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Abstract Nowadays, group communications are getting more and more popu-
lar. In order to secure the communication, all participating users need to share a
common group key in advance. The paper proposes a secure and efficient group
key distribution protocol based on Shamir’s secret sharing scheme. In the pro-
tocol, 1) each user only needs to send registration message in privacy, while all
the other messages can be transported in public. Meanwhile, 2) the scheme sup-
ports authentication for group keys without any assumption of hard mathematics
problem. Moreover, 3) the protocol introduces the notion of on-line/off-line into
group key distribution and thus the speeds of group key response and recovery are
greatly improved. Analyses show that our scheme is resistant to passive attack,
impersonation attack and reply attack.
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1 Introduction

With the rapid development of network, communication patterns are not limited
to 1-to-1 or 1-to-m (i.e. sever/clients). Group communications with m-to-m pat-
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tern become more and more popular. Before a secure group communication, all
participating users are required to share a group key. Group key establishment
protocols have been studied in many literatures. According to whether a trusted
key generation center (KGC) exists or not, these protocols are classified into two
classes: group key agreement (or exchange) protocols and group key distribution
(or transfer) protocols.

In group key agreement protocols, there is not a KGC trusted by all users.
Initially, the group key agreement protocol [3] based on Diffie-Hellman algorithm
[6] was proposed by Ingemarsson et al. in 1982. The protocol requires all n par-
ticipants to communicates synchronously and needs n− 1 rounds of interaction to
establish a group key. Steiner et al. [28] extends basic Diffie-Hellman key exchange
to a n-party Diffie-Hellman key exchange. In 2004, Kim et al. [16] proposed a
fault-tolerant protocol named Tree-based Group Diffie-Hellman. Protocols [4,14,
36] are also based on Diffie-Hellman algorithm. Moreover, there are some group
key agreement protocols based on other methods. For example, Chen et al. [5]
proposed a key agreement protocol based on bilinear pairing to improve the key
establishment efficiency. Irshad et al. [15] proposed the protocol based on Cheby-
shev chaotic map without a registration center. Because there is no KGC and all
the users are equal in these protocols, more communication cost is required during
key establishment.

Distinct from group key agreement protocols, there exists a KGC trusted by all
users in group key distribution protocols [31,17,24,11]. The group key is generated
and distributed by the KGC, so that group key establishment can be accomplished
more efficiently. However, it is difficult to distribute a group key for the following
reasons:

1. Since a group key is transferred to multiple users, it is easier to be intercepted
during distribution.

2. Group users may change from time to time. When a user leaves or joins a
group, the group key needs to be updated such that users out of the group
have no information about the new group key.

3. Even if a group does not change for a long time, a session key still needs to be
updated after a period of time. Otherwise, it could be cracked by adversaries.

As a group-oriented cryptographic tool, secret sharing has the potential to
address the above problems. Therefore, based on Shamir’s (t, n) threshold secret
sharing (SS) scheme, we propose an on-line/off-line group key distribution proto-
col.

(t, n) threshold SS was first proposed by Shamir [26] and Blakley [2] separately
in 1979. In a (t, n) SS scheme, a secret is divided into n shares and each share is
allocated to a shareholder secretly such that any t or more than t shareholders
can reconstruct the secret while less than t shareholders cannot obtain the secret.
Shamir’s (t, n) threshold SS and Blakley’s (t, n) threshold SS are based on polyno-
mial interpolation and hyperplane geometry respectively, while Mignotte [22] and
Asmuth [1] et al.’s schemes are both based on Chinese Remainder Theorem. All
these schemes are not based on any hard mathematical problems.

There are some literatures using (t, n) threshold SS to design group key dis-
tribution protocols [21,8,29,35]. Guo et al. [9] proposed a group key distribution
protocol based on Asmuth-Bloom’s (t, n) threshold SS. Harn and Lin proposed an
authenticated group key transfer protocol [12] based on Shamir’s (t, n) threshold
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SS. However, the protocol is not information theoretically secure since it empolys
large integer factorization problem to thwart Insider attack. Liu et al. [20] tried to
improve the security of Harn-Lin’s protocol by utilizing two hash functions, but
their protocol is also based on large integer factorization problem.

In these protocols [12,20,25], one-way hash functions are used to support group
key authentication. The KGC announces the hash value of group key in advance,
so that users can verify whether the group key is correctly distributed by the KGC.
In our proposed protocol, hash function is not only used for authentication but
also utilized to compute an offset to protect the group key.

In the above distribution protocols, the KGC starts to compute and distribute
group key after it has received all users’ requests. However, in the scenes where
quick response is required, more efficient distribution protocol is needed. There-
fore, we introduce on-line/off-line method to speed the response of group key
distribution protocol for the first time.

The concept of on-line/off-line was first proposed by Even et al. [7] to design
an efficient digital signature scheme. The idea is that the signature generating
procedure is divided into two phases. Part of signature can be computed during
off-line phase (before the signed message is given), so that on-line phase (after the
signed message is received) works very fast. Subsequently, Tanaka [30], Liu [19] and
some others [27,13,18,34,10], extended the notion to design some other schemes.
In our group key distribution protocol, the period before group key requests are
sent to the KGC is the off-line phase. KGC can carry out most calculation of group
key generation during this phase. When KGC receives group key request messages
from users, the protocol goes into on-line phase. Then, KGC generates group key
and distributes it to users. In this way, KGC has a rapid response in on-line phase.

According to the above, we summarize the characteristics of our on-line/off-line
group key distribution protocol as below.

– Each user just needs to share a coordinate with the KGC in privacy during
registration. And then, all messages can be transported publicly.

– All users share a common group key, and they can verify whether or not the
key is sent from KGC.

– When some users drop out of a group, they will not get any information about
new group keys.

– The process of group key distribution is divided into on-line and off-line phases.
KGC carries out most computation during off-line phase, so that it distributes
the key to users rapidly in on-line phase.

– Our protocol is resistant to passive attack, impersonation attack, and reply
attack. Moreover, it is not based on any hard mathematics problems.

The rest of the paper is organized as follows: In next section, we present some
preliminaries about Shamir’s (t, n) threshold SS and Harn-Lin’s protocol. The
entities and attack models are given in section 3. In section 4, we propose our group
key distribution protocol in detail. Correctness analysis and security analysis are
given in section 5 and section 6 respectively. In section 7, we compare our protocol
to related ones. Section 8 presents some experimental data and section 9 concludes
the paper.
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2 Preliminaries

2.1 Shamir’s (t, n) threshold SS

Shamir’s (t, n) threshold SS is based on polynomial interpolation. It consists of
the following two steps:

Share Generation: At first, the dealer D randomly chooses a polynomial f(x)
of degree t − 1: f(x) = a0 + a1x + ... + at−1x

t−1 mod p. The constant term a0
is regarded as the secret s, i.e., s = f(0) = a0. All the coefficients a0, a1, ..., at−1

are in the finite field GF(p), where p is a prime number. The dealer D selects n
abscissas X = 1, 2, ..., n to generate a share set δ = {si|f(xi), i ∈ X}. Then, the
dealer D distributes each share si to the corresponding shareholder Ui secretly
while makes all the abscissas xi known to the public.

Secret Reconstruction: When m (m ≥ t) legal shareholders attempt to re-
cover the secret s, they pool shares together privately. As a result, each share-
holder get a share set δm = {si|f(xi), i ∈ Xm} associated to the abscissas set
Xm = {1, 2, ...,m}. Then, the secret s can be computed as

s = f(0) =
∑
i∈Xm

si
∏

j∈Xm,j 6=i

−xj
xi − xj

mod p

where si
∏

j∈XIm ,j 6=i

−xj

xi−xj
is a Lagrange component.

Remark 2.1. In Shamir’s (t, n) threshold SS, if a shareholder gets any t or more
than t shares, it can compute the secret s easily by Lagrange Interpolation Polyno-
mial. However, any less than t shareholders cannot obtain any information about
the secret. Likewise, less than t− 1 Lagrange components also cannot recover gen-
eration polynomial f(x) or the secret s. It plays an important role in our proposed
protocol. Due to the problem without any computational assumption, Shamir’s
(t, n) threshold SS is an information theoretically secure scheme.

2.2 Harn-Lin’s protocol

In this protocol, the KGC first picks a RSA-number n, where n = p ∗ q. Both
p and q are large safe primes. Then, KGC shares a coordinate (xi, yi) with each
user Ui during registration, where i = 1, 2, ...,m. The group key generation and
distribution process is described as follow:

Step 1: The initiator sends a key initiation message to KGC.
Step 2: KGC broadcasts a response message to all users.
Step 3: Each user sends a random challenge Ri to KGC, where Ri ∈ Zn.
Step 4: KGC randomly selects a group key k and constructs an m-th degree
polynomial f(x) to pass through (m + 1) coordinates, (0, k) and (xi, yi ⊕ Ri),
for i = 1, 2, ...,m. KGC computes m additional coordinates Pi on f(x) and au-
thentication information auth = h(k, U1, ..., Um, R1, ..., Rm), where h(.) is a public
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one-way hash function. KGC distributes {auth, P1, ..., Pm} to all users publicly .
Step 5: Each user Ui can recover the group key k by one private coordinate
(xi, yi) and m public coordinates Pi, for i = 1, 2, ...,m. Then, it computes auth =
h(k, U1, ..., Um, R1, ..., Rm) to check whether or not the key is sent from KGC.

Remark 2.2. In Harn-Lin’s protocol, KGC should choose a larger parameter
n as the module of polynomials to replace the module p in Shamir’s (t, n) thresh-
old SS, where n is a RSA-number. In this way, the coordinate (xi, yi) of Ui can be
reused many times and kept private. Harn and Lin use the big integer factorization
problem to thwart Insider attack skillfully. Because this protocol is based on not
only Shamir’s (t, n) threshold SS but also hard math problem, it is not information
theoretically secure. Readers can read the original paper [21] to acquire more de-
tailed information about the problem. However, all computations have to be over
Zn, and KGC cannot carry out any calculations of group key before it receives all
users’ random challenges. Consequently, Harn-Lin’s protocol is inefficient.

3 Entities and attack models

In our group key distribution protocol, entities are classified into three types: 1)
KGC, 2) User and 3) adversary. Furthermore, there are three attack models for
adversaries: 1) passive attack, 2) impersonation attack, and 3) reply attack.

3.1 Entities

3.1.1 KGC

KGC is the entity trusted by all users and it is in charge of distributing group
keys to the users. Firstly, it attests to users’ identities and confers with each legal
user on a private coordinate secretly. In fact, the process is similar to the shares
generation in a (t, n) threshold SS scheme. Then, before users initiate a group
key request, KGC goes into off-line phase to carry out part of computations about
group key generation. Next, when KGC receives a group key initialization message,
it goes into on-line phase to complete key generation. Finally, it sends group key
distribution messages to users quickly.

3.1.2 User

A user is an entity who shares a private coordinate with KGC during registration.
Afterwards, users are expected to maintain their own coordinates secure all the
time, because the coordinates will be reused time and again. When users need
a group key, each of them submits a request to KGC. After a user receives its
corresponding distribution message, it recovers a session key and verifies whether
or not the key is transferred from KGC.
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3.1.3 Adversary

An adversary is an entity who wants to attack the protocol. Suppose that all users
form a set U . The adversaries are classified as Outsiders and Insiders according to
whether or not they are in U .

1) Insider: If a user not only wants to obtain the group key, but also attempts
to derive coordinates kept by other users in U , it is named Insider.

2) Outsider: If any others not in U want to attack the protocol, they are called
Outsiders. Outsiders always aim at capturing group key of U , or preventing users
in U from obtaining a valid group key.

3.2 Attack models

3.2.1 Passive attack

Passive attack means that adversaries break confidentiality of a protocol by cap-
turing messages among legal members. In our protocol, all messages during distri-
bution phase are transported publicly, so that adversaries are able to easily capture
the messages.

3.2.2 Impersonation attack

Impersonation attack refers to the fact that an entity pretends to be another to
attack a protocol. In our protocol, it means that an Outsider sends group key
request to KGC in the name of a legal user, or an adversary pretends to be KGC
to distribute group key.

3.2.3 Reply attack

Reply attack is that an entity resends outdated messages to others. In our protocol,
it is subdivided into two types:
1) An Outsider resends an outdated group key request to KGC.
2) An adversary redistributes an outdated group key to users.

4 Our proposed protocol

In this section, we show our group key distribution protocol in detail. It consists of
three phases: 1) Preparatory phase, 2) Distribution phase, 3) Group key recovery
and authentication.

4.1 Symbol definition

Before describing the protocol, we first define some notations as listed in Table 1.
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Table 1: Notations

Symbol Descriptions

m number of legal users

h(.) hash function

k group key selected by KGC

f(x) group key generation function

Ui the ith user

U group of legal users U = {U1, U2, ..., Um}
σ group communication identifier

I group key initialization message

Rσ response message

Mσ,i request message of Ui
(xi, yi) private and permanent coordinate of user Ui
(x∗i , y

∗
i ) public coordinate selected by user Ui

gi(x) linear function constructed by (xi, yi) and (x∗i , y
∗
i )

g−1
i (y) inverse of gi(x)

(x′i, y
′
i) ephemeral coordinate select by KGC for user Ui

x1, ...,xm public abscissas included in Rσ
d′i original group key distribution information

di protected group key distribution information

Ki distribution message for Ui
∆i Lagrange component of Ui
ki session key computed by Ui

4.2 Preparatory phase

4.2.1 Initialization of KGC

The KGC selects a one-way hash function h(.) and a random prime p. Then, it
makes them publicly known.

4.2.2 Users registration

As described above, each user should register with KGC before it joins in the group.
In this process, each user Ui is required to share a private coordinate (xi, yi) with
KGC, where both xi and yi are in the finite field GF(p). KGC should guarantee
each xi 6= 0 and xi 6= xj for i 6= j. Each user just needs to register only once.
Then, it makes its identity Ui public while keeps its coordinate (xi, yi) private.

4.3 Distribution phase

4.3.1 Off-line phase

step 1: Suppose that there are total m legal users who have registered with KGC.
They form a user group U = {U1, U2, ..., Um} and their private coordinates con-
stitute a set Ω={(x1, y1), (x2, y2), ..., (xm, ym)}.

step 2: KGC randomly generates a polynomial f(x) = a0 + a1x + ... + amx
m
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Fig. 1: Sketch of users registration

of degree m and chooses a0 as the group key k, i.e., k = f(0) = a0.

step 3: KGC picks 2m different coordinates on f(x) to form other two sets
Ω1={(x′1, y′1), (x′2, y

′
2), ..., (x′m, y

′
m)} andΩ2={(x1,y1), (x2,y2), ..., (xm,ym)} such

that Ω ∩Ω1 = Ω ∩Ω2=∅.

step 4: KGC uses each x′i (i = 1, 2, ...,m) in Ω1 and all elements in Ω2 to compute
original group key distribution information such as

d′i =
∑m

t=1
yt
−x′i

xt − x′i

m∏
j=1,j 6=t

−xj
xt − xj

mod p

step 5: KGC computes an offset h(x′i, y
′
i) to generate a value di = d′i+h(x′i, y

′
i) mod

p as protected group key distribution information.

4.3.2 On-line phase

step 1: The initiator sends a group key initialization message I to KGC.

step 2: When KGC receives the initialization message, it goes into on-line phase
and broadcasts a message Rσ = {σ,x1,x2, ...,xm} as response, where σ is a group
communication identifier selected by KGC.

step 3: Each user Ui randomly picks a coordinate (x∗i , y
∗
i ), where x∗i 6= xi. Then

it sends to KGC a request message Mσ,i including the group communication iden-
tifier σ, its identity Ui and the selected coordinate (x∗i , y

∗
i ), such as

Mσ,i = {σ, Ui, (x∗i , y∗i )}
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step 4: For each user Ui, KGC keeps a private coordinate (xi, yi), and receives
(x∗i , y

∗
i ) in message Mσ,i. It uses the two coordinates to construct a linear function

gi(x) = yi
x− x∗i
xi − x∗i

+ y∗i
x− xi
x∗i − xi

mod p

step 5: KGC uses (x′i, y
′
i) in Ω1 to compute two values gi(x

′
i) and g−1

i (y′i), where
g−1
i (y) is the inverse of gi(x).

step 6: KGC generates and sends distribution message Ki = {Ui, gi(x′i), g−1
i (y′i),

di, h(k, σ)} to the corresponding user Ui, where h(k, σ) is authentication informa-
tion about the group key.

step 7: KGC completes the group key distribution and goes into off-line phase
again to wait for next group key request.

4.4 Group key recovery and authentication

step 1: Each user Ui also constructs gi(x) and g−1
i (y) by (xi, yi) and (x∗i , y

∗
i ).

After Ui receives message Ki from KGC, it recovers x′i = g−1
i (gi(x

′
i)) and y′i =

gi(g
−1
i (y′i)).

step 2: Each user Ui uses the coordinate (x′i, y
′
i), m public abscissas x1,x2, ...,xm

in message Rσ, to compute a Lagrange component, such as

∆i = y′i

m∏
j=1

−xj
x′i − xj

mod p

step 3: The group key can be computed as

ki = di +∆i − h(x′i, y
′
i) mod p

step 4: Each user Ui also uses the same one-way hash function to compute a value

hi = h(ki, σ)

If hi = h{k, σ} holds, it means that the group key is the correct key sent from
KGC, i.e. ki = k. Then, Ui is allowed to use the certified key k to communicate
with others in U . Otherwise, users should initiate a new group key require to ensure
their communication security.
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Fig. 2: Diagrammatic sketch of distribution phase, group key recovery and authentication
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5 Correctness analysis

In this section, we give two theorems to prove the correctness of our proposed
protocol: 1) all users in U can obtain a common group key; 2) the group key can
be validated by the authentication information h{k, σ}.

Theorem 5.1. All the legal users can compute a common group key k, i.e. k =
di +∆i − h(x′i, y

′
i) mod p = dj +∆j − h(x′j , y

′
j) mod p, where i 6= j.

Proof. Like secret reconstruction in Shamir’s (t, n) threshold SS, each user Ui
requires at least m+ 1 Lagrange components to recover the group key, due to the
generation function f(x) with degree m. However, KGC uses only m coordinates
(x1,y1), (x2,y2), ..., (xm,ym) and the abscissa x′i to compute d′i, which is the sum
of m Lagrange components, and it sends the value di = d′i +h(x′i, y

′
i) mod p to Ui.

Therefore, the user Ui need just compute its own Lagrange component ∆i and the
offset h(x′i, y

′
i) to recover the group key k. That is

di +∆i − h(x′i, y
′
i) mod p

= d′i + h(x′i, y
′
i) +∆i − h(x′i, y

′
i) mod p

=d′i+∆i mod p

=y′i
m∏
j=1

−xj

x′i−xj
+

∑m
t=1 yt

−x′i
xt−x′i

m∏
j=1,j 6=t

−xj

xt−xj
mod p

=k �

Theorem 5.2. Each user Ui is assured that its calculated group key is sent from
KGC, if hi = h(k, σ) holds.
Proof. During distribution phase, only KGC knows the group key k. Thus, the
valid authentication information of k can be computed by none but KGC. After
distribution phase, each user Ui computes a key ki. It also uses the hash function
h(.) with ki and σ to compute hi = h(ki, σ). Obviously, if and only if hi = h(k, σ)
(without regard for hash collision), its calculated key ki is equal to k which is
selected by KGC. �

6 Security analysis

Detailed security analyses are presented in this section. We first give a lemma
as the security foundation. Then, five theorems are presented to prove that our
protocol is resistant to passive attack, impersonal attack and reply attack.
Note that all the calculations are over finite field GF(p), thus an event is deemed
to be impossible if the probability of its occurrence is equal to or less than 1/p.

Lemma 6.1. Suppose that there are t public coordinates (x1, y1), (x2, y2), ..., (xt, yt),
(each xi 6= 0), on a generation function g(x) with degree t − 1, such as g(x) =
a0 + a1x+ a2x

2 + ...+ atx
t mod p, where all the parameters are in the finite field

GF(p). The probability of reconstructing generation function g(x) by the t known
coordinates is only 1/p.
Proof. Obviously, there are t+1 unknown parameters a0, a1, ..., at for the function
g(x) with degree t. Now, assume that the constant term a0 is a known quantity.
It means we get an extra coordinate (x0, y0), where x0 = 0 and y0 = a0. In this
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way, we can use Lagrange Interpolation Polynomial to construct a function, such
as

G(x) =
∑t

i=0
yi

t∏
j=i,j 6=i

x− xj
xi − xj

mod p

Due to a0 ∈ Zp, there are totally p candidates for the value of a0. Therefore,
different p functions can be computed corresponding to the different p possible
values of a0, but only one function is the correct generation function f(x). In
other words, the probability of reconstructing t-th generation function g(x) by t
coordinates is only 1/p. �

6.1 Resistance to passive attack

Model of passive attack: During distribution phase, all the messages are trans-
ported publicly. Thus, adversaries can easily capture response message Rσ, request
messages Mσ,i, and distribution messages Ki.

Theorem 6.1. Outsiders cannot obtain the group key and no adversary can derive
the private coordinates of legal users by passive attack.
Proof. As for an Outsider, if it wants to obtain the group key, there are two
methods:

1) The Outsider attempts to recover the generation function f(x). In order to
reconstruct f(x) of degree m, an Outsider needs at least m+1 coordinates on f(x)
or m + 1 valid Lagrange components. However, no complete coordinate on f(x)
is included in these public messages. KGC broadcasts only m protected sums of
Lagrange components. Hence, the generation function f(x) cannot be recovered.

2) The Outsider tries to obtain a valid Lagrange component ∆i and the corre-
sponding offset h(x′i, y

′
i) to compute k = di +∆i−h(x′i, y

′
i) mod p just like a legal

user Ui. If so, it must know the exact coordinate (x′i, y
′
i), because of the following

two reasons:

I: In equation ∆i = y′i
m∏
j=1

−xj

x′i−xj
mod p, x1,x2, ...,xm are public while x′i and

y′i are unknown. So, the Outsider needs to know x′i and y′i to compute ∆i.
II: Because of unidirectional characteristic of one-way hash function, the Out-

sider must know the values of x′i and y′i to compute the offset h(x′i, y
′
i).

However, KGC only releases gi(x
′
i) and g−1

i (y′i) included in Ki. The Outsider
still needs the function gi(x) and g−1

i (y) to compute (x′i, y
′
i). During on-line phase,

the Outsider can capture only one coordinate (x∗i , y
∗
i ) on gi(x) from Mσ,i. On the

basis of Lemma 6.1., the probability of reconstructing the linear polynomial gi(x)
from only one coordinate is 1/p.

If an Outsider wants to obtain a private coordinate (xi, yi), the probability is
much less than 1/p. Because even if an Outsider gets one function gi(x), it still
does not know which coordinate on gi(x) is (xi, yi). It must capture at least two
functions gi(x)s from different group key distribution processes, and the intersec-
tion of these function images is (xi, yi). But actually, the probability of an Outsider
obtaining any one function gi(x) is only 1/p, not to mention more functions.
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As for an Insider, on the one hand, it is a legal user in U , so that it is able to
compute the group key easily from its corresponding distribution message. On the
other hand, it still wants to obtain some private coordinates (xi, yi) of other users.
For this purpose, an Insider also needs to know (x′i, y

′
i) as foundation. There are

two methods that might work for an Insider:
I: If the Insider attempts to recover the function gi(x) by only one coordinate

(x∗i , y
∗
i ) like an Outsider, the probability has been given above and it is much less

than 1/p.
II: The Insider uses group key k to compute τi = (k − di) mod p and get an

equation
τi = ∆i − h(x′i, y

′
i) mod p

τi = y′i
m∏
j=1

−xj

x′i−xj
− h(x′i, y

′
i) mod p

In this equation, only x′i and y′i are unknown. However, h(x′i, y
′
i) is a one-way hash

value. It is impossible to compute exact (x′i, y
′
i) from the equation. Otherwise, it

runs counter to the unidirectional characteristic of h(.).

As a result, an Outsider could capture neither the group key nor any valid
coordinates by passive attack. For an Insider, it can only obtain the group key but
no other users’ coordinates can be derived. �

6.2 Resistance to impersonation attack

Model of impersonation attack 1: An Outsider can pretend to be a legal user
Ui. And then, it also sends a request message Mσ,i = {σ, Ui, (x∗i , y∗i )} to KGC and
receives a corresponding distribution message Ki = {gi(x′i), g−1

i (y′i), di, h(k, σ)}.

Theorem 6.2. Outsiders can neither obtain the group key nor prevent other legal
users from obtaining the group key by impersonation attack 1.
Proof. In order to compute the group key according to Ki, the Outsider must re-

construct the function gi(x) = yi
x−x∗i
xi−x∗i

+y∗i
x−xi

x∗i−xi
mod p to recover the coordinate

(x′i, y
′
i). Although the Outsider can select (x∗i , y

∗
i ) by itself, it still does not know

the exact coordinate (xi, yi). On account of Lemma 6.1., the Outsider cannot
reconstruct the function gi(x). Therefore, it is not able to obtain the group key by
impersonation attack 1.

Meanwhile, for a legal user Uj , it can still recover the coordinate (x′j , y
′
j) to

compute the group key as usual. That is to say, legal users are not influenced by
the Outsider’s mock request message. �

Model of impersonation attack 2: An adversary imitates KGC to distribute
group key. It first picks an m-th polynomial f(x). After the initiator sends a group
key initialization message, it broadcasts a response messageRσ = {σ,x1,x2, ...,xm}.
Then after users send request messages, it sends distribution message Ki to Ui.

Theorem 6.3. Any adversary cannot distribute a fake group key to the users
by impersonation attack 2.
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Proof. Although the adversary can also select f(x) and compute distribution in-
formation di like KGC does in off-line phase, it still cannot generate the function
gi(x) to compute accurate values of gi(x

′
i) and g−1

i (y′i) in Ki because it does not
know (xi, yi) of Ui. If the adversary uses false values fgi(x

′
i) and fg−1

i (y′i) to
construct Ki = {Ui, fgi(x′i), fg−1

i (y′i), di, h(k, σ)}, users will compute a different
group key from the constant term in f(x) picked by the adversary. Then, the user
will be aware of receiving a fake group key when it uses the authentication in-
formation in Ki to check its calculated key. In brief, an adversary is completely
powerless to distribute a fake group key by impersonation attack 2. �

6.3 Resistance to reply attack

Model of reply attack 1: Suppose that an Outsider obtains an outdated group
key ok and a request message oMoσ,i = {oσ, Ui, (ox∗i , oy∗i )}. When the group re-
quests a new key, the Outsider uses new group communication identifier σ to revise
the outdated request message as Mσ,i = {σ, Ui, (ox∗i , oy∗i )}. Then, it sends Mσ,i

to KGC.

Theorem 6.4. An Outsider cannot obtain an outdated group key by reply at-
tack 1.
Proof. As described in section 4, each group key is selected by KGC during the
off-line phase. In other words, the process of key generation is completely indepen-
dent of users’ request messages. Even if all users utilize old coordinates (ox∗i , oy

∗
i )

to send request messages, they still obtains a new group key k foreign to previ-
ous key ok. Therefore, an Outsider cannot obtain any information about the new
group key by reply attack 1. �

Model of reply attack 2: Suppose that an adversary obtains an outdated group
key ok. Define an outdated request message as oMoσ,i = {oσ, Ui, (ox∗i , oy∗i )} and
outdated distribution message as oKi = {Ui, ogi(ox′i), og−1

i (oy′i), odi, h(ok, oσ)}.
When users utilize new coordinate (x∗i , y

∗
i ) to request a new group key, the adver-

sary resends the outdated response and distribution messages to them.

Theorem 6.5. An adversary cannot distribute an outdated group key to users
by reply attack 2.
Proof. In order to let legal user recover group key, KGC is required to construct
g(x) to transport (x′i, y

′
i), where g(x) is generated by private coordinate (xi, yi)

and public coordinate (x∗i , y
∗
i ). The private coordinate (xi, yi) kept by Ui is fixed

while (x∗i , y
∗
i ) is always changed for different request messages Mσ,i. As described

attack in Model of reply attack 2, if (xi, yi), (x∗i , y
∗
i ) and (ox∗i , oy

∗
i ) are not in a

straight line, the outdated function og(x) is different from new function g(x). As a
result, the user Ui is not able use g(x) to recover the previous coordinate (ox′i, oy

′
i)

from Ki = {Ui, ogi(ox′i), og−1
i (oy′i), odi, h(ok, σ)}, so that it cannot obtain the out-

dated group key. In brief, an adversary cannot distribute an outdated group key
to users by reply attack 2. �

Corollary 6.1. If a legal user drops out of the group, it will not get any in-
formation about the new group key.
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Proof. If a user drops out of the group but still wants to obtain new group keys,
the KGC will not compute and send its corresponding distribution messages. So, it
is deemed as an Outsider. In virtue of Theorem 6.1. - 6.5., an Outsider can not
obtain any information of group keys distributed by KGC. Therefore, the corollary
holds. �

7 Properties

In this section, we compare our proposed protocol with Harn-Lin’s protocol [12]
and Liu et al.’s protocol [20], because all the three protocols are group key distribu-
tion (transfer) protocols based on Shamir’s (t, n) threshold SS. The nine aspects
are considered in comparisons: 1) hard problems, 2) security, 3) on-line/off-line
mechanism, 4) computation complexity for KGC, 5) computation complexity for
a user, 6) communication overhead, 7) storage complexity, 8) response speed of
the group key request and 9) calculation speed of group key recovery and authen-
tication.

7.1 Hard problem

In all the three protocols, each user is just required to register at the KGC only
once, and then it should keep the private coordinate (xi, yi) as a long-term secret.
For keeping the private coordinate unknown to the others, both Harn-Lin’s and
Liu et al.’s protocols are based on integer factorization problem. But in our proto-
col, the KGC distributes sums of Lagrange components protected by hash values
instead of coordinates on the generation function f(x), so that no hard problems
are needed in our protocol.

7.2 Security

On account of cask principles, the security of a protocol depends on the weakest
point. Because Shamir’s SS is unconditional secure, the security of Harn-Lin’s and
Liu et al.’s protocols is based on large integer factorization problem, while our
protocol depends on one-way hash function.
All the three protocols are resistant to passive attack and impersonation attack.
Liu et al.’s protocol and our protocol can also resist reply attack. However, in the
light of Nam et al.’s paper [23], Harn-Lin’s protocol is vulnerable to reply attack.
For detailed attack method, reader can refer to the original paper.

7.3 On-line/off-line mechanism

In both Harn-Lin’s and Liu et al.’s protocols, the KGC has to wait users to send
group key request messages. Only when KGC receives all messages, it starts to pick
group key k, construct generation function f(x), select coordinates on f(x) and
compute authentication value. In other words, KGC cannot do anything before it
receives request messages from users. Instead, the KGC in our protocol is able to
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carry out most computations in off-line phase (before users send request messages).
As a result, KGC has a very short response time in on-line phase (after users send
request messages).
The above comparisons are shown in the Table 2.

Table 2: Comparisons table

protocol Harn-Lin’s
protocol

Liu et al.’s
protocol

Our protocol

hash function 1 2 1
hard problem yes yes no
resistance to passive attack yes yes yes
resistance to impersonation attack yes yes yes
resistance to reply attack no yes yes
on-line/off-line no no yes

7.4 Computation complexity for KGC

In Harn-Lin’s protocol, KGC performs about m exclusive - OR operations, (m−
1)(m+ 1) additive operations, m2 + (m−1)2 multiplicative operations and 1 hash
operation to generate group key distribution messages, wherem is the total number
of legal users. Liu et al.’s protocol needs m more hash operations than Harn-Lin’s
protocol. Hence, the computational complexity is O(m2) of the two protocols. In
our proposed protocol, the KGC performs m(m+3) additive operations, m(m+1)
multiplicative operations and m + 1 hash operations in off-line phase. Thus, the
computational complexity is also O(m2). However, the computation is over Zp in
our protocol while it is over Zn in the other protocols, where n is much greater
than p. Moreover, because KGC carries out most computation in off-line phase,
it just needs 2m + 3 additive operations, 2m + 2 multiplicative operations and 1
hash operation in on-line and the computational complexity is just O(m).

7.5 Computation complexity for a user

After a user receives group key distribution message from the KGC, it starts to
recover and verify the group key. In Harn-Lin’s protocol, a user needs 1 exclusive -
OR operation, about m2 additive operations, m2 multiplicative operations, and 1
hash operation. Liu et al.’s protocol needs 1 more hash operation than Harn-Lin’s
protocol. Hence, the computational complexity are O(m2) for the two protocols.
In our protocol, a user just needs m+10 additive operations, m+10 multiplicative
operations and 2 hash operations. Hence, the computational complexity is O(m).

7.6 Communication overhead

In both Harn-Lin and Liu et al. protocols, users send to KGC about 2m numbers
and KGC transports 3m numbers to users. Thus, the communication overhead is
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5m numbers and each number is in Zn. In our protocol, users send to KGC about
3m numbers and KGC transports 6m numbers to users. Hence, the communication
overhead is 9m numbers and each number is in Zp. However, KGC in our protocol
has to sends each group key distribution message to the corresponding user one by
one. KGC in the other protocols can broadcast distribution messages to all users.

7.7 Storage complexity

In both Harn-Lin and Liu et al. protocols, KGC just needs to store m private
coordinates of users. In other words, it keeps 2m numbers which are in Zn. But
in our protocol, KGC has to keep 6m numbers including m private coordinates
(xi, yi), m ephemeral coordinates (x′i, y

′
i), m abscissas xi and m protected group

key distribution values di. Moreover, each user need 2 numbers to store its private
coordinate in all the three protocols.

7.8 Response speed of group key request

In Harn-Lin’s protocol, before KGC receives users’ request messages, it cannot
carry out any computation. After that, the computation complexity for KGC is
O(m2). Liu et al.’s protocol needs m more hash operations than Harn-Lin’s pro-
tocol. Hence, the computational complexity is also O(m2). But in our proposed
protocol, KGC carries out most computation in off-line phase and the computa-
tional complexity for KGC is just O(m) in of-line phase. Therefore, the response
speed of group key request is faster than it in the other protocols.

7.9 Speed of group key recovery and authentication by users

After a user receives group key distribution message from the KGC, it starts to
recover and verify the group key. In both Harn-Lin’s and Liu et al.’s protocols, the
computational complexity for a user is O(m2) while it is just O(m). Therefore,
the speed of group key recovery and authentication by users in our protocol is also
faster than it in the other protocols.

8 Experiment

In this section, we verify the theories in 7.5 and 7.6 through experiments. Because
the computational complexity of Liu et al’s protocol approximately equals Harn-
Lin’s, we just compare our protocol with Harn-Lin’s. We chose a RSA-number with
1024 bits as the modulus in Harn-Lin’s protocol, where n = 13506641086599522334
96032162788059699388814756056670275244851438515265106048595338339402871
50571909441798207282164471551373680419703964191743046496589274256239341
02086438320211037295872576235850964311056407350150818751067659462920556
36855294752135008528794163773285339061097505443349998111500569772368909
27563. And SHA-256 is used in both protocols as the hash function. Because the
hash value of SHA-256 is 256 bits, we choose a 260 bits number as the modulus for
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our protocol, where p = 15476004057485807498789328096422564586042495822915
855764974651495000499083147583.

From the perspective of cryptography, the computational complexity of factor-

ing n is about e
√

ln(n) ln(lnn) ≈ e70. Although SHA-1 and MD5 have been proved
insecurity by Wang et al. [33,32], there is still no more effective method than birth-
day attack to break SHA-256 currently. The computational complexity of breaking
SHA-256 by birthday attack is 2128, which is greater than e70. Therefore, our pro-
tocol is more secure than the other in this experiment.

Remark 8.1. In our protocol, the hash value should be in Zp for security reason.
Otherwise, it increases the possibility of hash function collision when different hash
values modulo p. For efficiency reason, the smaller modulus p is, the faster KGC
and users calculate. Therefore, the modulus p should be set as a number which is
a bit greater than the hash value.

Table 3 shows the simulation environment and conditions of the experiment.

Table 3: Simulation environment and conditions

CPU Core i7-3630QM 2.40GHz
RAM 8G DDR3 1333MHz
Operation system Windows 10 Enterprise 64-bit
Programming language Python
Programming software Pycharm

Table 4: Response time of group key request (s)
hhhhhhhhhhhhUser number

Protocol
Harn-Lin’s protocol Our protocol

50 4.571370 0.104552
100 20.673966 0.134091
150 52.657993 0.259405
200 103.841224 0.328321
250 211.968105 0.420336
300 419.852612 0.633199
350 634.937633 0.805593
400 935.913335 1.047877
450 1219.035164 1.196793
500 1593.049735 1.295323

Analysis 1: From Table 4 and Table 5, it can be seen that, for the same user
number, both response time of group key request and time of key recovery and
authentication in Harn-Lin’s protocol are far longer than those in our protocol.
There are two reasons:

1: The computational complexity of Harn-Lin’s protocol is O(m2) while our
protocol is O(m) in on-line phase .

2: More importantly, the computation of Harn-Lin’s protocol is over Zn, where
n is 1024 bits. But it of our protocol is over Zp, where p is 260 bits.
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Table 5: Time of key recovery and authentication (s)
hhhhhhhhhhhhUser number

Protocol
Harn-Lin’s protocol Our protocol

50 3.947241 0.019082
100 18.507578 0.037025
150 40.831115 0.054113
200 67.566742 0.091200
250 110.791448 0.128122
300 202.860842 0.160992
350 229.557842 0.210194
400 312.193951 0.245661
450 483.446120 0.285706
500 616.605906 0.315709

Fig. 3: Time of Harn-Lin’s protocol Fig. 4: Time of our protocol

Analysis 2: Fig 3 and Fig 4 show that, with the rise of user number, the speed of
time increase in Harn-Lin’s protocol is faster than our protocol. This means that
the computational complexity of Harn-Lin’s protocol is higher than our protocol.

Fig. 5: Time of our protocol with massive users

Moreover, in order to show the high-efficiency of our protocol, we use massive
users to collect more data about time of group key request and key recovery in
our protocol. The results are shown in Fig 5.
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9 Conclusion

In this paper, we propose a secure on-line/off-line group key distribution protocol.
In the proposed protocol, only users’ registration messages need to be transported
in privacy, while all the other messages can be transported in public. In terms of
safety, the protocol is resistant to passive attack, impersonation attack and reply
attack. And it supports authentication function. More importantly, KGC can carry
out most computations of group key generation in off-line phase. Consequently, the
response speed of group key request and calculation speed of group key recovery
and authentication can be greatly improved.
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