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Abstract— A basic (t,n)-secret sharing (SS) scheme allows a 

secret s to be divided into n shares and shared among n 

shareholders. In the scheme, any t or more than t shareholders 

can recover the secret while fewer than t shareholders cannot 

obtain the secret s. But an adversary without any valid share may 

obtain the secret if there are over t participants in the secret 

reconstruction. To address this type of attack, 1) we first 

introduce the notion of Randomized Component (RC), which 

binds a share with all participants and protects the share from 

being exposed to outside without any computational assumption; 

at the same time, RCs can be used to reconstruct the secret. 2) As 

one of the applications of RCs, a (t,m,n)-Group Oriented SS 

scheme is proposed to cope with the attack in basic (t,n)-SSs, in 

which once m ( tm  ) participants form a tightly couple group 

by generating RCs, the secret can be recovered only if all m RCs 

are correct, which requires each participant to have a valid share 

in advance. Moreover, the scheme can secure the secret without 

any user authentication or share verification. Analyses show the 

proposed (t,m,n)-Group Oriented SS is asymptotically perfect 

and unconditionally secure.  RCs can also be applied to build 

other schemes in a simple way, such as multi-secret sharing, 

group authentication and so on.  

 
Keywords—Threshold Secret Sharing, Group Oriented Secret 

Sharing, Randomized Component, Share Protection, 

Asymptotically Perfect. 

I. INTRODUCTION 

As a solution to safeguard cryptographic keys, Secret 

Sharing (SS) Schemes were first proposed separately by 

Shamir [1] and Blakley [2] in 1979 and later were studied 

extensively in the literature. Today, SS has become a basic 

cryptographic tool which is widely used in group based 

applications such as group signature [3],[4], group encryption 

[5], secure multi-party computation [6] etc.  As the most 

popular SS, Shamir’s )n,t(  SS is constructed based on the  
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Lagrange interpolation polynomial. In the Shamir’s n),t(  SS, 

the dealer, a trusted third party, divides a secret s into n  shares 

and distributes each share to a shareholder secretly. The 

scheme guarantees that any group of t  or more than t  

shareholders are able to reconstruct the secret s while less 

than t shareholders cannot do that. 

In addition to Shamir’s SS, other types of SSs were also 

proposed based on different mathematical tools. For example, 

Blakely’s scheme [2] is based on geometry; Massey’s scheme 

[7] is based on linear codes while Mignotte’s scheme [8] and 

Asmuth-Bloom's scheme [9] are based on the Chinese 

remainder theorem (CRT). Blakley’s scheme [2] defines a 

threshold scheme based on hyperplane intersections, the 

hyperplanes of t  dimensions allow any group of t  

hyperplanes to intersect at a single point in a finite field. 

Massey’s scheme [7] uses a linear code to split a secret into 

equal-size shares, the minimal codewords in the dual code 

completely specify the access structure of the secret-sharing 

scheme, and conversely; Mignotte’s )n,t( SS scheme [8] and 

Asmuth-Bloom's )n,t( SS scheme [9] use a series of moduli 

in an increasing sequence and define schemes based on a 

specified threshold range of integers. The upper bound and the 

lower bound of the range are the product of t smallest moduli 

and the product of 1t   largest moduli respectively. If 

1t  shares are known, Mignotte’s scheme leaks more 

information about the secret than Asmuth-Bloom's scheme 

does, but the latter scheme limits the secret in a smaller range 

when both schemes have the same threshold range. 

Most SSs, such as Shamir's )n,t( SS, Mignotte’s )n,t( SS 

and Asmuth-Bloom's )n,t( SS, are unconditionally secure. 

Unconditional security means that the security holds even if 

the adversary has unbounded computing power. Research on 

developing cryptographic schemes/protocols with 

unconditionally secure has received wide attention recently. 

Actually, these above basic ),( nt SSs are far from practical. 

Let us consider the scenario, there are )1(  tmm  

participants in a secret reconstruction, and one of these 

participants is an adversary who does not possess any valid 

share. However, the adversary can still obtain the secret by 

collecting enough valid shares from the other tm 1  

participants to restore the secret.  

That is, it is possible for an adversary without any valid 

share to figure out the secret when there are more than t  

participants in the secret reconstruction. In some cases, legal 

participants care more about secret leak rather than recovering 

the correct secret. i.e. they would rather give up recovering the 

secret than leak it to adversaries. Therefore, how to prevent 
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the above adversary from obtaining the secret is of great 

importance.   

  A solution to the above problem is user authentication, 

which guarantees only valid shareholders can participate in the 

secret reconstruction. However, this method makes the scheme 

more complicated because each participant needs to be 

authenticated by another one, which means )t(t 1  user 

authentications are needed among t  participants.  To 

prevent illegal users from participating in a secret 

reconstruction, in 1985, Chor et al. [10] proposed the notion of 

verifiable secret sharing (VSS). VSS enables shareholders to 

prove that their shares are valid without revealing them. There 

are many papers on VSS [11]-[15] in the literature. Feldman in 

[11] pointed out that problems such as secret bidding, fair 

voting, leader election and flipping a fair coin have simple 

one-round reductions to VSS. There is a constant-round 

reduction from Byzantine Agreement to non-interactive VSS. 

Harn and Liu [12] proposed a strong (n,t,n) VSS, which 

ensures that any subset of t shares can recover the same 

secret. Pederson in [13] gave a non-interactive ),( nt  VSS 

with the information rate 1/2 and the distribution of the secret 

in qZ together with the verification of a share needs no more 

than tq ||2  multiplication modulo .p  In [14], a perfect 

verifiable ),( nt -SS based on symmetric bivariate polynomial 

was proposed that supports less than 14/ n  adversaries. 

Besides, a result was shown in [15] that less than n/3 

adversaries are allowed to exist in an information-theoretically 

secure ),( nt -VSS. Although VSS can be used to check the 

validity of each share; but it is very complicated and requires 

additional information and processing time.  

To prevent the above attack in a simpler way, Harn [16] 

proposed a )n,t( secure secret reconstruction scheme using 

the linear combination of shares based on the property of 

homomorphism [17] of Lagrange interpolation polynomials. 

The scheme uses )2( kk
 

polynomials to generate k shares 

for each shareholder, i.e. each shareholder holds k  shares. It 

requires 1nkt  , which means the total number of 

coefficients of all polynomials has to be no less than that of 

shareholders. In other words, the threshold t  is restricted by 

the numbers of polynomials and shareholders, and thus Harn’s 

scheme is not flexible enough. 

Perfect secrecy [18],[19] is an important metric of the 

security in a SS scheme. It means that any unqualified subset 

of participants does not have any more information about the 

secret than an outsider to the scheme. Quisquater et al.[18] 

developed the notion of asymptotically perfect secrecy, and 

pointed out that both Mignotte’s scheme [8] and 

Asmuth-Bloom's scheme [9] are neither perfect nor 

asymptotically perfect.  Moreover, they proved that the SS 

scheme in [23] is asymptotically perfect; the scheme is based 

on CRT with consecutive prime moduli. 

 In this paper, we first propose the notion of randomized 

component (RC) which binds a participant’s share with the 

public information of all participants during the secret 

reconstruction.  A RC can protect the share from being 

exposed to the outside and enable a shareholder to use its 

share more than once if necessary. RCs can also be used to 

build multi-SS schemes [20],[24] and group authentication 

schemes [21] in a simple and efficient way.  As one of the 

applications, a )n,m,t( -group oriented SS scheme is 

proposed. In the scheme, once m ( tm  ) participants form a 

tightly coupled group by generating RCs, recovering the secret 

requires a participant to collect all m correct RCs, which in 

turn requires each participant to possess a valid share in 

advance. Moreover, the proposed scheme does not depend on 

user authentication or share verification mechanism, and is 

asymptotically perfect and unconditionally secure. 

The rest of the paper is organized as follows. Some 

preliminaries are given in the next section. In Section III, we 

introduce the notion of randomized components and construct 

an example based on polynomial. As one of the applications of 

RCs, the )n,m,t( -group oriented SS is proposed in section IV. 

In section V, security analyses of the proposed scheme are 

given, section VI makes some comparisons with related work, 

and section VII concludes the paper. 

II. PRELIMINARIES 

In this section, we will introduce some definition related to 

secret sharing. The following notations will be used 

throughout the paper, nI  is the integer set {1,2,…n}, q,p  

are positive prime numbers, }1p,...,2,1,0{ZF
pp

  is a 

finite field with p  elements, }1p,...,2,1{F*

p
 is the 

multiplicative group of pF ; qR Zr means that r is randomly 

and uniformly selected in qZ , i.e. r has a uniform 

distribution in
q

Z ; is the set of all shares generated by a SS 

scheme, S  denotes the secret space and iS is referred to as 

the share space. 

A. Some Definitions 

Informally, in a -)n,t（ secret sharing scheme, n shares 

are generated from a secret s and each share is distributed to 

the corresponding shareholder privately. Any subset of at least 

t  shareholders can reconstruct the secret s with their shares 

while fewer than t shareholders cannot get the secret.  

Definition 1.( )n,t( SS) Let integers p , q ( qp  ) be 

security parameters, qZS and 
pi ZS denote the secret 

space and the share space respectively; a )n,t( SS is a pair of 

algorithms {G, R}: 

Share Generation algorithm -- ),s(G )n,t,q,p( U  is a 

probabilistic polynomial time algorithm taking as input a 

secret Ss as well as a group of shareholders 

},Ii,ZU|U{
nii

U with the corresponding public 

information },Ii,Zx|x{
npii

X  and generating as 

output a set of n  shares }Ii,s|s{
niii

 S ;      

Secret Reconstruction algorithm -- ),(R
mImI)n,t,q,p(

U  is a 

polynomial time algorithm taking as input any share set 

}Ii,s|s{
miiimI

 S  in combination with the 
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corresponding shareholder set }Ii,ZU|U{
miimI

U  

and producing the secret s  as output, where 

,tm|I|,II
mnm

  |I| m is the cardinality of 
m

I . 

Now we need to introduce some basic terms in information 

theory, suppose X is a discrete-time discrete valued random 

variable with a sample space SP . The entropy of X is denoted 

as  


SPx

22 )x(Plog)x(P))X(Plog(E)X(H   . 

Where E  is the expectation operator and (.)P  is the 

probability distribution function of X . In following part of 

this paper, we will write )x(Plog2  as )x(Plog for 

simplicity. 

Definition 2. (Perfect )n,t( SS) Let H(.) be the information 

entropy function, )a;s( denotes the entropy loss of 

s generated by the knowledge of a . A )n,t( SS, 

{ ),s(G )n,t,q,p( U , ),(R
mm II)n,t,q,p( U }, with the share 

set }Iis|s{
niii

 ，S , is perfect with respect to the set 

of probability distributions (.)P  on the secret space S if  

1) 0)s(H   and 

2) )Δ(s; J = ,0)|s(H)s(H J    

where J is a subset of nI  with t|J|  , 

}Ji,s|s{ iiJ ∈∈  denotes any subset of less 

than t shares. 

Informally, compared with an outside adversary who does 

not have any valid share, any subset of less than t  

shareholders gets no additional information of the secret in a 

perfect )n,t( SS. Loosening the perfect )n,t( SS a little bit, 

we get the definition of asymptotically perfect )n,t( SS as 

follows. 

Definition 3. (Asymptotically Perfect )n,t( SS [13]) A 

)n,t( SS, { ),s(G )n,t,q,p( U , ),(R
mm II)n,t,q,p( U }, with the 

share set }Iis|s{
niii

 ，S , is  asymptotically perfect 

with respect to the set of probability distributions (.)P  on the 

secret space S  if , for any positive value  , there exists an 

integer 0q  such that for all q
ZS  with 0qq  and all 

nIJ  with ,t|J|   we have  

1） 0)s(H and 

2） .);s( J  ||  

Where }Ji,s|s{ iiJ    denotes any subset of less 

than t shares. 

Remark 2.1 In some cases, );s(
J

 may be negative, but 

it is positive and the absolute value operator can be removed if 

the secret s is uniformly distributed on S .  

B. Shamir's (t, n)-SS Scheme [1] 

Shamir's )n,t( SS scheme is based on a polynomial of 

degree at most 1t , in which there are n shareholders, 

}U,...,U,U{
n21

U  and a dealer D .  

Share Generation  

The dealer D picks a random polynomial )x(f of degree at 

most 1t  : ,pmodxa...xaa)x(f 1t

1t10

-


  such that the 

secret is 
0

a)0(fs   and all coefficients, 

)1t,...,1,0i(a
i

-  are in the finite field
p

F , where p  is a 

large prime number. D generates the share set, 

},Ii),x(fs|s{
niii

 where 
i

x  is the public information 

associated with shareholder 
i

U . Then, it distributes each 

share
i

s to the corresponding shareholder 
i

U secretly. This 

step corresponds to the algorithm ),a(G
0)n,t,p,p(

U . 

Secret Reconstruction 

If m participants }JjU|U{
mjjmJ

 ，UU  need to 

recover the secret s , they pool their 

shares }Jjs|s{
mjjmJ

 ，  privately to compute the 

secret as .pmod
xx

x
s)(fs

jr,Jr rj

r
j

Jj mm


 -

-
0      where 

.nmt,m|J|,IJ
mnm

  

This step actually corresponds to the 

algorithm ),(R
mJmJ)n,t,p,p(

U . 

Shamir's )n,t( SS is unconditionally secure since the 

scheme works without any computational assumption, such as 

DLP assumption or one-way function assumption. 

Proposition 1. The above Shamir's )n,t( SS, 

{ ),a(G
)n,t,p,p(

U
0

 , ),(R
mJmJ)n,t,p,p(

U }, is not perfectly secure 

if the polynomial )x(f  is exactly of degree 1t . Formally, 

there exists some ,K
n

IK  with t|K|   such that, if the 

coefficient 
1t

a in the polynomial is not zero, we have  

1） 0)s(H and 

2） .);s(
K

0|S|  

Where
K

S denotes }Kk,s|s{
kk

 , some set of less than 

t shares. 

Proof: Here we need only to consider the case that 1t  

participants conspire to reconstruct the secret. If the entropy 

loss of the secret generated by the knowledge of 1t  shares 

is larger than zero, we are assured that the Shamir’s )n,t( SS is 

not perfect with respect to the set of probability distributions 

(.)P  on the secret space S . 

Suppose pmodxa...xaa)x(f t

t

1

110

-


  is the 

polynomial in the Shamir's )n,t( SS, 
n

IK  with 1 t|K|  

and }Kk,s|s{
kkK

 ΩS is any group of 1t shares 

generated by )x(f . We will examine, )|s(P
K

S , the 

probability of the secret s with the knowledge of 1t shares 

in the case of 0
1


t
a . 

The 1t shareholders, },Kk,U|U{
kkK

 UU with 

1t shares
K

S can reconstruct a new polynomial of degree at 

most 2t , ,pmodxb...xbb)x(g t

t

2

210

-


 using the 

Lagrange interpolation, with )x(g)x(fs
kkk

   ( Kk ) 

but )(g)(f 00  , where
k

x  ( 0
k

x ) is the public information 
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of the shareholder
k

U . That is because if )(g)(f 00  holds 

[19], 0
1


t
a will happen, which contradicts the precondition 

0
1


t
a .  In this case, the 1t shareholders ,

K
U can exclude 

p
F)(g 0  from the secret space, and thus ),|s(P

K
S the 

probability of the secret now becomes )p/( 11 - .  Thus we 

have 

0
1

1 



p

p
log)plog(plog)H(s)-H(s|);s(

KK
SS              

(2-1). 

Therefore, we conclude that ）（ n,t Shamir's SS is not 

perfect in the case of 0a
1t


 [19].   

C. Secure Secret Reconstruction Scheme 

To cope with the above mentioned attack without using user 

authentication or VSS, Harn [16] proposed a )n,t( secure 

secret reconstruction scheme in 2013. It consists of the 

following 2 steps. 

Share generation 

Suppose there are n shareholders )n,...,,r(U
r

21 , the 

dealer D selects k )nkt( 1 random 

polynomials )x(f
l

）（ k,..,,l 21 with degree 1t each and 

generates shares, )x(f
rl

, ,k,..,,l 21 for each shareholder 

r
U ）（ n,..,,r 21 . For any secret ,s  the dealer can always find 

integers
ll

d,w ）（ k,..,,l 21 in
p

F , such 

that ,)w(fds
k

l
lll

1

where
ji

ww  and }x,...,x,x{w
ni 21

 , for 

every pair of i and j ,
i

x is the public information of 

shareholder .U
i

 The dealer makes these integers 

ll
d,w ）（ k,..,,l 21 publicly known. 

Secret reconstruction 

Suppose j out of n shareholders ）（ j,...,,iU
ir

21 want 

to recover the secret, each participant
ir

U uses his 

shares )x(f
irl

）（ k,..,,l 21  to compute and release one 

Lagrange component, ,pmod
xx

xw
)x(fdc

j

iv,v
vrir

vrl
k

l
irllir







 11

to 

all other participants secretly. 

After knowing ,j,..,,i,c
ir

21 each participant computes 

.pmodcs
j

i
ir


1  

The scheme requires 1 nkt , where n is the total number 

of shareholders, t is the threshold and k is the number of 

polynomials needed in the scheme. 

III. RANDOMIZED COMPONENT 

From the attack, we are motivated to protect each share by 

binding it with public information of all participants in a secret 

reconstruction. We use Randomized Components to attain this 

goal. 

A.  Definition of Randomized Component 

Definition 4. (Randomized Component-RC) In the 

）（ n,t SS scheme ( ),s(G
)n,t,q,p(

U , ),(R
mImI)n,t,q,p(

U ),  

suppose 
p

ZC  is the space of randomized components and  

CUS 
qi

Z:g  is a function, )r,INF,s(gc
imIii

  is 

called the Randomized Component of the participant, 
i

U  

),U(
mIi U  where 

i
s  is the share of 

i
U ; 

mI
INF is the 

public information of 
mI

U , the group of all m  participants 

in a secret reconstruction ; 
i

r is a random integer uniformly 

distributed in
q

Z . 

A RC should have the following properties: 

Property 1. (Share Inseparability)  Suppose 

)r,INF,s(gc
imIii

  is a randomized component, 
ii

s S
 

and 

qRi
Zr  ,  given

i
c ,  we have 

q/1)}r,INF,s(gc|s{P
imIiii

 . 

Remark 3.1 The property of share inseparability implies that 

the RC, 
i

c , binds the share 
i

s with
mI

INF , which actually 

represents the whole group of all m  participants , and thus 

all these m  participants form a tightly coupled group
m

I . 

Roughly speaking, given
i

c , one cannot figure out the share 

i
s  when q is extremely large. Thanks to this property, on one 

hand, the share
i

s  is protected by the RC
i

c  and can be used 

more than once in several secret sharing based schemes, such 

as multi-secret sharing [20], multi-group authentication [21] 

and so on. On the other hand, the RC
i

c binds the share
i

s with 

the group
mI

U , as a result, it can be used in some 

group-oriented applications, such as group authentication [21] 

schemes and the ）（ n,m,t  group-oriented secret sharing 

scheme which will be given in section IV. 

Property 2. (Secret Recoverability) suppose there are totally 

)tm(m  RCs in a secret reconstruction, the secret can be 

recovered only with all m  RCs; otherwise, the secret cannot 

be obtained. Formally, suppose that 

}Ii)r,INF,s(gc|c{
mimIiiimI

 ，C is the RC set generated 

by all m shareholders in 
mI

U  and 'C  is the RC set 

available in the secret reconstruction with 
mI

' CC , the 

probability of deriving the secret s  from 'C  is  





 

otherwiseq/1

tm||,'if1
)'|s(P

mImI



CCC
C        , 

where q/1  denotes converging to q/1 while q  

converges to infinity. 

B.  Polynomial-based Randomized Component (PRC) 

As an instance, a type of RC for )n,t( SS scheme can be 

constructed based on polynomial interpolation as follows. 

Setup: Suppose there are n   shareholders, 

}U,...,U,U{
n21

U , and a dealer D in the system. D picks a 

random polynomial: ,pmodxa...xaa)x(f 1t

1t10

-


  
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such that the secret is ,Fa)0(fs
q0

  other coefficients, 

,a
i

,t,...,i 11   are in the finite field 
p

F  with 

0a
1t



and ,nqqp 2  both p  and q  are primes.  

Share Generation: D computes n  shares, 

),x(f
i

,n,...,,i 21  where 
i

x  is the public information 

associated with shareholder .U
i

Then, D distributes each share, 

e.g., )x(f
i

, to the corresponding shareholder
i

U secretly. 

Share Randomization: If m )tm(  participants, 

},U,...,U,U{
ma2a1amA

U )(
mA

UU  , need to recover the secret 

s , each participant, e.g. ),U(U
mAia,ia

U  constructs the RC as 

,pmod)qr
xx

x
)x(f(c

ia

m

iv,v
vaia

va

iaia


1 -

-
).Zr(

qRia
                

(3-1) 

In term of the definition of RC, )r,INF,s(gc
imIki

 , 




m

iv,1v
vaia

va

xx

x

-

-
 in (3-1) corresponds to 

mI
INF , the public 

information of all participants in 
mA

U .  

Now let us first observe the property 1 of RC, the property 2 

will be proved in section V.     

Theorem 1. For a polynomial-based RC 

,pmod)qr
xx

x
)x(f(c

i

m

iv,v
vi

v

ii


1 -

-
 suppose q,p are primes 

with qnqp 2  , integer
i

r is uniformly distributed in ,F
q

 and 

the share )x(f
i

is in
p

F . Given ,c
i

 the RC of participant
i

U , 

the probability of deriving the share )x(f
i

 is q/1 , where 

i
x  is the public information of participant 

i
U . Formally, 

.q)c|)x(f(P
ii

1  

Proof:  From pmod)qr
xx

x
)x(f(c

i

m

iv,1v
vi

v

ii


 -

-
, we have 

pmod)qrc()
xx

x
()x(f

ii

m

iv,v
vi

v

i






1

1

-

-
     (3-2)                                        

Let pmod)rqc()r(h i   be a function with respect 

to )Fr(r q , with the domain qFD  and the range 

}Fr|)r(h{ qR . Hence, )r(h  is a 1-to-1 function from 

D  to R , which means, given ic , p and q , )r(h)r(h ji  if 

and only if ji rr   for qji Fr,r   .  

To prove the necessity, let us assume there exist 

i
r and j

r in q
F ,  )r(h)r(h ji   means kpq)rr(

ji
  for 

some integer k . It follows )rr(|p
ji

  since q,p  are primes, 

thus we have 
ji

rr  for qji
Fr,r  and qnqp 2  . 

To prove the sufficiency, given ,rr
ji

 (
qji

Zr,r  ), it 

obviously follows that )r(h i  is equivalent to )r(h j . 

If we view r as a variable for a specific
i

x , (3-2) can be 

rewritten as  

pmod)r(h)
xx

x
()r(f

t

iv,v vi

v
xi






1

1

-

-
   (3-3)                    

 Now that )r(h  is a 1-to-1 function with respect to 

,Fr
q

  each distinct r produces a different value of )r(f
ix

 

in (3-3) since the specific value pmod)
xx

x
(

t

iv,1v

1

vi

v






-

-
 is 

coprime to p , which means the probability of deriving 

)r(f
ix in (3-3), i.e. )x(f i in (3-2) from 

i
c

 
is q/1  because 

r is uniformly distributed in 
q

F .□                                                                         

Theorem 1 implies that, given the RC
i

c , an adversary never 

has a chance more than q/1 to obtain the covered share 

)x(f
i

, which is not easier than directly guessing the 

secret s in
q

F  , if s is uniformly distributed in the secret 

space,
q

FS . Therefore, the polynomial based RC possesses 

the properties of Share Inseparability. 

We will demonstrate property 2, secret recoverability, in the 

following )n,m,t( Group Oriented SS scheme. 

IV. )n,m,t( GROUP ORIENTED SS SCHEME BASED ON 

RANDOMIZED COMPONENT 

As one of applications of RCs, the )n,m,t( Group 

Oriented SS is proposed in this section to prevent an adversary 

without any valid share from obtaining the secret when there 

are more than t participants in the secret reconstruction. 

A. Definition of )n,m,t( Group Oriented SS 

Definition 5. ( )n,m,t( Group Oriented SS) Let primes p  

and q , ( qp  ), be security parameters, 
q

FS , 
pi

FS
 

and pFRC  denote the secret space, share space and 

randomized component space respectively; a 

)n,m,t( Group Oriented SS scheme is a group of algorithms 

{G, C, R}: 

Share Generation algorithm -- ),s(G
)n,t,q,p(

U  is a 

probabilistic polynomial time algorithm taking as input a 

secret Ss as well as a group of 

shareholders }Ii,ZU|U{
npii

U  and generating as 

output a set of n  shares }Ii,s|s{
niii

 SΩ ;      

Randomized Component Construction algorithm-- 

),(C
mImI)n,t,q,p(

U  is a probabilistic polynomial time 

algorithm taking any share set }Ii,s|s{
miiimI

 S  and 

the corresponding shareholder set }Ii,U|U{
miimI

 UU  

as input and producing a RC set }Ii,c|c{
miimI

 RCC as 

output, where 
nm

II 
 

and nm|I|t
m

 . 

Secret Reconstruction algorithm -- )(R
mI)n,t,q,p(

C  is a 

polynomial time algorithm taking the above RC set 
mI

C  as 

input and producing the secret s
 

as output. 
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The )n,m,t( Group Oriented SS, 

{ ),s(G
)n,t,q,p(

U , ),(C
mImI)n,t,q,p(

U , )(R
mI)n,t,q,p(

C },   

possesses the following property: 

 




 


otherwiseq/

tm||,'if
))'(Rs(P

mImI

)n,t,q,p(
1

1



CCC
C , 

where 'C  is the RC set available in the secret 

reconstruction and 
mI

' CC , q/1 denotes converging 

to q/1 while q  converges to infinity. 

Remark 4.1 Compared with basic SS schemes, a 

)n,m,t( Group Oriented SS possesses the extra property of 

security, that is, once )tm(m  shareholders form a tightly 

coupled group by generating RCs, recovering the correct 

secret requires a participant to collect all the m valid RCs, 

which, in turn, requires each participant in the group to have a 

valid share in advance even if m  is much larger than t . 

Otherwise, figuring out the secret is almost as hard as guessing 

it randomly in the secret space. That is, if the secret is 

recovered by RCs instead of shares, the threshold actually 

becomes m , the number of participants. Of course, the 

threshold t still requires that a qualified tightly coupled group 

consists of at least t shareholders, i.e. the number of 

participants m is no less than the threshold t . However, for a 

basic )n,t( SS scheme such as Shamir’s )n,t( SS, the secret 

can be reconstructed by using any group of t  valid shares 

and the reconstruction does not require all available shares to 

be used substantially when more than t  shares can be used.  

In the following, a )n,m,t( Group Oriented SS scheme 

will be proposed based on PRC. 

B. Entities and Model 

In the proposed )n,m,t( Group Oriented SS, there are 3 

types of entities: 1) one dealer, 2) n  shareholders and 3) 

some adversaries. 

1) Dealer 

The dealer is the coordinator trusted by all shareholders, 

and responsible for the initialization of the scheme such as 

deciding system parameters, choosing the secret, generating 

and distributing shares and so on. The dealer is supposed to be 

honest, which means that it selects parameters to make the 

scheme secure enough, keeps critical parameters secret, 

generates and distributes shares securely. 

2) Shareholders 

In a )n,m,t( Group Oriented SS, there are totally n  

shareholders. We call shareholders participants when they are 

participating in a secret reconstruction; there is a dedicated 

private channel between each pair of shareholders, but some 

of these channels may be cracked by adversaries. Each 

shareholder also has a secure channel with the dealer and the 

channel is assumed to be secure, because in our scheme the 

channel is used only for share distribution which can be 

accomplished off-line. We also assume that a share is always 

kept private within a shareholder, i.e. the share can never be 

obtained from inside the shareholder. 

Each shareholder receives a share from the dealer via the 

secure channel. To recover the secret, )( tmm   

shareholders first form a tightly coupled group by generating a 

RC each for the secret, then each releases its RC to the others 

through private channels and finally reconstructs the secret.  

3) Adversaries 

In our scheme, adversaries are divided into 2 types 

according to whether they have valid shares or not. 

a) Outsider: an adversary without any valid share. There are 

2 cases with an Outsider, i) an Outsider stays outside the 

tightly coupled group, but it could crack some private 

channels of the group and intercept RCs transmitted over these 

channels. In this case, we assume that all Outsiders could 

obtain no more than 1m- correct RCs in a secret 

reconstruction, note that m may be much larger than the 

threshold .t  ii) an Outsider may also manage to personate 

some absent participant in the group but without the required 

valid share. In this case, the Outsider acts as a malicious 

participant and can communicate with the others to obtain at 

most 1m- correct RCs.  The proposed scheme aims to prevent 

Outsiders from obtaining the secret even if they may have 

access to up to 1m- RCs . 

b) Insider: an Insider is actually a legal shareholder with a 

valid share. However, less than t  shareholders may conspire 

and try to recover the secret. In this case, these misbehaved 

shareholders are called Insiders. We assume that at most 1t  

Insiders conspire in the proposed ),,( nmt Group Oriented 

SS scheme.  

Of course, within a tightly coupled group, if a dishonest 

participant (with a valid share) releases a wrong RC to the 

others but uses the correct RC to recover the secret for itself, 

then only it can obtain the correct secret while the others 

recover a wrong one. This is actually about Cheater 

Detection/Identification [25] and Fairness in secret sharing, 

which goes beyond the scope of the paper. 

C. Our proposed scheme 

Our scheme focuses on how to simply employ RCs to 

prevent Outsiders from obtaining the secret even if there are 

over t participants in the secret reconstruction.  

The proposed scheme needs to keep the basic properties of 

SS schemes, i.e. i) any group of at least t  legal shareholders is 

able to recover the secret, but ii) less than t  legal 

shareholders cannot obtain the secret. 

Moreover, the scheme needs to ensure that, in order to 

recover the secret, all participants must be legal shareholders 

necessarily (i.e. have a valid share each). Otherwise, the secret 

should not be figured out.  

To achieve these goals, each participant cannot simply 

release the share and compute the secret as it does in basic 

)n,t( SS schemes. Instead, every participant must bind its 

share with the whole group and make them inseparable. In this 

case, recovering the correct secret requires all participants to 

necessarily have a valid share each. 

The proposed scheme consists of 3 algorithms, 1) Share 

Generation 2) Randomized Component Construction and 3) 

Secret Reconstruction as indicated in Figure 1. 

Entities:  
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  Dealer: D  ;   

Set of n  shareholders: }U,...,U,U{
n21

U  with                                                  

respective public information }x,...,x,x{
n21

;   

Group of m  participants: )tm,}U,...,U,U{
miii

 （U
21

 

Parameters: 

  Primes: p , q  with ;nqqp 2   

Polynomial in :F
p

pmodxa...xaa)x(f t

t

1

110

-


 ,  

,Fa
pi

 for ,t,...,i 11  0
1


t
a ,

q
Fa 

0
; 

Secret: 
0

as  ; 

Algorithms: 

A. Share Generation 

  D computes and sends share )x(fs
ii

  to 
i

U secretly,  

for n,...,2,1i  . 

B. Randomized Component Construction 

Given ,}U,...,U,U{
miii

U
21

 each participant, e.g.,      

),mj(,U
ji

1 constructs the RC, 
ji

c and releases it to 

the others through private channels: 

pmod)qr
xx

x
)x(f(c

ji

m

jv,1v
viji

vi

jiji


 -

-
    

 ( ,Fr
qRji

  for m,...,2,1j  ) 

C. Secret Reconstruction 

Each participant, e.g., ),mj1(,U
ji


 

computes the secret 

as qmod)pmodc(s
m

1j
ji



. 

Fig.1. )n,m,t( Group Oriented SS based on PRC 

1) Share Generation 

Suppose there are n  shareholders, }U,...,U,U{
n21

U , and 

a dealer D . D chooses 2 positive prime numbers p and q  

with ,nqqp 2  and a polynomial )x(f : 

,pmodxa...xaa)x(f 1t

1t10

-


  with the secret 

q0
Fas    and coefficients, ,Fa

pRi
  for ,1t,...,1,0i -  

with .a
t

0
1



D computes n shares, ),x(f

i
),n,...,2,1i(   and 

distributes each share, e.g. )x(f
i

, to the corresponding 

shareholder 
i

U  secretly, where
i

x is the public information 

associated with 
i

U . 

This step corresponds to the algorithm ),a(G
)n,t,q,p(

U
0

 and 

the output is the share set }Ii|)x(f{
ni

 . 

2) Randomized Component Construction 

If a group of m shareholders, },Ii,U|U{
mjjijimI

 UU  

(
nm

II  , tm|I|
m

 ), wants to recover the secret s , each 

participant, e.g. ),Ii(U mji j
  randomly picks an integer 

ji
r in

q
F , (i.e.,

qRji
Fr   ), and computes the RC as  

pmod)qr
xx

x
)x(f(c

ji

m

jv,1v
viji

vi

jiji


 -

-
. 

This step corresponds the algorithm ),(C
mImI)n,t,q,p(

U , 

where 
mI

 denotes the share set }Ii|)x(f{
mjji

 ; the output 

is the RC set }Ii|c{
mjjimI

C . 

3) Secret Reconstruction 

Each participant, e.g. ),Ii(U mji j
 releases its RC, 

,c
mj Ii C

 
to all the other participants through private 

channels. After receiving )1m(  RCs from the others, it 

computes the secret as  

 )(fs 0 qmod)pmodc(
mIji

ji


. 

This step corresponds to the algorithm )(R
mI)n,t,q,p(

C . 

Due to the following fact, the )n,m,t( Group Oriented 

SS is bound to restore the secret s correctly. 

qmod)pmodc(
mIji

ji


  

= qmodpmod)qr
xx

x
)x(f(

m

1j
ji

m

jv,1v
viji

vi

ji 
  -

-
 

）（ 140
1




qmodpmod)qr)(f(
m

j
i j

                                       

）（ 240
1




qmod)qr)(f(
m

j
i j

                                                                   

)0(f  

Step (4-1) is equivalent to step (4-2) because of 

,F)(f
q

0 


m

1j
ji
qr 



n

1j
ji
qr <

2nqnqq   and thus 

)qr)(f(
m

j
ji

1

0 < pnqq  2
. 

V. SECURITY ANALYSIS 

In the )n,m,t( Group Oriented SS scheme, we use RCs 

to protect the share of each participant because each RC binds 

the share and all participants’ public information together in 

the secret reconstruction. To obtain the secret, adversaries use 

either at least t shares or m ( tm  ) RCs if there are 

totally m participants in the secret reconstruction. We have 

already demonstrated that a share cannot be derived from a 

given RC by Theorem 1. In this case, Outsiders, without any 

valid share, have to use RCs it collects by interception or 

personation to recover the secret, we use Theorem 2 to prove 

that Outsiders, even with 1m RCs, are still unable to get the 

secret. However, Insiders, with a valid share each, may 

collaborate and try to obtain the secret by using their shares 

instead of RCs, Theorem 3 assures us that up to 1t  Insiders 

are still unable to reconstruct the secret.  

As stated in the security model, Outsiders have access to at 

most 1m  RCs in a secret reconstruction with m  

participants. The following theorem 2 demonstrates the 

security of our scheme against Outsiders. 

Lemma 1. Suppose that random variable x is uniformly 

distributed in
p

F , for any value
*

p
Ft , xt has a uniform 

distribution over
p

F . 
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Proof: It is easy to see that 
p

Ft  and 1)p,tgcd(  are 

true. Suppose 
1

x  and 
2

x  are 2 distinct values of x in
p

F , 

p21
Ftx,tx  follows; if pmodtxtx

21
 holds, then we have 

)xx(|p
21

  due to 1)p,tgcd(  ; it is followed 

by
21

xx  because of 
1

x ,
p2

Fx  , which is contradictory to 

21
xx  . Therefore, pmodtxtx

21
 holds if 

21
xx  .  That is, 

all values of xt  is a permutation of 

}p,...,,,{ 1210  because x is uniformly distributed in
p

F , 

i.e., xt is also uniformly distributed over
p

F . □ 

Lemma 2. Suppose that p  is a prime number and random 

variables )k,..,2,1i(],i[x  , are uniformly distributed in
p

F , 




k

i
i

]i[xt
1

 has a uniform distribution in
p

F  for values 

k,...,2,1i,Ft *

pi
 . 

Proof:  Let us first consider the case of ,2k  then 

generalize it to the case of k being any value.  

1). From Lemma 1, we know that both ]1[xt
1

and ]2[xt
2

 

are uniformly distributed in
p

F , to prove ]2[xt]1[xt
21

  is 

uniformly distributed in
p

F , we assume 

that
1

]1[x and
2

]1[x are 2 random distinct values of 

variable ]1[x . It is obvious that 
11

]1[xt and
21

]1[xt are also 

distinct in 
p

F  for 1)p,tgcd(
1

 . Besides, ]2[xt]1[xt
211

  

is a permutation of ]2[xt
2

 in
p

F , which is also a 

permutation of ]2[x  over 
p

F , while ]2[xt]1[xt
221

 is a 

distinct permutation of ]2[x in 
p

F .  That is, for any value, 

e.g.,
i

]1[x  of random variable ]1[x , ]2[xt]1[xt
2i1

  is 

bound to be a permutation of ]2[x in
p

F . i.e., 

]2[xt]1[xt
21

  is a sequence such that each value 
pi

Fx   

appears p times during the search for all values of 

]2[xt]1[xt
21

  in
p

F . Therefore, ]2[xt]1[xt
21

 is 

uniformly distributed in
p

F . 

2). Now that ]2[xt]1[xt
21

  is uniformly distributed 

in
p

F , by iterating the process in 1), we have the result that 




k

1i
ii

xt  has a uniform distribution in
p

F .             □   

Corollary 1. If p is a prime number, random 

variables, )k,..,2,1i(],i[x  , are uniformly distributed 

over
p

F and random variable y is uniformly distributed 

in
w

Z ,( w is an integer with pw ), then  y]i[xt
k

1i
i




 has a 

uniform distribution in
p

F  for values k,...,2,1i,Ft *

pi
 .  

Theorem 2. Suppose there are m ( tm  ) participants 

collaborating to recover the secret s in our proposed 

)n,m,t( -Group Oriented SS; For an Outsider with less than 

m RCs, the scheme is asymptotically perfect with respect to 

the set of probability distributions (.)P  on the secret space 

.S Formally, suppose the participants’ RC set is   

with m||  , and an Outsider has already known 

}mk|I|,Ii,cc{
kkjjijikI

 |C , any subset of   

with k )mk( 
 

RCs. For any positive value  , there exists 

an integer 
0

q  such that for any 
0

qq  with
q

ZS , we have  

);s(
kI

C = .)|s(H)s(H
kI

ε C  

Proof: First, suppose there are m  participants, 

}U,...,U,U{
m21

)tm(  , with m  RCs, }c,...,c,c{
m21

. 

Without losing generality, we assume that the Outsider have 

obtained )mk(k  out of m  RCs, e.g., }c,...,c,c{
k21kI

C , 

and recovered the value 's  as qmodpmodc's
k

1i
i



, where 

i
c = pmod)qr

xx

x
)x(f(

i

m

iv,v
vi

v

i


1 -

-
, 

qRi
Zr   and 

i
x  is the 

public information of )mi(U
i

1 .  

Let us examine the probability of 'ss  , e.g., )|s(P
kI

C , 

the probability of the secret s with the knowledge of 
kI

C . 

  'ss   means qmodpmodcqmodpmodc
k

i
i

m

i
i 

 11

, that is 

qpmodcpmod)pmodcpmodc(
k

i
i

k

i
i

m

ki
i


 111    

(5-1), 

where  is an integer. 

Remark 5.1 'ss  means 

qmodpmodcqmodpmodc
k

1i
i

m

1i
i 



. On one hand, as we 

will prove later, ,pmodc
m

i
i

1

pmodc
k

1i
i



 and 

pmod)cc(
k

1i
i

m

1i
i 



are uniformly distributed over
p

F ; 

moreover, each RC contains a random multiple of q . To 

some extent, it means s and 's are virtually independent of 

each other. On the other hand, RCs make shares inseparable 

from all participants’ public information. As a result, 

Outsiders are unable to use shares contained in these RCs 

directly as they do in Shamir’s SS but are forced to use RCs 

themselves. Therefore, there is no better way for Outsiders to 

get the secret except to assume s's  . 

Second, we will show that pmodc
m

ki
i

 1

is uniformly 

distributed over
p

F when some coefficients of )x(f are 

uniformly distributed in
p

F . To begin with, let us examine the 

probability distribution of 

,pmod)qr
xx

x
)x(f(c

i

m

iv,1v
vi

v

ii


 -

-

 

for m,...,2,1i  . 

(1) Note that, for the Outsider, )x(f
i

 has the form of 






1t

0j

j

iji
pmodxa)x(f with )2t,...,1j(a

j
  uniformly 

distributed in
p

F  and 1)p,xgcd( j

i
  holds for 

1t,...,1j  due to *

pi
Fx  and the primality of p , (i.e., 
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*

p

j

i
Fx  ). As a result, 





1t

0j

j

iji
pmodxa)x(f is uniformly 

distributed over
p

F according to Corollary 1.    

(2) Let  be ,pmod
xx

xm

iv,v
vi

v


1 -

-
   is a fixed value for 

a specific group of participants and also coprime to p due to 

the properties of a field. More specifically, for 0
vpv

x,Fx , 

)m,...1v(   and prime number p , we have, i) 

*

pv
Fpmod)x(  )m,...,,v( 21 and ii) pmod)xx(

vi
-

*

p
F  

due to 
vi

xx   and the additive closure of 
p

F . Consequently, 

pmod)xx( 1

vi


-

*

p
F  is true because it is the multiplicative 

inverse of pmod)xx(
vi

- . It follows from i) and ii) that 

pmod
xx

x

vi

v

-

- *

p
F  (for

iv
xx,m,...,2,1v  ) and 

pmod
xx

xm

iv,1v
vi

v


 -

- *

p
F  hold due to the multiplicative closure 

of *

p
F . 

From (1) and (2), we further have that 

pmod
xx

x
)x(f

m

iv,1v
vi

v

i 
 -

-
 is uniformly distributed over 

p
F  

for the Outsider in the light of Lemma 1. Moreover, for a 

specific RC, e.g. ,pmod)qr
xx

x
)x(f(c

i

m

iv,1v
vi

v

ii


 -

-
 

i
c also 

has a uniform distribution in
p

F  from the proof of Lemma 2. 

As a result, pmodc
m

1ki
i



is uniformly distributed in 

p
F according to the additive closure of the field

p
F . 

Third, let us observe the probability )|s(P
kI

C , i.e., the 

probability with which (5-1) holds, where 
kI

C is any subset of 

 with k  RCs. Now that pmodc
m

1ki
i



 has a uniform 

distribution in 
p

F , the left side of (5-1) varies uniformly 

within the range ),pmodcp,pmodc(
k

1i
i

k

1i
i 



which 

consists of p  consecutive integer values. As a result, the 

largest number of possible values of   in (5-1) is   1q/p  

and thus )|s(P
kI

C is at most   p/)q/p( 1 .  Recall 

qR0
Fas  and ,q/1)s(P  therefore, the entropy loss of 

the secret satisfies 

);s(
kI

C  )|s(H)s(H
kI

C qlog -
  1q/p

p
log


 

  









q/p

q/p
log

p

qp
log

p

)q/p(q
log

11

    

(5-2) 

That is, );s(
kI

C converges to zero as q converges to 

infinity because q/p is a value larger than nq1 due 

to pnqq 2  . As a result, our proposed scheme is 

asymptotically perfect with respect to the set of probability 

distributions (.)P  on the secret space .S                □ 

Remark 5.2 (5-2) denotes that );s(
kI

C , the entropy loss of 

the secret caused by the knowledge of less than m  RCs, 

basically equals zero for sufficiently large prime number q .  

That is, knowing up to )1m(   RCs hardly helps Outsiders 

obtain the secret. 

Remark 5.3 Theorem 2 also indicates that the secret can be 

restored only if all RCs used are correct, which further 

requires each participant to have a valid share; otherwise, it is 

almost impossible to obtain the secret more easily than to 

guess it directly in the secret space. This attribute is obviously 

enabled by the properties of RCs. 

An Insider is actually a legal shareholder and up to 

1t Insiders may form a group and try to recover the secret. 

As Theorem 3 indicates, the proposed )n,m,t( -Group 

Oriented SS remains secure even if up to 1t Insiders 

conspire. 

Theorem 3. In our proposed )n,m,t( -Group Oriented SS, 

for less than t Insiders, the scheme is asymptotically perfect 

with respect to the set of probability distributions (.)P  on the 

secret space .S  Formally, suppose that the set of the shares 

available for Insiders is 

}Kk,s|)x(fs{
diikikikdK

 S , ),td|K|,IK(
dnd

  

for any positive value  , there exists an integer 
0

q  such that 

for any 
0

qq   with 
q

ZS , we have  

);s(
dK

S = .)|s(H)s(H
dK

ε S  

Proof: Note that our proposed )n,m,t( -Group Oriented  

SS uses the polynomial, ,pmodxa...xaa)x(f 1t

1t10

-


  

with ,Fa
pi

 for 1t,...,1i  , ,a
t-

0
1
 the secret 

q0
Fas   

and .nqqp 2  Suppose there are d  )t|K|d(
d
  

Insiders, }Kk,U|U{
diikikdK

 UU , with d  shares 

}Kk|)x(fs{
diikikdK

S , where
ik

x is the public 

information of .U
ik dK

U  can conspire to compute 

pmod
xx

x
ss'

dKik

ikjk
dKjk

jkik

jk

ik 











.  

Next, the upper bound of ),|s(P
dK

S the probability of the 

secret with the knowledge of 
dK

S , will be identified.       

We just need to consider the case of 1td  , in which 

),|s(P
dK

S  has the largest value . 

In this case, if q's  happens, we are assured that s's  is 

true from proposition 1. As a result, the maximum 

)|s(P
dK

S is 1/ ）（ 1q   since the value 's can be excluded 

from the secret space .F
q

S   Recall that s is randomly 

selected in 
q

F and thus )s(P  is .q/1  As a result, we have 

)|s(H)s(H);s(
dKdK

SS   

1q

q
log)1qlog(qlog


    (5-3). 
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That is, );s(
dK

S converges to zero as q converges to infinity. 

Therefore, the proposed )n,m,t( -Group Oriented SS, for less 

than t Insiders, is asymptotically perfect with respect to the set 

of probability distributions (.)P  on the secret space .S                                                  

□ 

Theorem 4. The proposed )n,m,t( -Group Oriented SS is 

asymptotically perfect with respect to the set of probability 

distributions on the secret space. 

In our security model, we conclude from Theorem 2 and 3 

that the proposed )n,m,t( -Group Oriented SS is 

asymptotically perfect with respect to the set of probability 

distributions on the secret space, because both types of 

adversaries hardly get any information when they fail to have 

enough correct RCs or valid shares available. Formally, 

entropy losses of the secret for both types of adversaries 

converge to zero as the secret space converges to infinity. 

VI. PROPERTIES AND COMPARISONS 

RCs bring our scheme new features although the scheme is 

based on Shamir’s SS. Distinct from Verifiable SSs and 

similar to the proposed scheme, Harn’s scheme [16] is the one 

solving the above mentioned attack without user 

authentication or share verification. In this section, we will 

summarize the properties of our scheme and make some 

comparisons with Harn’s scheme and traditional SS schemes. 

A. Properties 

1) Single share  

Harn’s scheme [16] uses k ( 2k  ) polynomials and each 

shareholder holds k shares; but our proposed scheme requires 

each participant to hold only one share. In many VSS schemes, 

share verification is required. As a result, each participant 

needs 2 items in a secret reconstruction, one is the share, and 

the other is the verification component. 

2) Group oriented  

In basic ),( nt -SSs, a participant is able to recover the 

secret as long as it collects no less than t valid shares, i.e., it 

does not have to get all the shares of all participants in the 

reconstruction. This type of SSs can be called share oriented 

ones. Compared with this type, the proposed scheme can be 

called group oriented SS, that is because all participants form 

a tightly coupled group before the secret reconstruction by 

generating a RC each, which binds a participant with the 

others in the group. Recovering the correct secret requires 

each participant to not only have a valid share but also belong 

to the group (i.e. a participant iU belonging to a group means 

the public information ix of iU is used by all participants in 

the group when constructing their RCs). Otherwise, a 

shareholder, even with a valid share but outside the group, is 

unable to generate a correct RC of the group and thus cannot 

recover the secret within the group.  

It is the group oriented property which prevents an 

adversary without a valid share (e.g. the Outsider in our 

scheme) from obtaining the secret.  

3) Unconditionally secure 

The security of our scheme does not depend on any 

assumptions of hard problems such as Discrete Logarithm 

Problem or one way functions, i.e. its security holds even if 

the adversary have infinite computing power or storage 

capacity. 

4) Without user authentication or share verification  

The proposed scheme solves the problem in basic 

),( nt -SSs without using any user authentication or share 

verification needed in most Verifiable SSs. 

B. Security comparisons 

Compared with basic )n,t( -SSs, such as Shamir’s SS, 

Mignotte’s SS, Asmuth-Bloom’s SS and so on, our proposed 

)n,m,t( -Group Oriented SS possesses extra security property, 

which guarantees that once a group of 

m )tm(  shareholders, agrees to work together, the secret 

can be reconstructed only if each participant necessarily has a 

valid share.  

However, basic )n,t( -SSs allow the secret to be recovered 

as long as there are at least t  valid shares available, it is 

possible for a participant without a valid share to obtain the 

secret when more than t  shareholders participate in the 

secret reconstruction. 

Moreover, the RC in our scheme also plays the role of 

protecting the share it contains. Therefore, RCs can be used to 

construct some other secret sharing based schemes such as 

multi-secret SS[16], Group authentication[21] and so on. . 

C. Performance comparisons 

Let us use the ratio of the size of the secret space to that of 

the share space to measure the information ratio of SS 

schemes. For a shareholder, information ratio reflects the 

efficiency of sharing a secret with others.   

Roughly speaking, In Shamir’s SS, the information ratio is 

1 because both the secret and the share are from the same 

domain; while in Asmuth-Bloom’s SS, the information ratio is 

always less than 1 because the secret space is the smallest 

compared with moduli of shareholders. The information ratio 

of our proposed scheme is plog/qlog , which can be 

controlled between 1/2 and 1/3 because we can select p and 

q  such that qnqpq 23  , note that q is much larger 

than n . It means the information ratio of our scheme is lower 

than that of Shamir’s SS, which is just the cost our scheme 

pays for the above extra security. 

As mentioned above, Harn’s )n,t( -secure secret 

reconstruction scheme provides the security similar to our 

scheme, but each participant in Harn’s scheme uses multiple 

shares to form a component before recovering the secret. The 

scheme uses k  polynomials over 
p

F  to generate k shares 

for each shareholder and requires 1nkt   to guarantee the 

security, where n is the total number of shareholders, t is the 

threshold. Consequently, the information ratio of Harn’s 

scheme is k/1 . In the case of ,3k   the information ratio is 

lower than that of our proposed scheme; In the case of  

,2k   its information ratio is 1/2 which is a little higher than 
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that of our scheme, however, 1nt2  means that, to recover 

the secret, at least one half of shareholders are required to 

participate in the secret reconstruction. This restriction makes 

it impractical in applications with a large number of 

shareholders.  

In computation effort, the proposed scheme is almost the 

same as Shamir’s ),( nt -SS except for the extra operation 

qmod in the last step of secret reconstruction. 

VII. CONCLUSION 

We observed an attack against basic ),( nt -SS schemes, in 

which a malicious participant, even without a valid share, may 

obtain the secret when there are more than t  participants in 

the secret reconstruction. To cope with the attack, we first 

introduced the notion of Randomized Components. A 

randomized component binds the share with the information 

of all participants and can protect the share from being 

exposed; at the same time, randomized components can be 

used to reconstruct the secret. As one of the applications of 

Randomized Components, a )n,m,t( -Group Oriented SS 

scheme was proposed. In the scheme, once m  ( tm  ) 

participants form a tightly coupled group by generating RCs; 

the secret can be recovered only if all participants necessarily 

have valid shares. The scheme does not depend on any user 

authentication or share verification mechanism and is 

unconditionally secure. Analyses show the scheme is 

asymptotically perfect. 

Moreover, the Randomized Component can be viewed as a 

tool and used in some other scenarios. For example, multi-SSs 

allow a group of members, with only one or two shares each, 

to collaborate to reconstruct more secrets. In this case, each 

participant can use the RC instead of the share to recover each 

secret while keeping the share secure. Group authentication 

allows one to authenticate a group of members in only one 

step rather than authenticate them one by one. The 

Inseparability of RC can also simplify the design of group 

authentication. 
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