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ABSTRACT

A (t,n) secret sharing scheme (SS) enables a dealer to divide a secret into n shares in such a way that (i) the secret can be
recovered successfully with t or more than t shares, and (ii) the secret cannot be recovered with fewer than t shares. A
verifiable secret sharing scheme (VSS) has been proposed to allow shareholders to verify that their shares are generated by
the dealer consistently without compromising the secrecy of both shares and the secret. So far, there is only one secure Chinese
remainder theorem-based VSS using the RSA assumption. We propose a Chinese remainder theorem-based VSS scheme
without making any computational assumptions, which is a simple extension of Azimuth–Bloom (t,n) SS. Just like the most
well-known Shamir’s SS, the proposed VSS is unconditionally secure. We use a linear combination of both the secret and
the verification secret to protect the secrecy of both the secret and shares in the verification. In addition, we show that no infor-
mation is leaked when there are fewer than t shares in the secret reconstruction. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Secret sharing schemes (SS) were originally introduced by
both Blakley [1] and Shamir [2] independently in 1979 as a
solution for safeguarding cryptographic keys and have
been studied extensively in the literature. SS has become
one of the most basic tools in cryptographic research. In
Shamir’s (t,n) SS, a secret s is divided into n shares by a
dealer. The secret is shared among n shareholders in such
a way that (i) the secret can be reconstructed with any t
or more than t shares, and (ii) the secret cannot be obtained
with fewer than t shares. Shamir’s (t,n) SS is based on
polynomial and is unconditionally secure. There are other
types of threshold SSs. For example, Blakely’s scheme [1]
is based on the geometry; Mignotte’s scheme [3] and
Azimuth–Bloom’s scheme [4] are based on the Chinese
remainder theorem (CRT).

Shamir’s (t, n) SS scheme is based on a linear polynomial
and is unconditionally secure. The security of cryptographic
schemes can be classified into two types, computational
security and unconditional security. Computational security
assumes that the adversary has bounded computing power
950
that limits the adversary solving hard mathematical problem,
such as factoring a large composite integer into two primes.
Unconditional security means that the security holds even
if the adversary has unbounded computing power. Research
on developing cryptographic schemes with unconditional
security has received wide attention recently.

In 1985, Chor et al. [5] presented the notion of verifiable
secret sharing scheme (VSS). In a VSS, shareholders are able
to verify that their shares are generated by the dealer consis-
tently without compromising the secrecy of both shares and
the secret. There are many research papers on the VSS in
the literature. According to security assumptions, we can
classify VSSs into two different types, schemes are computa-
tionally secure and schemes are unconditionally secure. For
example, Feldman [6] and Pedersen [7] developed non-
interactive VSSs using cryptographic commitments. The
security of Feldman’s VSS is based on the hardness of
solving the discrete logarithm, whereas the privacy of
Pedersen’s VSS is unconditionally secure, and the correct-
ness of the shares is based on a computational assumption.
Benaloh [8] proposed an interactive VSS, and the security
is unconditionally secure. Stinson et al. [9] proposed an
Copyright © 2013 John Wiley & Sons, Ltd.
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unconditionally secure VSS, and later, Patra et al. [10]
proposed a generalized VSS.

There are many papers on the polynomial-based VSSs,
but only a few papers are focused on the CRT-based VSSs.
Iftene [11] and Qiong et al. [12] have proposed two CRT-
based VSSs. However, Kaya et al. [13] pointed out that
both schemes cannot prevent a corrupted dealer to
distribute inconsistent shares to shareholders. They have
proposed a CRT-based VSS, which uses a range proof
technique proposed by Boudot [8]. The security of their
VSS is based on the RSA assumption [14]. In addition,
in 2009, Sarkar et al. [15] have proposed a CRT-based
RSA-threshold cryptography for a mobile ad hoc network,
and in 2011, Lu et al. have proposed a secret key distrib-
uted storage scheme [16] based on CRT-VSS and trusted
computing technology. In this paper, we introduce notions
of t-threshold range and t-threshold consistency. We show
that shares generated by a secret selected in the t-threshold
range satisfy the security requirements of an (t,n) SS. We
propose a CRT-based VSS scheme, which is a simple
extension of Azimuth–Bloom (t,n) SS. Because Azimuth–
Bloom (t,n) SS is a perfect SS (i.e., like Shamir’s (t,n) SS
in which no information is leaked when there are fewer than
t shares), the security of our proposed VSS is also perfectly
secure. We use multiple verification secrets to verify
the t-threshold consistency of shares without revealing the
secrecy of both the secret and shares. By examining the
revealed sum and difference of the secret and verification
secrets, we can conclude that shares are generated by the
secret in the t-threshold range. The proposed VSS is uncon-
ditionally secure, and the secret reconstruction is the same as
the Azimuth–Bloom’s SS that is perfectly secret.

The rest of this paper is organized as follows. In the
next section, we introduce some preliminaries including
the CRT, Mignotte’s and Azimuth–Bloom’s (t,n) SSs
based on the CRT. In Section 3, we introduce the model
of our proposed VSS including definitions, entities,
informal model, and properties. Our VSS is introduced in
Section 4. In Section 5, we include security analysis and
performance. Conclusion is given in Section 6.

2. PRELIMINARIES

2.1. Chinese remainder theorem [17]

Given following system of equations as

x ¼ s1 modp1;
x ¼ s2 modp2;
�
�
�
x ¼ st modpt ;

there is one unique solution as x ¼
Xt

i¼1

N
pi
�yi�si modN;

where N
pi
�yi modpi ¼ 1; and N= p1 � p2 � . . . � pt, if all moduli

are pairwise coprime (i.e., gcd(pi,pj) = 1, for every i 6¼ j).
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2.2. Review of Mignotte’s t; nð Þ SS

Share generation
A sequence consisting of pairwise coprime positive inte-

gers, p1< p2< . . .< pn, with pn� t+2 � . . . � pn< p1 � p2 � . . . �
pt, where pi is the public information associated with each
shareholder, Ui. For this given sequence, the dealer
chooses the secret s as an integer in the set
Zpn�tþ2�...�pn ;p1 �p2 �...�pt (i.e., Zpn�tþ2�...�pn;p1�p2�...�pt is referred to
the range (pn� t + 2 � pn� t + 3 � . . . � pn, p1 � p2 � . . . � pt)). We
call the range, Zpn�tþ2�...�pn;p1�p2�...�pt ; the t-threshold range,
as shown in Figure 1.

Share for the shareholder, Ui, is generated as si = smod
pi, i = 1, 2, . . ., n. si is sent to shareholder, Ui, secretly.

Remark 1. The numbers in the t-threshold range,
Zpn�tþ2�...�pn;p1�p2�...�pt ; are integers upper bounded by p1 � p2 �
� pt, which is the smallest product of any t moduli, and
lower bounded by pn� t+ 2 � pn� t + 3 � . . . � pn, which is the
largest product of any t� 1 moduli. The secret, s, selected
in this range can ensure that (i) the secret can be recovered
with any t or more than t shares (i.e., the product of their
moduli must be either equal to or larger than p1 � p2 � . . . � pt),
and (ii) the secret cannot be obtained with fewer than t shares
(i.e., the product of their moduli must be either equal to or
smaller than pn� t+ 2 � . . . � pn). Thus, the secret of a (t,n)
threshold SS should be selected from the t-threshold range.

Secret reconstruction
Given t distinct shares, for example, {s1, s2, . . . st}, the

secret s can be reconstructed by solving the following
system of equations as

x ¼ s1 modp1;
x ¼ s2 modp2;
�
�
�
x ¼ st modpt:

Using the standard CRT, a unique solution x is given as

x ¼
Xt

i¼1

N
pi
�yi�si modN; where N= p1 � p2 � . . . � pt, and

N
pi
�yi modpi ¼ 1:

We want to point out that Mignotte’s (t,n) threshold SS
is not a perfect SS because information of the secret can be
leaked with fewer than t shares.

2.3. Review of Azimuth–Bloom (t,n) SS [4]

Share generation
In Azimuth–Bloom (t,n) SS, the dealer selects p0

and a sequence of pairwise coprime positive integers,
p1< p2< . . .< pn, such that p0 � pn� t + 2 � . . . � pn< p1 � p2
. . . � pt, and gcd(p0,pi) = 1, i = 1, 2, . . ., n, where pi is the
public information associated with each shareholder,
Ui. For this given sequence, the dealer chooses the
951



Figure 1. The t-threshold range.
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secret s as an integer in the set Zp0 : The dealer selects an in-
teger, a, such that sþ ap0 2 Zpn�tþ2 �pn�tþ3 � ::::�pn;p1�p2�...�pt : We
want to point out that the value, s+ ap0, needs to be in the
t-threshold range, Zpn�tþ2�pn�tþ3 � ::::�pn ;p1 �p2 �...�pt ; otherwise, the
value, s+ ap0, can be obtained with fewer than t shares.
However, in the original paper [4], it specifies that the value,
s+ ap0, is in the set, Zp1 �p2 �...�pt : This range is different from
the t-threshold range. In other words, if s+ ap0 is selected
to be smaller than the lower bound of the t-threshold range
(i.e., but it is still in the set Zp1�p2�...�pt Þ; then the value,
s+ ap0, can be obtainedwith fewer than t shares. It is obvious
that this situation violates one of the security requirements of
the (t,n) SS.

Share for the shareholder, Ui, is generated as si = s+ ap0
mod pi, and si is sent to shareholder, Ui, secretly, for
i= 1, 2, . . ., n.

Secret reconstruction
Given a subset of t distinct shares, for example, {s1, s2,

st}, the secret s can be reconstructed by solving the follow-
ing system of equations as

x ¼ s1 mod p1;
x ¼ s2 mod p2;
�
�
�
x ¼ st mod pt :

Using the standard CRT, a unique solution x is given as

x ¼
Xt

i¼1

N
pi
�yi�si modN; where N= p1 � p2 � . . . � pt, and

N
pi
�yi mod pi ¼ 1: Then, the secret s can be recovered by

computing s= xmod p0.
Azimuth–Bloom (t,n) SS is a perfect SS because no infor-

mation is leaked when there are fewer than t shares. Interest
readers can refer to the original paper [4] for detailed discus-
sion. Azimuth–Bloom’s secret reconstruction scheme can be
generalized to take more than t shares. For example, when
there are j (i.e., t< j≤ n) shareholders with their shares,
{s1,s2, . . .,sj}, participated in the secret reconstruction, the
secret, s, can be reconstructed using the standard CRT to find
a unique solution x for the system of j equations.
3. MODELS OF PROPOSED VSS

3.1. Definitions

A VSS enables shareholders to verify that their shares of an
(t,n) SS are generated by the dealer consistently. In other
words, without revealing the secret and the shares,
952 Sec
shareholders can verify that any subset of t or more than
t shares defines the same secret, but any subset of fewer
than t shares cannot define the same secret. Benaloh [1]
presented a notion of t-consistency and uses it to define
the objective of a VSS. We include the notion here.

Definition 1: t-consistency. A set of n shares is said to be
t-consistent if any subset of t of the n shares defines the
same secret.

Benaloh observed that the shares in Shamir’s (t,n) SS
are t-consistent if and only if the interpolation of the n
shares yields a polynomial of degree at most t� 1. This
implies that if the interpolating polynomial of n shares has
degree at most t� 1, then all shares are t-consistent. How-
ever, the property of t-consistency does not guarantee that
all shares satisfy the security requirements of an (t,n) SS.
For example, if the interpolating polynomial of n shares
has degree t� 2, then all shares are both (t� 1)-consistent
and t-consistent. The polynomial having degree t� 2 can
be reconstructed with only t� 1 shares (i.e., which is less
than the threshold). Similarly, if shares of a CRT-based SS
are generated by a secret selected in the (t� 1)-threshold
range, then all shares are both (t� 1)-consistent and t-
consistent. In other words, the secret can be recovered with
only t� 1 shares. This situation violates one of the security
requirements of an (t,n) SS. That is, the secret cannot
be obtained with fewer than t shares. Thus, Benaloh’s
t-consistency cannot satisfy the security requirement of
an (t,n) SS. We modify the definition of t-consistency
and introduce a new notion, called t-threshold consis-
tency, which can satisfy the security requirements of
an (t,n) SS.

Definition 2: t-threshold consistency. A set of n shares
are said to be t-threshold consistent (i.e., t< n) if (i)
any subset of t or more than t out of the n shares de-
fines the same secret, and (ii) any subset of fewer than
t out of the n shares cannot define the same secret.

It is obvious that, in a CRT-based SS, shares generated
by a secret selected in the t-threshold range are t-threshold
consistent. Shares with the property of t-threshold consis-
tency satisfy the security requirements of an (t,n) SS.
Verifying the t-threshold consistency of shares is the objec-
tive of our proposed VSS.

3.2. Entities

In our VSS, the dealer is the prover, and all shareholders are
the verifiers. The verifiers want to verify that their shares are
generated by a secret selected in the t-threshold range with-
out compromising the secrecy of their shares and the secret.
urity Comm. Networks 2014; 7:950–957 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Verifiable secret sharing based on the CRTL. Harn, M. Fuyou and C.-C. Chang
In our proposed VSS, we do not consider the situation
when the dealer (the prover) colludes with a shareholder
(the verifier). This is because if dealer wants to collude
with any shareholder, the dealer can just reveal the secret
to the shareholder directly. VSS cannot prevent this type
of attack. Furthermore, we do not consider the situation
when any verifier acts dishonestly in the verification. If
any shareholder acts dishonestly by releasing an invalid
value in the verification, our proposed VSS can detect
the existence of any inconsistent share, and the dishonest
shareholder gains no advantage over other honest
shareholders. Thus, in our proposed VSS, we assume
that all shareholders (verifiers) act honestly to verify the
t-threshold consistency of their shares.
3.3. Informal model of our proposed VSS

We assume that there are n shareholders,Ui;
i for i=1, 2, . . .,n,

participated in the VSS. These shareholders want to make
sure that their shares, si;

i for i = 1, 2, . . .,m, obtained from
the dealer are t-threshold consistent. In our proposed VSS,
each shareholder computes, ci¼iF sið Þ; as his/her released
value, where F is a public function. The algorithm, VSS,
allows shareholders to verify that all shares are t-
threshold consistent. That is,

VSSf8ci ¼ F sið Þ i ¼ 1; 2; . . . ; nj g

¼ 0 ! exists inconsistent sharesi;

1 ! all shares are t-threshold consistent:

�

Our proposed VSS is different from most VSSs, which
verify one share at a time; but our VSS verifies all shares at
once. There are only two possible outcomes of our pro-
posed VSS, that are, either all shares are t-threshold con-
sistent or there are inconsistent shares. Thus, our
proposed VSS is sufficient if all shares are t-threshold
consistent. However, if there are inconsistent shares, addi-
tional VSS is needed to identify inconsistent shares. Our
proposed VSS can be used as a preprocess before applying
other VSS to identify invalid shares.
3.4. Properties

We propose a non-interactive VSS with the following
properties:

Correctness. The outcome of our proposed VSS is
positive if all shares are t-threshold consistent; other-
wise, there are inconsistent shares.

Efficiency. If the outcome of the proposed scheme is
negative, the proposed VSS can only be used as a
preprocess of other VSS to identify inconsistent
shares. Thus, our proposed VSS must be efficient.

Security. The VSS must be able to protect the secrecy of
both shares and the secret in the verification.
Security Comm. Networks 2014; 7:950–957 © 2013 John Wiley & Sons, Ltd.
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4. PROPOSED VSS

4.1. Outline of our design

Our VSS is based on the Azimuth–Bloom’s SS. We want to
prove that the shares, si, i= 1, 2, . . ., n, generated by the
dealer correspond to the secret, A= s+ ap0, which is selected
from the t-threshold range, Zpn�tþ2�pn�tþ3 �...�pn;p1�p2�...�pt : To
achieve this objective, we use the verification secrets, Bi, i=
1.2, . . ., k. It is obvious that if the verification secret, Bi, is in
the t-threshold range and shareholders can show thatA+Bi is
also in the t-threshold range, then shareholders can conclude
A< p1 � p2 � . . . � pt (i.e., A is smaller than the upper bound of
the t-threshold range). Similarly, if the verification secret, Bi,
is in the t-threshold range and shareholders can show that
A�Bi is in the t-threshold range, then shareholders can
conclude pn� t + 2 � pn� t + 3 � . . . � pn<A (i.e., A is larger
than the lower bound of the t-threshold range). In
summary, shareholders can obtain pn� t + 2 � pn� t + 3 � . . . �
pn<A< p1 � p2 � . . . � pt. There is one remaining problem
needed to be overcome in this approach. If the verification
secret, Bi, is known to shareholders, shareholders can also
obtain the secret, A. VSS should protect the secrecy of
both shares and the secret. In our proposed scheme, we
use the linear combination to protect the secrecy.

Remark 2. If both A+Bi mod N where N= p1 � p2 � . . . � pn,
and Bi are in the t-threshold range, then either (i) A
is smaller than the upper bound of the t-threshold range
(i.e., A< p1 � p2 � . . . � pt)., or (ii) A is larger than the upper
bound of the t-threshold range (i.e., A> p1 � p2 � . . . � pt).
However, verifiers can distinguish between these two cases
easily. If A< p1 � p2 � . . . � pt, then the solution of CRT
computation using any t + 1 out of n shares of A+Bi. is
smaller than the upper bound of the t-threshold range (i.e.,
A+Bi< p1 � p2 � . . . � pt); otherwise, if A> p1 � p2 � . . . � pt,
then the solution of CRT computation using any t + 1 out
of n shares of A +Bi is larger than the upper bound of the
t-threshold range (i.e., A + Bi> p1 � p2 � . . . � pt).
4.2. Proposed VSS

The proposed VSS is illustrated in Figure 2.
Share generation
Just like the Azimuth–Bloom (t,n) SS, the dealer selects

an integer p0 and a sequence of pairwise coprime positive
integers, p1< p2< . . .< pn, such that p0 � pn� t + 2 � . . . � pn
p1 � p2 � . . . � pt, where pi is the public information
associated with each shareholder, Ui. For this given
sequence, the dealer chooses the secret s as a random
integer in the set Zp0 : The dealer selects an integer, a,
such that A ¼ sþ ap0 2 Zpn�tþ2 �pn�tþ3 �...�pn ;p1 �p2 �...�pt : Share
for the shareholder, Ui, is generated as si = s + ap0mod pi,
i= 1, 2, . . ., n. si is sent to shareholder, Ui, secretly.
953



Figure 2. Proposed verifiable secret sharing scheme.
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In addition, the dealer selects k (say k=100) verification
secrets, Bi, in Zpn�tþ2 �pn�tþ3�...�pn;p1�p2�...�pt such that A+Bi< p1 �
p2 � . . . � pt and A>Bi, for i=1.2, . . ., k. The dealer generates
shares, sl,i=Bimod pl, of verification secrets, Bi, i=1, 2, . . .,
k, and distributes them to each shareholder, Ul. At the
end of this phase, each shareholder has received k + 1
shares from the dealer.
Shares verification
All shareholders work together to randomly determine a

subset B (say |B| = 50) of shares corresponding to the veri-
fication secrets. Each shareholder needs to reveal shares of
this subset B. According to the CRT, using these released
shares, shareholders can recover the verification secrets
954 Sec
corresponding to the subset B. Shareholders can verify
whether each recovered verification secret is in the
t-threshold range. If all recovered verification secrets are
in the t-threshold range, shareholders can conclude that it is
most likely that all “unopened” verification secrets are also
in the t-threshold range.

Shareholders work together again to divide “unopened”
verification secrets into two subsets, say 8Bi2 the first sub-
set, and 8Bj2 the second subset (i 6¼ j), and to reveal the
additive sums and the differences of shares of the secret, A,
with respect to each verification secret (i.e., for all Bi and
Bj), respectively. According to the CRT, using these released
values, shareholders can recover both A+Bi and A�Bj.
Shareholders can verify whether A+Bi< p1 � p2 � . . . � pt and
0<A�Bj< p1 � p2 � . . . � pt� pn� t+ 2 � pn� t+3 � . . . � pn, for
urity Comm. Networks 2014; 7:950–957 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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8 i, j2 subsets of the unopened verification secrets. If
all verifications are passed, shareholders can conclude
that their shares corresponding to the secret, A, are
t-threshold consistent.

Theorem 1.
If A + Bi< p1 � p2 � . . . � pt and 0<A�Bj< p1 � p2 � . . . �
pt� pn� t + 2 � pn� t + 3 � . . . � pn, for 8 i, j2 subsets of the
unopened verification secrets, the shares are t-threshold con-
sistent; otherwise, there are inconsistent shares.

Proof.
If all shares are generated consistently by the dealer
and shareholders act honestly to compute the additive sum
of shares, sl+ si,l, l=1, 2, . . ., n, and the difference of shares,
sl� sj,l, l = 1, 2, . . ., n, they can recover both A +Bi

and A�Bj, respectively, from system of equations of shares
using the CRT. In the earlier steps of the VSS, shareholders
have already verified that all “unopened” verification
secrets are in the t-threshold range. Thus, they obtain
pn� t + 2 � pn� t + 3 � . . . � pn<Bi< p1 � p2 � . . . � pt. Further-
more, if A+Bi< p1 � p2 � . . . � pt,8Bi2 the first subset, share-
holders can conclude A< p1 � p2 � . . . � pt, with very high
probability. Similarly, if A�Bj> 0,8Bj2 the second subset,
shareholders can also conclude pn� t+ 2 � pn� t+3 � . . . � pn
A. In summary, they obtain pn� t+2 � pn� t+ 3 � . . . � pn<A
p1 � p2 � . . . � pt. Therefore, shares of the secret, A, are t-
threshold consistent. Otherwise, there are inconsistent shares.

Secret reconstruction
This process is the same as the Azimuth–Bloom (t,n)

SS. Given t distinct shares, for example, {s1, s2, . . . st},
the secret s is reconstructed by solving the following
system of equations as

x ¼ s1 modp1;
x ¼ s2 modp2;
�
�
�
x ¼ st modpt :

Using the standard CRT, a unique solution x is given as

x ¼
Xt

i¼1

N
pi
�yi�si modN; where N= p1 � p2 � . . . � pt, and

N
pi
�yi modpi ¼ 1: Then, by computing xmod p0, the secret

s can be recovered.
5. SECURITY ANALYSIS AND
PERFORMANCE

5.1. Security analysis of the shares
verification

In the VSS, the released values are sl + si,l, and sl� sj,l, for
l= 1, 2, . . ., n. Because both si,l and sj,l are unopened shares,
Security Comm. Networks 2014; 7:950–957 © 2013 John Wiley & Sons, Ltd.
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it is computationally impossible to obtain the share, si,
from the released values. Furthermore, it is computation-
ally impossible to obtain the secret, A, from the recovered
values, A +Bi and A�Bj, because both Bi and Bj are
unopened verification secrets. The security of this verifica-
tion does not depend on any computational assumption and
it is unconditionally secure.
5.2. Security analysis of the secret
reconstruction

It is obvious that the secret can be successfully
reconstructed if all shareholders act honestly to release
their shares. Just like the Azimuth–Bloom (t,n) SS [4],
this proposed scheme is a perfect SS because no informa-
tion is leaked when there are fewer than t shares in the
secret reconstruction. Let us assume that t� 1 share-
holders, for example, {U1,U2, . . .,Ut� 1} with their shares

{s1,s2, . . .,st� 1}, work together to obtain A’ ¼
Xt�1

i¼1

N’
pi
�yi�si

modN’;where N ’= p1 � p2 � . . . � pt� 1, and N’
pi
�yi modpi ¼ 1:

However, the real secret, A, is in the t-threshold range.
According to the CRT, the real secret, A, is related to the
recovered value, A ’, in the following way as A=A ’+ lN ’.
By properly shifting A ’ to some values in the t-threshold
range as A ’+ lN ’ may obtain the secret. There are
p1 �p2 �...�pt
p�1p2 �...�pt�1

> p0 values of l, which can shift A ’ into the t-

threshold range; but, there is only one exact value of l,
which shifts A ’ to the real secret, A. Because the collec-
tion of possible l is greater than the collection of possible
secret s, no useful information is leaked from the collection
of any t� 1 shares.

Let us examine the other possibility that t� 1 shareholders,
for example, {U1,U2, . . .Ut� 1}, can determine a parameter,
b, to shift the secret, A, in the t-threshold range to a secret in
the range, Zpn�tþ2�pn�tþ3�...�pn ; as, A� bp0. Then, these t� 1
shareholders can recover the secret by themselves. However,

there are
p1 �p2�...�pt�pn�tþ2 �pn�tþ3 �...�pn

p0

j k
possible values of b cor-

responding to the secret, A, in the t-threshold range; but,

there are only
pn�tþ2�pn�tþ3�...�pn

p0

j k
values of b that can shift

the secret to some secret in Zpn�tþ2 �pn�tþ3 �...�pn : The probability
of figuring out a correct b is

pn�tþ2 �pn�tþ3 �...�pn
p1�p2�...�pt�pn�tþ2�pn�tþ3 �...�pn < 1

p0
:

Thus, the probability of correctly guessing b is smaller than
the probability of guessing the secret s. The security of the
secret reconstruction is the same as the Azimuth–Bloom’s
SS, which is perfectly secure.
5.3. Performance

The proposed VSS is a simple modification of the
Azimuth–Bloom’s SS, which is a classical SS. In share
generation, the dealer selects a secret and k additional
verification secrets, and generates shares for shareholders.
In shares verification, shareholders work together to open
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a subset of verification secrets and to verify whether these
verification secrets are in the t-threshold range. Then,
shareholders reveal the additive sum and the difference
of shares of the secret with respect to shares of different
unopened verification secret, respectively. There is no
secure channel needed among shareholders. The most
time-consuming computation in the VSS is to reconstruct
50 verification secrets using the CRT. To reconstruct each
verification secret, each shareholder, Ul, uses his share, sl,
i, of the verification secret to compute cl ¼ N

pl
�yl�sl;i modN;

where N = p1 � p2 � . . . � pn, and N
pl
�yl modpl ¼ 1: After

receiving all cl ’ s from other shareholders, the verification

secret can be obtained as x ¼
Xn
l¼1

cl modN: We should

point out that the value, yi, of each shareholder only needs
to be computed one time, and it can be computed off-line.
The value, yl, can be reused for reconstructing other
verification secrets. In addition, the size of moduli in the
CRT does not need to be as large as the module used in
most public key algorithms. Furthermore, there is no
modulo exponentiation in the CRT. Therefore, the
proposed VSS is very efficient in terms of computation
and communication.

Our proposed VSS is different from most VSSs, which
verify one share at a time; but our proposed VSS verifies
all shares at once. Therefore, our proposed VSS is very
efficient. There are only two possible outcomes of our
proposed VSS, that are, either all shares are t-threshold
consistent or there are inconsistent shares. Thus, the
proposed VSS is sufficient if all shares are t-threshold
consistent. However, if there are inconsistent shares, other
VSS is needed to identify inconsistent shares.
6. CONCLUSION

We proposed a CRT-based VSS, which is a simple extension
of the Azimuth–Bloom’s SS. Just like the Azimuth–Bloom’s
SS, the proposed VSS is perfectly secure. We use multiple
verification secrets to verify the t-threshold consistency of
shares without revealing the secrecy of both the secret and
shares. In the security analysis, we show that shares and
the secret are protected unconditionally in the verification
process. In addition, no information is leaked when there
are fewer than t shares in the secret reconstruction.
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