to
impersonate a legal participant but without any valid
share, the adversary can communicate with the other par-
ticipants to collect up to t valid shares during secret re-
constructions, and eventually recover all secrets later. We
call it Illegal participant (IP) attack. The paper focuses
on how to construct a MSS scheme capable of preventing
IP attack.

In order to thwart the IP attack, some verifiable (t, n)
MSS schemes are proposed to prevent adversaries with-
out valid shares from joining secret reconstructions. For
example, based on Yang et al.’s scheme[5], Shao et al.’s
scheme[7] employs the intractability of the discrete log-
arithm and RSA cryptosystem to verify the validity of
shares. Similarly, schemes in Refs.[8,9] are based on ellip-
tic curves and bilinear maps. Generally, these schemes are
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based on some cryptographic assumptions.
In Lin et al.’s scheme[10], shareholders compute new

shares during each recovering phase and then works as
a dealer to distribute sub-share to other participates,
the threshold decreases each time a secret is recovered.
While in Harn’s scheme[11], the dealer selects multiple
polynomials and generates the same number of shares for
each shareholder; every shareholder constructs a Lagrange
component, which is a linear combination of its shares, to
recover a secret. In Liu et al.’s scheme[12], every share-
holder distributes its sub-secret among n shareholders by
using a polynomial of degree t−1 and secrets are different
linear combinations of these sub-secrets.

In multi-use (t, n)-MSS scheme, a share is used more
than once and thus shares should be well protected in se-
cret reconstructions. Some schemes are available to pro-
tect shares. The most common method is to use a one-way
function[13,14]. Each shareholder keeps only one share and
uses the output of a one-way function of the share to re-
construct different secrets, the security of these schemes
depends on one-way functions. There are also some other
methods to protect shares, for example, using a multi-
party zero knowledge interactive proof protocol[15], shuf-
fling method[16] and linear combination[11], but they are
all very complicated. Zhao et al.[17] gives an abstraction of
multisecret sharing based on Lagrange interpolating poly-
nomial, which is formalized in the applied pi-calculus by
using an equational theory that characterizes the cryp-
tographic semantics of multisecret sharing based on La-
grange interpolating polynomial.

In this paper, we will present a new type of MSS
scheme in which shareholders, with one share each, are
allowed to share multiple secrets in a simpler and more
efficient way; the scheme can prevent IP attack without
any verifiable secret sharing and does not depend on any
conventional hard problem or one way function.

The rest of this paper is organized as follows. Sec-
tion II gives the definition of the group oriented (t, m, n)
multi-secret sharing (or (t, m, n)-GOMSS); Section III
proposes a simple (t, m, n)-GOMSS based a single poly-
nomial, which is followed by the correctness and security
analysis in Section IV. Section V compares our scheme
with related work and Section VI concludes the paper.

II. Definition of (t, m, n)-GOMSS

In this section, we will present the notion of (t, m, n)-
GOMSS.

1. Informal definition of (t, m, n)-GOMSS
A shareholder is called participant when it takes part

in a secret reconstruction. A (t, m, n)-GOMSS scheme
shares multiple secrets among n shareholders such that

1) any group of at least t shareholders is qualified to
reconstruct all secrets,

2) a group of less than t shareholders cannot recover
any secret and

3) one secret can be recovered only if all m(m ≥ t)
participants in the same group have valid shares and ac-
tually participate in the secret reconstruction.

2. Formal description of (t, m, n)-GOMSS
Definition 1 ((t, m, n)-GOMSS): Suppose SH and

SE denote the share space and secret space respectively;
{si|si ∈ SE} are secrets to be shared among totally
n shareholders, U = {Ui|i ∈ I}, I = {1, 2, . . . , n};
each shareholder, e.g. Ui, has the public information
xi(xi ∈ SH); Um = {Ui|i ∈ Im ⊆ I, |Im| = m} ⊆ U ,

denotes m (m ≥ t) out of n shareholders. A (t, m, n)-
GOMSS comprises 3 algorithms {SD, RCC, SR}.

1) Share distribution (SD):
The algorithm generates a couple of shares for each

shareholder.
SD : SH → SH is a polynomial time algorithm which

takes a shareholder’s public information as input and pro-
duces a share as output. i.e. hi = SD(xi), where hi is Ui

′s
share in SH.

2) Randomized component construction (RCC):
RCC : SH × SH(m) × SE → SH is a probabilistic

polynomial time algorithm which binds the share of a
participant with the public information of all m partic-
ipants; i.e. cvi = RCC(hi,Xm, rvi), where cvi (cvi ∈ SH)
is the Randomized component (RC) of Ui for the secret
sv, Xm = {xi|xi ∈ SH, i ∈ Im} is the public information
set of Um, and rvi (rvi ∈ SE) is a random integer chosen
by Ui privately.

3) Secret reconstruction (SR):
The algorithm recovers secrets with RCs.
SR : SH(m) → SE is a polynomial time algorithm

which takes m RCs as input and produces a secret as
output; that is, sv = SR(RCv

m
), where RCv

m
={cvi|cvi =

RCC(hi,Xm, rvi) ∈ SH, i ∈ Im} is the RC set of Um for
the secret sv ∈ SE . Besides, if RCv

m
, (n ≥ m ≥ t), is the

right RC set generated for sv (v = 1, 2...k), and RC′ is a
RC set actually used in recovering sv, a (t, m, n)-GOMSS
satisfies

P (sv = SR(RC′)|RC′ ∩RCv
m
�= Φ) = 1 → RC′ = RCv

m

(1)
where P (.) is the probability distribution function.

Remark 1 In Eq.(1), RCv
m

denotes the correct RC
set of Um for a secret sv, i.e. each RC in RCv

m
is generated

with the corresponding valid shares according to RCC al-
gorithm and sv = SR(RCv

m
). Um produces the only RC

set,RCv
m

, for the secret sv. Eq.(1) implies that, if a RC set
RC′ , having at least one RC in common with RCv

m
, could

correctly recover sv, it must be identical with RCv
m

. Un-
der this circumstances, an adversary in (t, m, n)-GOMSS,
even having up to (m − 1) valid RCs, (note that (m − 1)
could be much larger than the threshold t), is still un-
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able to recover the secret. It also means that recovering
each secret requires all m participants in Um to have valid
shares.

III. Our Proposed Scheme

In the proposed (t, m, n)-GOMSS scheme, there are 3
types of entities, a dealer, n shareholders and some adver-
saries. We assume that the dealer is trusted by all share-
holders, there is a secure channel between the dealer and
each shareholder, a private channel exists between each
pair of shareholders.

1. Adversary model
The proposed scheme aims to prevent an adversary,

without any valid share, from obtaining secrets rather
than to ensure recovering correct secrets. Thus, we as-
sume that all legal participants would rather give up the
secret reconstruction than leak the secret to adversaries,
because safeguarding secrets is of the first importance in
secret sharing schemes.

We assume that outsiders are main adversaries in our
scheme.

An outsider is an adversary without any valid share, it
exists in either of the 2 cases, 1) Outsiders may crack some
participants’ private channels and intercept the informa-
tion to derive secrets. 2) An outsider may impersonate
some legal shareholder to join secret reconstructions but
without the corresponding valid share. They can commu-
nicate with the other participants to collect their legal
shares and derive secrets.

Of course, less than t legal shareholders may try to
reconstruct secrets by conspiring. However, this case is
the same as that in basic (t, n)-SS schemes, therefore, we
won’t consider this attack for simplicity.

2. Design of (t, m, n)-GOMSS
On one hand, the proposed (t, m, n)-GOMSS scheme

remains the basic properties of a (t, n)-SS scheme (e.g.
Shamir’s SS[1]), i) any group of at least t legal share-
holders are able to recover each secret while less than t

shareholders can’t; ii) Each shareholder has a single share.
On the other hand, it also has the new property, i.e. re-
covering each secret requires all m participants to have
valid shares and substantially take part in the secret re-
constructions.

To achieve these goals, each participant has to protect
the share from exposure during each secret reconstruc-
tion because the share needs to be used repeatedly; at
the same time, to force all participants to actually join
the secret reconstruction, the scheme requires all partici-
pants to form a tightly coupled group. In our scheme, all
m participants protect shares and form a tightly coupled
group merely by constructing a PRC each.

According to the formal definition, the proposed
(t, m, n)-GOMSS scheme contains the following 3 phases:

1) Share generation:
Suppose there are n shareholders, Un = {Ui|i ∈

In}, In = {1, 2...n}, and each shareholder, e.g. Ui, has the
public information xi ∈ Zp, where p and q are large primes
with p > (n + 1)q2 + q. S = {si|si ∈ Zq, i = 1, 2, ..., k} are
k, (k << q), secrets to be shared among Un. The dealer
privately selects a polynomial f(x) = a0 + a1x + ... +
at−1x

t−1 mod p, where ai,(i = 0, 1, 2, ..., t − 1), are uni-
formly selected in Zp. For each secret si(si ∈ S), the
dealer first selects an integer di, (di ∈ Zp, di /∈ X =
{x1, x2...xn}), and a random integer ki (ki ∈ Zq), then it
evaluates ei (ei ∈ Zp) such that si + kiq = eif(di) mod p

and hold. Next, the dealer makes di and ei public. Fi-
nally, the dealer computes f(xj) and sends it as the share
to shareholder Uj secretly.

2) Construction of PRC:
Suppose m (n ≥ m ≥ t) shareholders Um = {Ui|i ∈

Im}, (Im ⊆ In, |Im| = m), with the public information
set Xm = {xi|xi ∈ X ,i ∈ Im}, collaborate to reconstruct
each secret, si (si ∈ S), each participant Uj in Um uni-
formly picks an integer rij over Zq privately and computes

the PRC for si as cij = (eif(xj)
∏

xv∈Xm
xv �=xj

di − xv

xj − xv
+

rijq) mod p.
Remark 2 A PRC serves as 2 functions in the

scheme simultaneously, one is to protect a shareholder’s
share (e.g. Uj

′s share f(xj) in the cij) from exposure; the
other is to help all participants form a tightly coupled
group because each PRC bind the share with the other
participants public information by a random number (e.g.
rij in cij) .

3) Secret reconstruction:
Each participant, e.g. Uj in Um sends cij to

the other participants. On obtaining all the m PRCs,

RCm = {cij |cij = (eif(xj)
∏

xv∈Xm
xv �=xj

di − xv

xj − xv
+ rijq) mod

p, j ∈ Im}, Uj can evaluates the secret si =∑
j∈Im

cij mod p mod q .

IV. Correctness and Security Analysis

1. Correctness
The following fact ensures that a group of m (m ≥ t)

participants can recover each secret, e.g., si.
∑

j∈Im

cij mod p mod q

=
∑

j∈Im

(eif(xj)
∏

xv∈Xm
xv �=xj

di − xv

xj − xv
+ rijq) mod p mod q

= (ei

∑
j∈Im

(f(xj)
∏

xv∈Xm
xv �=xj

di − xv

xj − xv
) mod p

+
∑

j∈Im

rijq) mod p mod q
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= (si + kiq +
∑

j∈Im

rijq) mod p mod q (2)

= (si + kiq +
∑

j∈Im

rijq) mod q (3)

= si

Fig. 1. (a) Share Generation; (b) Construction of PRC and Se-

cret Reconstruction; Phases of the proposed (t, m, n)-
GOMSS

Eq.(2) is equivalent to Eq.(3) because of si + kiq <

q + q2,
∑

j∈Im

rijq < mq2 ≤ nq2, q + (n + 1)q2 < p and

thus (si + kiq +
∑

j∈Im

rijq) < p. However, it is known from

Lagrange interpolation that the secret cannot be recon-
structed in the case of m < t.[1]

2. Security analysis

In this subsection, Theorem 1 proves that a share can
be well protected by PRCs; Theorem 2 demonstrates the
security of our scheme against outsiders and Theorem 3
assures us that our scheme is still secure even if adver-
saries obtain recovered secrets.

Theorem 1 In the proposed (t, m, n)−GOMSS,
given a PRC, an adversary only has the probablity 1/q

to obtain the share from the PRC.

Proof From cij = (eif(xj)
∏

xv∈Xm
xv �=xj

di − xv

xj − xv
+

rijq) mod p, we have f(xj) = (ei

∏
xv∈Xm
xv �=xj

di−xv

xj−xv
)−1(cij−

rijq) mod p.
If there exist r

′
ij and rij (r

′
ij , rij ∈ Zq)

such that (ei

∏
xv∈Xm
xv �=xj

di−xv

xj−xv
)−1(cij − rijq) mod p =

(ei

∏
xv∈Xm
xv �=xj

di−xv

xj−xv
)−1(cij − r

′
ijq) mod p = f(xj) holds,

then we have (cij − rijq) mod p = (cij − r
′
ijq) mod p, i.e.

p|(rij − r
′
ij), because of gcd((ei

∏
xv∈Xm
xv �=xj

di−xv

xj−xv
)−1, p) =

1 and gcd(p, q) = 1. As a result, rij = r
′
ij follows due to

rij , r
′
ij ∈ Zq and q < p, which means different rij produces

distinct f(xj) for the given cij . Since rij is uniformly se-
lected in Zq by participant, there are q distinct possible
values of f(xj) for the given cij , each with the same possi-
bility. Therefore, the probability for an adversary to guess
the share f(xj) is 1/q .

The above theorem implies that cij is able to protect
the share f(xj) even if it is exposed to the outside, be-
cause guessing f(xj) from cij is as difficult as directly
guessing the secret si in Zq .

Lemma 1 Suppose that random variable x is uni-
formly distributed in Zp, for any value t ∈ Z∗

p
, xt has a

uniform distribution over Zp .
Proof t ∈ Z∗

p
means t ∈ Z

p
and gcd(t, p) = 1.

Suppose x1 and x2 are 2 distinct values of x in Zp,
tx1, tx2 ∈ Zp follows; if tx1 = tx2 mod p holds, then we
have p|(x1 − x2) due to gcd(t, p) = 1; it is followed by
x1 = x2 because of x1,x2 ∈ Zp, which is contradictory
to x1 �= x2. Therefore,tx1 �= tx2 mod p holds if x1 �= x2.
That is, xt is a permutation of {0, 1, 2, . . . , p − 1} when
x varies from 0 to p − 1, i.e. xt is uniformly distributed
over Zp .

Lemma 2 Suppose that p, q (p > q) are prime num-
bers, if random variables x and y are mutually indepen-
dent uniformly distributed in Zp and Zq respectively, then
(ax+ by) mod p has a uniform distribution in Zp for fixed
values a, b ∈ Z∗

p
.

Proof We know from Lemma 1 that ax is uni-
formly distributed over Zp. Let y1 and y2 (y1, y2 ∈ Zq)
be 2 distinct values of random variable y. Obviously,
by1 mod p and by2 mod p are 2 different values in Zp.
Furthermore,(ax+ by1) mod p and (ax+ by2) mod p are 2
distinct permutations of {0, 1, 2, . . . , p−1} when x changes
from 0 to p − 1. As a result, (ax + by) mod p generates q

distinct permutations of {0, 1, 2, . . . , p−1} when x changes
from 0 to p − 1 and y varies from 0 to p − 1. As we all
know, each value in Zp appears once and only once in each
permutation of {0, 1, 2, . . . , p−1}, therefore, each value of
(ax + by) mod p appears totally q and only q times in
these q distinct permutations of {0, 1, 2, . . . , p − 1}. Con-
sequently, the probability of each value of (ax+by) mod p



GOMSS: A Simple Group Oriented (t, m, n) Multi-secret Sharing Scheme 5

is q/pq = 1/p.
Theorem 2 If m (n ≥ m ≥ t) participants col-

laborate to recover each secret, e.g. sj , in the proposed
(t, m, n)-GOMSS, outsiders, even with m− 1 valid PRCs
for sj, cannot get the secret. Specifically, suppose the par-
ticipants’ PRC set for sj is RCj

m = {cji|i ∈ Im}, (Im ⊆
In = {1, 2, ...n}, |Im| = m), if outsiders have already
known RCj

m−1 = {cji|i ∈ Im−1},(Im−1 ⊂ Im, |Im−1| =
m − 1), then P (sj |RCj

m−1), the probability for outsiders
to get the secret is no more than (�p/�+ 1)/p .

Proof From the theorem 1, we learn that it is im-
practical for Outsiders to obtain the secret by deriving
shares from known PRCs. In this case, Outsiders have to
get the secret by the following 2 ways.

1) Outsiders evaluate s
′
j =

∑
i∈Im−1

cji mod p mod q

to get the secret sj if s
′
j happens to be equal to

sj =
∑

i∈Im

cji mod p mod q. In this case, s
′
j = sj means

(
∑

i∈Im

cji mod p−
∑

i∈Im−1

cji mod p) mod q = 0, that is,

cjh = λq (4)

where λ is an integer, h ∈ Im and h /∈ Im−1.

Note that, in cjh = (ejf(xh)
∏

v∈Im
v �=h

dj − xv

xh − xv
+

rjhq) mod p, f(xh) includes ai(i = 0, 1, 2, ..., t−1), which,
for outsiders, are t random variables uniformly distributed
over Zp. Therefore, by repeatedly using lemma 1 and
lemma 2, we know that cjh is uniformly distributed in
Zp for outsiders. As a result, there are at most �p/q� + 1
values of cjh satisfying Eq.(4), i.e., cjh is a multiple of q,

and thus the probability of s
′
j = sj is at most (�p/q�+1)/p

.
2) outsiders guess c

′
jh such that sj = (

∑
i∈Im−1

cji +

c
′
jh) mod p mod q holds, which means sj = (

∑
i∈Im−1

cji +

cjh) mod p mod q =
∑

i∈Im−1

cji + c
′
jh) mod p mod q, i.e.,

(cjh − c
′
jh) mod p = λq (5)

where λ is an integer, h ∈ Im and h /∈ Im−1. As men-
tioned above, cjh has a uniform distribution over Zp, and
thus, given the guessed c

′
jh, the left hand side of Eq.(5)

is uniformly distributed over Zp for Outsiders. Conse-
quently, there are at most �p/q� + 1 out of p values of
satisfying Eq.(5). Therefore, the probability of the secret
is also at most (�p/q� + 1)/p while guessing c

′
jh .

It concludes from 1) and 2) that outsiders cannot ob-
tain the secret with a probability more than (�p/q�+1)/p

even if they have m − 1 PRCs available.

Theorem 3 It is computationally infeasible for ad-
versaries to obtain a secret from the recovered ones.

Proof Without losing generality, suppose adver-
saries have the recovered secrets {s1, s2...sj}, (j < k),
available, let examine the feasibility of obtaining the new
secret

sj+1 = ej+1f(cj+1) mod p mod q

= ej+1(a0 + a1cj+1 + ... + at−1cj+1
t−1) mod p mod q

(6)
From the recovered secrets, adversaries have the fol-

lowing system of equations,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s1 + k1q = e1f(c1) mod p

= e1(a0 + a1c1 + ... + at−1c1
t−1) mod p

...
sj + kjq = ejf(cj) mod p

= ej(a0 + a1cj + ... + at−1cj
t−1) mod p

(7)

There are 2j unknown parameters (i.e.
k1...kj ;f(c1)...f(cj)) or j + t unknown parameters
(i.e.k1 , k2, ..., kj ; a0, a1, ..., at−1) in j available equations.
To get sj+1 in Eq.(6), adversaries need to 1) guess f(cj+1)
or 2) solve {a0, a1, ..., at−1} in Eq.(7).

1) To guess f(cj+1) and then evaluate
ej+1f(cj+1) mod p mod q. The probability to get the
right sj+1 is at most (�p/q� + 1)/p, which converges
to 1/q when q converges to infinity. The probability is
obviously negligible since q is a large integer.

2) To solve {a0, a1, . . . , at−1} in Eq.(7) to get the poly-
nomial f(x) and compute sj+1 by Eq.(6). Specifically, we
can obtain from Eq.(7) an indeterminate equation over
Zp with t unknowns, {k1, k2, . . . , kt}, e.g.

at−1 = g(k1, k2, . . . , kt) mod p (8)

where g(k1, k2, . . . , kt) is a linear combination of
k1, k2, . . . , kt ; given at−1, we can get at−2, at−3, . . . , a0.

However, there exist p possible values of at−1 for totally
qt tuples{k1, k2, . . . , kt}. It is computationally infeasible
to identify the correct at−1 in f(x) from Eq.(8) since p is
a large prime.

V. Properties and Comparisons

Compared with related schemes, our scheme has the
following features.

1. Properties
1) Simplicity
On one hand, there is only one polynomial in our

scheme and each shareholder has a single share; no mat-
ter how many secrets need to be recovered, a shareholder
just uses the same share to construct different PRCs. On
the other hand, in constructing different PRCs, e.g. cij =

(eif(xj)
∏

xv∈Xm
xv �=xj

di − xv

xj − xv
+ rijq) mod p, (i = 1, 2, . . .),

the shareholder Uj in the same tightly coupled group just
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reuses the same part f(xj)
∏

xv∈Xm
xv �=xj

di − xv

xj − xv
. That is, Uj

just needs to evaluate f(xj)
∏

xv∈Xm
xv �=xj

di − xv

xj − xv
only once.

The reconstruction of each secret is almost as simple
as Shamir’s basic (t, n)-SS.

2) Flexibility and efficiency
The proposed scheme allows the dealer to decide the

number of secrets to be shared freely even after share dis-
tribution, i.e. the number of secrets is independent of
other parameters such as the threshold or the number of
shareholders. Thus it is flexible.

As a multi-secret scheme, it is of great importance
that a group of shareholders could share as many secrets
as possible while each shareholder just keeps fixed number
of shares. Our scheme allows shareholders, with a single
share each, to share more secrets than shares. Thus it is
efficient in term of the number of secrets.

3) Tightly coupled
In each secret reconstruction of our scheme, all par-

ticipants are required to form a tightly coupled group by
constructing a PRC each, which is used to prevent the IP
attack. In this case, recovering each secret requires each
participant in the group to possess a valid share and actu-
ally join the secret reconstruction. Otherwise, no correct
secret can be recovered.

4) Free of conventional hard problems and one-way
functions

Unlike most MSS schemes, the proposed scheme does
not depend on any conventional hard problem or one-way
function. It is actually based on the fact that an indeter-
minate equation has multiple solutions over a finite field.

2. Comparisons
We will compare our scheme with related

ones[4−6][8−11][18] in the following aspects.
1) Shares/shareholder (S/S)
For a shareholder, S/S denotes the efficiency to share

a secret with others. Obviously, the less S/S is, the more
efficient a MSS scheme is.

Our scheme requires a shareholder to have just
one share, which is optimal and the same as schemes
in[4−6][8−10]. S/Ss in Liu’s scheme[18] and Harn’s
scheme[11] are the same as the number of shareholders and
polynomials respectively, both of which are much larger
than 1.

2) Flexibility of secret number
A flexible MSS scheme should allow users to choose the

number of secrets freely after share distribution. Among
all above schemes, Ours and schemes in Refs.[4–6,8] allow
users to pick the number of secrets freely, but schemes in
Refs.[9–11,18] don’t.

3) Computational assumption independency

Generally speaking, a scheme without computational
assumptions is obviously better.

Ours and schemes in Refs.[10–11,18] are independent
of conventional hard problems and one-way functions
while schemes[4−6] depend on two-variable one-way func-
tions and schemes in[8−9] depend on hard problems re-
lated to elliptic curves and bilinear maps.

4) Tightly coupled group
This property means the capability to prevent IP at-

tack without user authentication or share verification. All
these schemes except for ours and Harn’s[11] don’t possess
the property.

5) Multi-use
As mentioned in Section I, multi-use is a significant

metric to measure the efficiency of secret sharing. A de-
sirable MSS scheme is supposed to allow users to share
multiple secrets with the same share(s). Among all above
schemes, Lin’s[10], Harn’s[11], Liu’s[17] and ours are multi-
use schemes while schemes in Refs.[4–6,8–9] are not be-
cause they recover all secrets at once.

Table 1. Comparisons with other MSS schemes

Shares/ Flexibility Computational Tightly

Schemes Share- of secret assumption coupled Multi-use

holder number independency group

Chien[4] 1
√ × × ×

Yang[5] 1
√ × × ×

Pang[6] 1
√ × × ×

Eslami[8] 1
√ × × ×

Wang[9] 1 × × × ×
Lin[10] 1 × √ × √
Liu[18] n × √ × √

Harn[11] k × √ √ √
Our 1

√ √ √ √
Scheme

Note:n:number of shareholders;k:number of polynomials used

It concludes from the comparisons that, among of all
above MSS schemes, only our scheme shows positive in
all the 5 aspects simultaneously, which are main metrics
of a MSS scheme.

VI. Conclusion

In order to prevent the IP attack in most (t, n)-
MSS schemes, the paper presents the notion of (t, m, n)-
GOMSS and proposes a (t, m, n)-GOMSS scheme based
on polynomial. In the scheme, recovering a secret requires
all participants to have valid shares and actually take part
in the secret reconstruction. Otherwise, no correct secret
can be recovered. Compared with related schemes, our
scheme has the features of one share for each shareholder,
flexible secret number, multi-use, tightly coupled group
and independency of hard problems/one-way functions.
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