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Abstract 

  (𝑡, 𝑛)-Threshold secret sharing ((𝑡, 𝑛)-SS) scheme is a fundamental cryptographic primitive. As a special (𝑡, 𝑛)-SS, a Multi-Level 
threshold Secret Sharing scheme (MLSS) divides shares into different levels. Shares at higher levels can be used at lower ones but shares 
of lower levels are invalid at higher ones. However, MLSS is limited in applications and vulnerable to Illegal Participant (IP) attack and t-
Share Capture (SC) attack. Therefore, the paper first extends the notion of MLSS to multi-group threshold secret sharing (MGSS) to 
accommodate wider application scenarios. In order to cope with the 2 attacks, the paper then proposes a tightly coupled MGSS scheme 
based on Chinese Remainder Theorem. In the scheme, a shareholder, with only one private share, is allowed to participate in secret 
reconstruction of different groups. Moreover, when sufficient shareholders collaborate to recover the secret in a group, they first form a 
tightly coupled subgroup by constructing a randomized component each so that the secret can be recovered only if each participant has 
valid share and actually participates in secret reconstruction. Analyses show that the proposed scheme is capable of thwarting IP and SC 
attacks. Besides, the scheme is more flexible and popular in applications compared with MLSS scheme. 
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1. Introduction 
As fundamental cryptographic tools, (𝑡, 𝑛)-threshold secret sharing schemes ((𝑡, 𝑛)-SS) were proposed by Shamir [1] and 

Blakley [2] separately in 1979. They divides a secret 𝑠 into 𝑛 shares and allocates each share to a shareholder such that 𝑡 or 
more that 𝑡  shareholders can reconstruct 𝑠  while less than 𝑡  shareholders cannot. (𝑡, 𝑛) -SS scheme guarantees both 
distributed confidentiality and robustness in keeping the secret. That is, on one hand, even if 𝑡 − 1 shareholders collude, they 
are unable to recover the secret; on the other hand, even if up to (𝑛 − 𝑡) shareholders lose their shares, the secret can still be 
recovered. 

Since (𝑡, 𝑛)-SS was proposed, it has been studied in a lot of literatures [3-8]. And there are many methods to implement secret 
sharing. Shamir’s (𝑡, 𝑛)-SS is based on polynomial interpolation while Blakley’s (𝑡, 𝑛)-SS is based on hyperplane geometry; 
both Mignotte’s (𝑡, 𝑛)-SS [9] and Asmuth-Bloom’s (𝑡, 𝑛)-SS [10] are based on the Chinese Remainder Theorem (CRT). In 
Asmuth-Bloom (𝑡, 𝑛)-SS, the candidates for different secrets may be not equally probable, resulting in an imperfect distribution. 
Therefore, Kaya and Selçuk [11] proposed a perfect scheme based on CRT which, meanwhile, narrows the secret space. 

 

Fig 1. Model of MLSS 

As a special threshold secret sharing, Multi-level threshold Secret Sharing scheme (MLSS) has been studied for many years. 
In MLSS, all shareholders are classified into different levels, each level with a threshold. The secret can be recovered in any 
level as long as sufficient number of shareholders participate in secret reconstruction in the level. Moreover, a shareholder of 
higher level is allowed to participate in secret recovering at lower levels. In 1989, Brickell [12] introduced a MLSS but it is 
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inefficient because it requires exponential operation to generate nonsingular matrices. Ghodosi et al. [13] proposed a perfect 
MLSS based on Shamir SS but it is available only when few shareholders participate in the scheme. Siva et al. [14] proposed a 
MLSS also based on Shamir SS, in which the number of public shares are proportional to the number of participants. Harn and 
Miao [15] first proposed a MLSS based on Asmuth-Bloom SS in 2014. 

  The following example can be used to describe an application scenario of MLSS. Suppose there are three presidents and five 
vice presidents in a bank, any 2 presidents or 3 vice presidents are qualified to transfer accounts. Besides, any president can 
lower its position as a vice president to participate in transferring accounts with other two vice presidents. But a vice president 
cannot raise its position as a president to do it. To be suitable for such hierarchical applications, MLSS allows a shareholder of 
higher level to participate in secret reconstruction at lower levels but prohibits the one in lower level joining the secret 
reconstruction at higher levels. As a matter of fact, if we remove the hierarchical attribute of levels in MLSS and simply consider 
different levels as equal groups，each with a threshold, a Multi-Group threshold Secret Sharing (MGSS) scheme can be 
constructed. A MGSS allows a shareholder in group A to participate in secret reconstruction of group B and may also allow the 
one in group B to take part in secret recovering in group A. Obviously, MGSS is the generalization of MLSS and finds more 
applications than the latter. Therefore, the paper will focus on the construction of MGSS scheme. 

As an application scenario of MGSS, suppose that there are three business departments in a bank. Three departments have 
equal status and each department has the right to transfer accounts. A member in a department may be also able to work in other 
departments. Then, the member can participate in transferring accounts in all the departments which he/she joins in. In our 
MGSS, shareholders are more flexible to participate in different groups. We show that the MLSS is only a special case of MGSS. 

Note that a secret in MGSS (or MLSS) is still recovered in just one group (or level), which is actually the same as (𝑡, 𝑛)-SS 
in nature. So, the security of MGSS depends on (𝑡, 𝑛) SS to large extent. In other words, if (𝑡, 𝑛)-SS is vulnerable to some 
attacks, so is MGSS or MLSS.  However, there exits the following 2 attacks, Illegal participant (IP) and t-Share Capture (SC) 
attack in (𝑡, 𝑛) SS. To construct a desirable MGSS, both attacks have to be thwarted.  

A shareholder is called participant when it participates in secret reconstruction. In IP attack, an adversary pretends a legal 
shareholder, but without a valid share, and participates in secret reconstruction with other 𝑡 or more than 𝑡 legal shareholders. 
1) If all the shareholders are supposed to pool shares simultaneously, the adversary can send a wrong share to the others. When 
the adversary receives any 𝑡 valid shares, it can compute the original secret. But the other shareholders may not obtain the 
correct secret because they may use the wrong share to evaluate the secret. In this case, the adversary obtains the right secret 
while the others may get wrong ones. 2) If a (𝑡, 𝑛)-SS does not require all participants to release their shares at the same time, 
the adversary is also able to reconstruct the secret as long as it waits to receive 	𝑡 valid shares from the others. Having at least 
𝑡 shares, the adversary can forge a valid share and release it to the others. In this way, the adversary can figure out the secret or 
a valid share without being noticed by others. The attack model is like active attack in cryptography. Figure 2 is an example of 
IP attack in (𝑡, 𝑛)-SS with 𝑡 ≤ 3. 

 

 
Fig 2. Illegal Participant attack in (𝒕, 𝒏)-SS 

 

In SC attack, an adversary cannot participate in recovering secret but aims to obtain the secret by capturing shares from legal 
participants. The attack model is like passive attack in cryptography. In 𝑡, 𝑛 -SS, each pair of participants exchange shares 
during secret reconstruction. If 𝑚(𝑚 ≥ 𝑡)  shareholders recover the secret, an adversary merely needs to capture any 𝑡 
messages from different participants, each contains a share, before obtaining the secret. Therefore, if a (𝑡, 𝑛)-SS or MGSS 
scheme ensures that an adversary has to capture all the 𝑚 messages before figuring out the secret, it is capable of preventing 
SC attack. Figure 3 shows an example with 𝑚 = 4 participants and 𝑡 ≤ 3. 

 



 

                        Fig 3. t-Share Capture attack in (𝒕, 𝒏)-SS 	
	

In order to defeat IP attacks in (𝑡, 𝑛)-SS, Chor et al. [16] proposed a notion of verifiable secret sharing (VSS). Up to now, 
many VSS schemes [17-21] have been proposed in the literature. Habeeb [22] gave a VSS based on non-abelian group. Mashhadi 
S et al. [23] proposed 2 multi-VSS schemes based on nonhomogeneous linear recursion and linear feedback shift register public-
key cryptosystem respectively. Undoubtedly, VSS is able to check the validity of each share, however, they are usually more 
complicated in computation (e.g. depend on some hard problem in mathematics) and need more information to enable share 
verification.  

In order to prevent SC attack, Harn [24] proposed a security (𝑡, 𝑛)-SS using the linear combination of shares based on the 
property of homomorphism [25] of Lagrange interpolation polynomials. In this scheme, the dealer generates shares using 𝑘 
polynomials so that each shareholder has to keep 𝑘 shares. During secret reconstruction, each participant releases a linear 
combination of its 𝑘 private shares (i.e. Lagrange Component) to recover the secret. In this way, an adversary obtains the secret 
only when it captures each Lagrange Component from distinct participants. 

 

For supporting the above multi-group application, we need to propose a secure MGSS scheme capable of preventing IP and 
SC attacks in (𝑡, 𝑛)-SS. The proposed scheme has the following contributions. 

1) It extends the notion of multilevel to multi-group and presents a more flexible and generic scheme. 

2) The proposed scheme can defend IP attack, which means any participant without valid share cannot obtain the secret even 
if all participants are allowed to pool shares asynchronously. 

3) The proposed scheme can defend SC attack, i.e., an adversary cannot obtain the secret if it fails to capture all messages 
exchanged among different participants during secret reconstruction. 

4) Compared with related schemes, each shareholder in MGSS is allowed to keep a single private share no matter how many 
groups it participates in. 

 

The rest of this paper is organized as follows. In the next section, we give the definition of tightly coupled multi-group 
threshold secret sharing. In Section 3, we introduce the CRT and Asmuth-Bloom SS, and review Harn-Miao MLSS. In Section 
4, we propose our tightly coupled multi-group threshold secret sharing scheme. In Section 5, we prove it is correct. In Section 
6, we give security analysis. The conclusion are given in Section 7. 

  

2. Definitions 
This section gives the following 2 definitions, Multi-Group threshold Secret Sharing (MGSS) and Tightly Coupled Multi-

group threshold secret sharing. 

 

2.1. Multi-group threshold secret sharing scheme 
Definition 1: Multi-group threshold secret sharing scheme (MGSS) 

A scheme is called multi-group threshold secret sharing scheme if it satisfies the following requirements: 
1) There are totally 𝑛 shareholders 𝑈4, 𝑖 = 1,2…𝑛, and 𝑔 groups 𝐺:, 𝑗 = 1,2…𝑔, in the scheme. Each group has the 



threshold value 𝑡:, where 𝑗 = 1,2, … , 𝑔. 

2) A shareholder 𝑈4 is originally allocated into a group 𝐺: and keeps only one share in this group, where 𝐺: is called the 
home group of 𝑈4 and 𝑈4 is an aboriginal shareholder in 𝐺: accordingly. Futhermore, 𝑈4 may be also allowed to 
participate in secret reconstruction of another group 𝐺<, 𝑘 ≠ 𝑗. In this case, 𝑈4	is called an immigrant shareholder of 
𝐺<. 

3) In each group	𝐺:	with totally	𝑁:	shareholders (either aboriginal or immigrant), 𝑡: or more than 𝑡: shareholders are able 
to recover the secret while any less than 𝑡: shareholders cannot obtain the secret for 𝑡: ≤ 𝑁:. 

 
Fig 4. Model of MGSS 

Remark 2.1. Fig 4 is a model of MGSS. Compared with multilevel threshold secret share scheme, multi-group scheme is 
more general and flexible. It breaks shareholders into flat groups instead of hierarchical levels such that groups are not necessarily 
hierarchical. That is, in multilevel scheme, all shareholders at a higher level are able to participate in secret reconstruction of all 
lower levels while shareholders at a lower level cannot do it at any higher level. In multi-group scheme, a part of shareholders 
in group 𝐺4, can participate in secret reconstruction in group 𝐺:. Conversely, some shareholders in group 𝐺: can also do that 
in group 𝐺4. Of course, there may be some groups in which shareholders from other groups are not allowed to participate in 
recovering the secret, but some shareholders of these groups can participate in other groups. Therefore, multi-level scheme is 
only a special case of multi-group scheme. 
 

2.2. Tightly coupled multi-group threshold secret sharing scheme 
In order to defeat both IP and SC attack in MGSS, any 𝑚 shareholders in each group 𝐺:, are supposed to form a tightly 

coupled subgroup during secret reconstruction with		𝑡: ≤ 𝑚 ≤ 	𝑁:. It means that recovering the secret requires that each of the 
𝑚 participants has a valid share in 𝐺: and actually participates in secret reconstruction. Hence, we first present the notion of 
tightly coupled multi-group threshold secret sharing scheme. 

 

Definition 2: Tightly Coupled Multi-Group threshold Secret Sharing scheme 

A MGSS is called Tightly Coupled MGSS scheme if it satisfies the following requirements: 
1) There are totally 𝑁: shareholders (either aboriginal or immigrant) in group	𝐺: and the threshold is 𝑡:. 

2) In each group	𝐺:, any 𝑡: or more than 𝑡: shareholders can recover the secret while less than 𝑡: shareholders cannot.  

3) In each group	𝐺:, once 𝑚, 	(𝑡: ≤ 𝑚 ≤ 	𝑁:) shareholders collaborate to recover the secret, the secret can be reconstructed 
only if each of them actually participates in secret reconstruction with its valid share. 

 
Fig 5. Model of tightly coupled MGSS 

Remark 2.2 An ordinary (𝑡, 𝑛)-SS scheme does not have the property 3), 𝑚	(𝑚 ≥ 𝑡) shareholders is actually loosely 
coupled in secret reconstruction. That is, any 𝑡 of 𝑚 shareholders, instead of all, may be employed by an adversary to recover 
the secret. Even if there exist illegal participants without valid shares, the secret may still be recovered as long as the illegal 
participants do not actually participate in recovering the secret with invalid shares. Therefore, it is vulnerable to IP and SC attack. 



To guarantee a MGSS scheme is resistant to the 2 attacks, i.e., possesses the property of 3), all 𝑚 participants in	𝐺: need to be 
closely related to each other to prevent an adversary, without a valid share, from obtaining the secret. In other words, all 𝑚 out 
of	𝑁: shareholders in	𝐺:	need to form a tightly coupled subgroup to force all 𝑚 participants to actually participate in secret 
reconstruction and ensure that secret reconstruction fails as long as any participant releases an invalid share. In section 4, we 
will show how 𝑚 participants form a tightly coupled subgroup.   

3. Preliminaries 

3.1. The Chinese Reminder Theorem 

The Chinese Reminder Theorem (CRT) is a method of determining a larger integer from given system of congruent equations. 
That is, given the system of 𝑛 congruent equations, 

 

𝑥 = 	 𝑠@	𝑚𝑜𝑑	𝑝@ 

𝑥 = 	 𝑠D	𝑚𝑜𝑑	𝑝D 

 
 
 

𝑥 = 	 𝑠E	𝑚𝑜𝑑	𝑝E 
 

where gcd 𝑝4, 𝑝: = 1 for 𝑖 ≠ 𝑗. The value of 𝑥 can be evaluated as 𝑥 = I
JK
𝑦4𝑠4E

4M@ 	𝑚𝑜𝑑	𝑁, where 𝑁 =	 𝑝4E
4M@  and 

I
JK
𝑦4	𝑚𝑜𝑑	𝑝4 = 1. 

 

3.2. Asmuth-Bloom SS [10] 

In Asmuth-Bloom (𝑡, 𝑛)-SS, the dealer selects a prime integer 𝑝N and a sequence of pairwise coprime positive integers, 
𝑝@, 𝑝D, … , 𝑝E with 𝑝@ < 𝑝D < 𝑝E, 𝑝N𝑝EPQRD …𝑝E < 𝑝@𝑝D …𝑝Q and gcd 𝑝4, 𝑝: = 1 for 𝑖 ≠ 𝑗. The modulus 𝑝4 is the public 
information of shareholder 𝑈4, 𝑖 = 1,2, … , 𝑛. Then, the dealer picks a secret 𝑠 and random integer 𝛼 in 𝑍JU such that 𝑥 =
𝑠 + 𝛼𝑝N < 𝑝@𝑝D …𝑝Q, computes and deliveries 𝑠4 = 𝑥	𝑚𝑜𝑑	𝑝4 to 𝑈4 as the share securely. If 𝑚, (𝑚 ≥ 𝑡) shareholders, e.g., 
𝑈@, 𝑈D, …𝑈W want to recover the secret, each releases its share to the others. After collecting all 𝑚 shares, the value of 𝑥 can 
be evaluated as 𝑥 = I

JK
𝑦4𝑠4W

4M@ 	𝑚𝑜𝑑	𝑁, where 𝑁 =	 𝑝4W
4M@  and I

JK
𝑦4	𝑚𝑜𝑑	𝑝4 = 1. Finally, the secret 𝑠 can be obtained as 

𝑠 = 𝑥	𝑚𝑜𝑑	𝑝N. 
 
Remark 3.1. Asmuth-Bloom’s scheme implements the basic function of (𝑡, 𝑛)-SS based on CRT, but it is vulnerable to IP 

and SC attacks. In section 4, the tightly coupled MGSS is proposed based on Asmuth-Bloom (𝑡, 𝑛)-SS. 
 

3.3. Harn-Miao MLSS [15] 

In Harn-Miao MLSS, all shareholders are classified into 𝑙 levels	𝐿4, 	𝑖 = 1,2, … , 𝑙. 𝐿4 has the higher level than	𝐿: when 𝑖 
is smaller than 𝑗. The shareholder at higher level is allowed to participate in secret reconstruction at lower levels. Each level 𝐿4, 
has 𝑛4  aboriginal shareholder with the threshold, 𝑡4  (𝑡4 ≤ 𝑛:4

:M@ ). The Harn-Miao MLSS consists of two phases: share 
generation and secret reconstruction. 

 

Share generation: The dealer selects an integer 𝑝N  and the secret 𝑠 ∈ 𝑍JU . For each level, 𝐿4  having 𝑛4  aboriginal 
shareholders, the dealer selects a sequence of pairwise coprime positive integers 𝑝@4 , 𝑝D4 , …	𝑝EK

4  such that 𝑝@4 < 𝑝D4 < …	< 𝑝EK
4 , 

𝑝N𝑝EKPQKRD
4 𝑝EKPQKR[

4 … 𝑝EK
4 < 	 𝑝@4𝑝D4 … 𝑝QK

4  and gcd 𝑝N, 𝑝<4 = 1 , 𝑘	 = 	1,2, … , 𝑛4,  where 𝑝<4  is the public modulus associated 
with shareholder 𝑈<4 . For each level	𝐿4, the dealer selects a random integer 𝛼4 such that 𝑝EKPQKRD

4 𝑝EKPQKR[
4 … 𝑝EK

4 < 𝑠	 +	𝛼4𝑝N <
𝑝@4𝑝D4 … 𝑝QK

4  holds, which ensures the value 𝑠 + 𝛼4𝑝N falls into the 𝑡4-shreshold range (𝑝N𝑝EKPQKRD
4 𝑝EKPQKR[

4 … 𝑝EK
4 < 	 𝑝@4𝑝D4 … 𝑝QK

4 ). 
The dealer computes 𝑠<4 = 𝑠 + 𝛼4𝑝N	𝑚𝑜𝑑	𝑝<4  and sends it to shareholder 𝑈<4  as the share secretly. In order to enable 𝑈<4

	
, with 

the share 𝑠<4  at 𝐿4 to participate in secret reconstruction at 𝐿:	(𝑖	 < 	𝑗), the dealer selects a new modulus 𝑝<,:4  for it with 𝑝Q\
: <

	𝑝<,:4 < 	 𝑝E\PQ\RD
: . Then, the dealer picks 𝛼:  with  𝑝E\PQ\RD

: 𝑝E\PQ\R[
: … 𝑝E\

: < 𝑠	 +	𝛼:𝑝N < 𝑝@
:𝑝D

: … 𝑝Q\
:  and computes 𝛥𝑠<,:4 =

	 𝑠	 + 	𝛼:𝑝N 	− 	𝑠<4 	𝑚𝑜𝑑	𝑝<,:4 . The values (𝛥𝑠<,:4 , 𝑝<,:4 ) are the public information associated with the shareholder 𝑈<4  at 𝐿: . 
Consequently, each shareholder 𝑈<4  keeps only one private share 𝑠<4 , which is at the level 𝐿4. 

 
Secret reconstruction: The secret can be recovered if 𝑡: or more than 𝑡: participants, who comes from 𝐿: or higher levels, 

…
	…
	



collaborate to reconstruct the secret in any level 𝐿:. During the secret reconstruction at level 𝐿:, a participant 𝑈<4 , with the 
original share 𝑠<4  at higher level 𝐿4 , uses (𝑠<4 + 𝛥𝑠<,:4 ) as the new share and 𝑝<,:4  as the new modulus. Then, the unique 
value	𝑦 = 𝑠 + 𝛼:𝑝N can be computed by using CRT and the secret s is obtained as 𝑠 = 𝑦	𝑚𝑜𝑑	𝑝N. 

 
Remark 3.2. Harn-Miao MLSS achieves multilevel threshold secret sharing by a simple way based on CRT. However there 

are two problems with the scheme.  

1) In the scheme, if 𝑈<4
	
, with the share 𝑠<4  at 𝐿4, needs to participate in recovering the secret at 𝐿:		(𝑖 < 𝑗), the dealer are 

required to select a modulus 𝑝<,:4 , such that 𝑝Q\
: < 	𝑝<,:4 < 	 𝑝E\PQ\RD

: . However, modulus 𝑝<,:4  does not exist if 𝑡: is bigger 

than 𝑛: − 𝑡: + 2. Moreover, the value 𝑛: − 𝑡: + 2 may be a negative number so that 𝑝E\PQ\RD
:  does not exsit, because 𝑡: 

is required to be smaller than 𝑛^
:
^M@  rather than 𝑛:. The problem was also mentioned by Ersoy et al. in [26], but they did 

not give an appropriate countermeasure. 
2) Like basic (𝑡, 𝑛)-SS, Harn-Miao MLSS cannot defeat IP and SC attacks. 

Therefore, the following more general and secure scheme, tightly coupled MGSS, is proposed in the next section. 
 

4. Tightly coupled multi-group threshold secret sharing scheme 

4.1. Scheme model and security goals 

This section presents a tightly coupled MGSS scheme which is capable of defeating IP and SC attacks. The proposed scheme 
includes 3 types of entities, the Dealer, shareholders and adversaries.	

Dealer: Trusted by all shareholders, the dealer is responsible for the selection of system parameters (e.g. the secret, secret 
space, moduli and so on) in addition to generation and delivery of shares. Suppose that there is an absolutely secure channel 
between the dealer and each shareholder and thus the dealer can allocate each shareholder a share securely. 

  Shareholder: Each shareholder receives a share from the dealer securely. In a group, each pair of shareholders keeps a private 
channel, through which both shareholders exchange messages (containing shares) privately during secret reconstruction. But a 
private channel may be cracked and thus messages (or shares) could be captured in some extreme cases. When a shareholder has 
received all required messages from the other participants, it recovers the secret independently. However, a shareholder may 
want to know shares of other shareholders. Moreover, less than 𝑡 of them may try to recover the secret.  

  Adversary: An adversary has no valid shares but wants to obtain valid shares or the final secret. It is able to capture no more 
than (𝑚 − 1) messages in secret reconstruction if there are 𝑚 shareholders recovering the secret. Moreover, an adversary may 
use a fake share to pretend a legal shareholder and participate in secret reconstruction with other legal shareholders. 

 

Security goals: The core function of secret sharing is to protect the secret from exposure to adversaries in nature, therefore, 
our scheme guarantees that an adversary, without any valid share, cannot obtain the secret in any group. In the aforementioned 
attack model, our scheme aims to achieve the following security goals. It is similar to cheating immune secret sharing described 
by Martin [27]. 

(1) In each group 𝐺4, any 𝑡4 or more than 𝑡4 shareholders can recover the secret if all of them have valid shares while any 
less than 𝑡4 shareholders cannot recover the secret. 

(2) Anyone, who does not participate in the secret reconstruction, cannot obtain the secret by capturing no more than (𝑚 − 1) 
messages when 𝑚 (𝑚 ≥ 𝑡4) shareholders recover the secret in group 𝐺4. In other words, it should be resistant against SC 
attack.  

(3) When 𝑚 (𝑚 ≥ 𝑡4) participants collaborate to recover the secret in group 𝐺4, they can obtain the secret only if each of the 
𝑚 participants has a valid share. In other words, anyone cannot obtain the secret if some participant has not a valid share. 
This is to guarantees the scheme can defeat IP attack. 

 

4.2. Symbol definition 

Before describing the scheme, we first define some important notations as listed in Table 1. 

4.3. Our scheme 

  In the proposed scheme, shareholders are divided into 𝑔 groups 𝐺4, 𝑖 = 1,2…𝑔. Each shareholder keeps only one share in 
home group. Define 𝑛4 and 𝑁4	as the numbers of aboriginal shareholders and all shareholders in 𝐺4 respectively. Each group 
𝐺4 has the threshold 𝑡4 with 1 ≤ 𝑛4 ≤ 𝑁4, 1 ≤ 𝑡4 ≤ 𝑁4. In fact, there is no clear relation between 𝑛4 and 𝑡4. An aboriginal 
shareholder or immigrant shareholder of 𝐺4	is uniformly called participant if it participates in secret reconstruction in the group. 
By using the basic (𝑡, 𝑛)-SS, the secret can be recovered if there are 𝑡4 or more than 𝑡4 participants in group 𝐺4. 



Table 1: Notations 

Symbol Notion 

	𝐺4 the 𝑖Q^ group 

𝑁4 	 the numbers of all shareholders in group	𝐺4 

𝑛4 the numbers of aboriginal shareholders in group	𝐺4 

𝑡4 	 the threshold in group	𝐺4 

𝑈<4  
the 𝑘Q^ aboriginal shareholder in group	𝐺4 

𝑠	 the original secret 

𝑠<4  the private share of 𝑈<4  in home group 	𝐺4 

𝑝<4  aboriginal modulus of 𝑈<4 	in group 𝐺4 

𝑠<,4
:  immigrant share of 𝑈<4  used in group 𝐺:  

𝑝<,4
: 	 immigrant modulus of 𝑈<4  used in group 𝐺: 

∆𝑠<,4
:  public difference between 𝑠<4  and 𝑠<,4

:  
 

In the following part, the tightly coupled MGSS scheme is proposed based on Asmuth-Bloom (𝑡, 𝑛)-SS, it includes 3 phases: 
1) share generation, 2) share protection and 3) secret reconstruction. 
 

1) Share generation: The dealer selects a prime 𝑝N and define 𝑍JU as the secret space. For each group 𝐺4, the dealer selects 
a sequence of pairwise coprime positive integers 𝑝@4 < 	𝑝D4 < ⋯ <	𝑝IK

4 , such that (𝑝N)D𝑝IKPQKRD
4 𝑝IKPQKR[

4 … 𝑝IK
4 < 	 𝑝@4𝑝D4 … 𝑝QK

4 , 
𝑁4(𝑝N)[ < 𝑝@4 (𝑝N − 1) and gcd 𝑝N, 𝑝<4 = 1, where 𝑘 = 1,2…𝑁4, (𝑝N)D is the square of 𝑝N and (𝑝N)[ is the cube of 𝑝N. 
The dealer first chooses 𝑛4 out of the 𝑁4 integers and allocates each to an aboriginal shareholder as the aboriginal modulus. 
Accordingly, the other integers are used as immigrant moduli of immigrant shareholders of the group. In order for not leaking 
information of the share, an immigrant shareholder of 𝐺4 	 must have a modulus smaller than the one in its home group. Then, 
the dealer selects the secret s∈ 𝑍JU  and a random integer 𝛼4 , such that 𝑝IKPQKRD

4 𝑝IKPQKR[
4 … 𝑝IK

4 < 𝑦4 = 𝑠 + 𝛼4𝑝N <
(𝑝@4𝑝D4 … 𝑝QK

4 )/𝑝N holds to ensure the value 𝑦4 falls into the 𝑡4-threshold range (𝑝IKPQKRD
4 𝑝IKPQKR[

4 … 𝑝IK
4 , (𝑝@4𝑝D4 … 𝑝QK

4 )/𝑝N). Finally, 
the dealer computes 𝑠<4 = 𝑦4	𝑚𝑜𝑑	𝑝<4  and sends it to shareholder 𝑈<4  as the share securely, thus	 𝑈<4 	 is the aboriginal 
shareholder of 𝐺4. 

If 𝑈<4 , an aboriginal shareholder of 𝐺4, is allowed to participate in recovering the secret in group 𝐺:, 𝑗 ≠ 𝑖, the dealer needs 
to generate extra information related to 𝐺: for the shareholder. Concretely, the dealer selects a random integer 𝛼: such that 
𝑝I\PQ\RD
: 𝑝I\PQ\R[

: … 𝑝I\
: < 𝑦: = 𝑠 + 𝛼:𝑝N < (𝑝@

:𝑝D
: … 𝑝Q\

: )/𝑝N  and computes the value ∆𝑠<,4
: = (𝑠 + 𝛼:𝑝N − 𝑠<4 )𝑚𝑜𝑑	𝑝<,4

:  , 

where 𝑝<,4
:  is picked from the sequence 𝑝@

:, 𝑝D
: … 𝑝I\

:  with 𝑝<,4
: < 𝑝<4 . Then, the dealer makes ∆𝑠<,4

:  and 𝑝<,4
:  publicly known. 

Obviously, when 𝑈<4  participates in secret reconstruction as the immigrant shareholder in 𝐺:, it uses 𝑝<,4
:  as the immigrant 

modulus and 𝑠<,4
: = 𝑠<4 + ∆𝑠<,4

: = 𝑠 + 𝛼:𝑝N mod	𝑝<,4
:  as the new share in group 𝐺:. 

 

  Remark 4.1. Although the dealer publishes some public values 𝛥𝑠<,4
: , no information about 𝑠 can be derived from them. 

The reason is that: 

𝛥𝑠<,4
: = 𝑠 + 𝛼:𝑝N − 𝑠<4 𝑚𝑜𝑑	𝑝<,4

:  

= 𝑠 + 𝛼:𝑝N − 𝑠 + 𝛼4𝑝N 𝑚𝑜𝑑𝑝<4 𝑚𝑜𝑑	𝑝<,4
:  

= 𝑠 + 𝛼:𝑝N − 𝑠 − 𝛼4𝑝N + 𝛽𝑝<4 𝑚𝑜𝑑	𝑝<,4
:  

= (𝛼: − 𝛼4)𝑝N + 𝛽𝑝<4 𝑚𝑜𝑑	𝑝<,4
: 																						(4 − 1) 

where 𝛽 is a random integer. Obviously, the secret 𝑠 is not included in equation (4-1), which means that 𝛥𝑠<,4
:  does not reveal 

information about 𝑠. 

 

Remark 4.2. In our scheme, the dealer selects many moduli in group 𝐺:, uses some of them to compute shares for immigrant 



shareholders and guarantee there exists 𝑝<,:4  available with 𝑝<,:4 > 𝑝<4 . This ensures that the public information 𝛥𝑠<,4
:  does not 

reveal information about 𝑠<,4
: . Since a shareholder keeps only one private share while both ∆𝑠<,4

:  and 𝑝<,4
:  are made public, an 

adversary will obtain an interval [𝛥𝑠<,4
: , 𝛥𝑠<,4

: + 𝑝<4 	]	𝑚𝑜𝑑		𝑝<,4
:  about the new share 𝑠<,4

:  in 𝐺:. However, the immigrant share 
should be over 0, 𝑝<,4

:  for the adversary. If 𝑝<,:4 > 𝑝<4  holds, [𝛥𝑠<,4
: , 𝛥𝑠<,4

: + 𝑝<4 	]	𝑚𝑜𝑑		𝑝<,4
:  is a subrange in 0, 𝑝<,4

: . In other 
words, the adversary narrows the range of 𝑠<,4

: . Therefore, the aboriginal modulus 𝑝<4  should be larger than immigrant modulus 
𝑝<,:4 . In more detail, the only problem is that the value 𝑠<,4

:  may not be a uniform distribution in the interval 𝑍Ji,K\
. The probability 

of values in the interval [𝛥𝑠<,4
: 	, 𝛥𝑠<,4

: + 𝑝<4 − 1 	𝑚𝑜𝑑	𝑝<,4
: ]	𝑚𝑜𝑑	𝑝<,4

: , is 𝑝<4 /𝑝<,4
: /𝑝<4 , and the probability of the other values is 

𝑝<4 /𝑝<,4
: /𝑝<4 . Even so, the adversary cannot narrow the range of 𝑠<,4

:  by the public information. 

	

2) Share protection: Suppose 𝑚		(𝑡4 ≤ 𝑚 ≤ 𝑁4)  shareholders participate in recovering the secret in group 𝐺4 . As an 
immigrant shareholder among them 𝑈<

:, with the share 𝑠<
: 	 in home group 𝐺: ,	computes its new share 𝑠<,:4 = 𝑠<

: + ∆𝑠<,:4  in 𝐺4 	
before secret reconstruction. In this case, each participant, either aboriginal or immigrant shareholder, has a share in 𝐺4. For 
simplicity, we rename each of the 𝑚 participants as 𝑈Wi with the share 𝑠Wi and modulus	 𝑝Wi, 𝑘 = 1,2…𝑚. Before secret 

reconstruction, each participant, e.g. 𝑈Wi constructs a randomized component	𝑠Wj
∗ = 𝑠Wi

I
Jli

𝑎Wi + 𝑟Wi
I
Jli

𝑝N 𝑚𝑜𝑑	𝑁, 

where 𝑁 = 𝑝Wi
W
<M@ , ( I

Jli
)𝑎Wi	𝑚𝑜𝑑	𝑝Wi 	= 	1 and 𝑟Wi is a random integer selected by 𝑈Wi in 𝑍JU. 

 
Remark 4.3. To defeat IP and SC attacks, each shareholder e.g. 𝑈Wi constructs a randomized component	𝑠Wj

∗  with its share 
	𝑠Wi , random integer 𝑟Wi ∈ 𝑍JU  and all participants’ moduli before secret reconstruction. Obviously, the randomized 
component 	𝑠Wj

∗ 	 servers as 2 functions, one is to protect the share 	𝑠Wi and the other is to bind all participants together. That 
is because each participant’s randomized component, e.g., 	𝑠Wj

∗  contains	𝑁, the product of all the moduli and thus the share 
𝑠Wi cannot be separated from the component 	𝑠Wj

∗  without knowing the random number 	𝑟Wi. In this way, all 𝑚 participants 
form a tightly coupled subgroup. 

 

3) Secret reconstruction: Each participant e.g., 𝑈Wi sends its component 𝑠Wj
∗  to the other (𝑚 − 1) participants in private 

channels. On receiving all components, 𝑈Wi obtains the secret 𝑠 by computing 𝑠 = 𝑠Wi
∗W

<M@ 𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N. Once the 
secret is recovered in a group, the secret is not classified any more because the scheme is a single SS scheme.   

 

5. Correctness analysis  
  In the proposed scheme, if 𝑚 (𝑡4 ≤ 𝑚 ≤ 𝑁4) participants are able to recover the secret in group 𝐺4, it means the secret 𝑠 =

𝑠Wi
∗W

<M@ 	𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N. Now, let suppose 𝑝Wo < 𝑝Wp < ⋯ < 𝑝Wl  without losing generality, we prove the equation in 2 
steps. 
 

Proof.                                                       Remark: 

(1) 𝒚𝒊 + 𝒓𝒎𝒌(𝑵/𝒑𝒎𝒌	)	𝒑𝟎
𝒎
𝒌M𝟏 < 𝑁                                     

   𝑦4 + 𝑟Wi(𝑁/𝑝Wi)𝑝N
W
<M@  

   < 𝑦4 + 𝑝ND𝑁/𝑝Wi	
W
<M@                                                          𝑟𝑒𝑚𝑎𝑟𝑘5.1: 𝑟Wi ∈ 𝑍JU 

   < 𝑦4 + 𝑚𝑝ND𝑁/𝑝Wo                             𝑟𝑒𝑚𝑎𝑟𝑘5.2:	𝑝Wo ≥ 	𝑝@4 , 𝑤ℎ𝑒𝑟𝑒		𝑝@4 	𝑖𝑠	𝑡ℎ𝑒	𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡	𝑚𝑜𝑢𝑑𝑙𝑒	𝑖𝑛	𝐺4   

   < 𝑦4 + 𝑁4𝑝ND𝑁/𝑝Wo 

   < 𝑦4 + (𝑝N − 1)𝑁/𝑝N                                                   𝑟𝑒𝑚𝑎𝑟𝑘5.3:	𝑁4𝑝N[ < 𝑝@4 (𝑝N − 1) 

   < 𝑁/𝑝N + (𝑝N − 1)𝑁/𝑝N                                               𝑟𝑒𝑚𝑎𝑟𝑘5.4:	𝑦4 < (𝑝@4𝑝D4 … 𝑝QK
4 )/𝑝N 

   < 𝑁 

(2) 𝒔𝒎𝒌
∗𝒎

𝒌M𝟏 𝒎𝒐𝒅	𝑵	𝒎𝒐𝒅	𝒑𝟎 = 𝒔 

   𝑠Wi
∗W

<M@ 𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N 



   = { (𝑠Wi(𝑁/𝑝Wi)𝑎Wi + 𝑟Wi(𝑁/𝑝Wi)𝑝N
W
<M@ )	𝑚𝑜𝑑	𝑁	}𝑚𝑜𝑑	𝑝N 

   = 𝑠Wi
I
Jli

𝑎Wi
W
<M@ 𝑚𝑜𝑑	𝑁 + 𝑟Wi

I
Jli

𝑝NW
<M@ 	𝑚𝑜𝑑	𝑁	 𝑚𝑜𝑑	𝑝N 

   = { 𝑦4 + 𝑟WK
I
Jli

𝑝NW
<M@ 	𝑚𝑜𝑑	𝑁	}𝑚𝑜𝑑	𝑝N                                        

   = (𝑠 + 𝛼𝑝N + 𝑟WK(𝑁/𝑝Wi)𝑝N
W
<M@ )		𝑚𝑜𝑑	𝑝N 

   = 𝑠 

 

6. Security analysis 

This section aims to prove that our scheme achieve the goals listed in 4.1. We give the following 3 theorems to prove the 
security. Not that the secret is selected from 𝑍JU, thus an event is deemed to be impossible if the probability of its occurrence is 
equal or less than 1/𝑝N. 

 
Theorem 6.1. In each group 𝐺4, any 𝑡4 or more than 𝑡4 shareholders can recover the secret if all of them use valid shares, 
while less than 𝑡4 shareholders cannot recover the secret. 
Proof. The proof of the former part has been given in correctness analysis. Thus, we only need to prove the later part, that is, 
less than 𝑡4 shareholders cannot recover the secret in 𝐺4. 
 

 
                 Fig 3. Relationship among parameters in Theorem 6.1 
 

  Let us consider the extreme case of 𝑚 = (𝑡4 − 1) legal shareholders conspiring to recover the secret. Each participant e.g.
	𝑈Wi  sets the random number	 𝑟Wi = 0 	 in constructing its component. In other words, they pool their shares instead of 

randomized component together to recover the secret. Then, each shareholder has 𝑚 = (𝑡4 − 1) shares and thus can compute 
𝑦4� = 𝑠Wi(𝑁/𝑝Wi)𝑎Wi

W
<M@ 	𝑚𝑜𝑑	𝑁  by CRT, where 𝑁 = 𝑝Wi

W
<M@  and ( I

Jli
)𝑎Wimod	𝑝Wi = 1.  Obviously, we have 𝑦4 

=𝑦4� + 𝑙𝑁 thanks to CRT, where 𝑙 is an integer. Then 𝑙 falls in the integer set 𝐿, where 𝐿 = (0, (𝑝@4𝑝D4 … 𝑝QK
4 )/𝑁𝑝N). The 

number of possible candidates for 𝑙 , denoted by 𝑁_𝑙 , is bigger than 𝑝N  because of 𝑁_𝑙 = (𝑝@4𝑝D4 … 𝑝QK
4 )/(𝑁𝑝N) >

(𝑝@4𝑝D4 … 𝑝QK
4 )/(𝑝N𝑝IKPQKRD

4 𝑝IKPQKR[
4 … 𝑝IK

4 ) > 𝑝N. So, the probability of less than 𝑡4 shareholders recovering the secret is no more 
than1/𝑝N. It means that the 𝑡4 − 1 participants cannot obtain more information than they directly guess the secret within the 
secret space. 

 

Theorem 6.2. Our scheme can defend SC attack. That is, an adversary cannot obtain the secret even if it captures up to	𝑚 − 1 
components when 𝑚 (𝑚 ≥ 𝑡4) shareholders recover the secret in group 𝐺4.  

Proof. Suppose that an adversary has captured (𝑚 − 1) messages sent by different shareholders in secret reconstruction. There 
are two methods of attempting to recover the secret. 

(1) If 𝑚 = 𝑡4, the adversary capture (𝑡4 − 1) components. It cannot obtain the secret obviously. If 𝑚 > 𝑡4, the adversary may 
attempt to obtain 𝑡4 original shares and use CRT to figure out the secret. However, only knowing a component	𝑠Wi

∗ , the 
adversary has the probability 1/𝑝N	to derive the original share 𝑠Wi. The proof is given as follows. 

Due to 𝑠Wi
∗ = 𝑠Wi

I
Jli

𝑎Wi + 𝑟Wi
I
Jli

𝑝N 𝑚𝑜𝑑	𝑁, the values, 𝑁/𝑝Wi and 𝑎Wi can be computed by anyone and 𝑝N 

and 𝑝Wi are public. 

𝑠Wi
∗ = (𝑠Wi

I
Jli

𝑎Wi + 𝑟Wi
I
Jli

𝑝N)𝑚𝑜𝑑	𝑁 (6-1) 

=>       I
Jli

𝑎Wi𝑠Wi = 𝑠Wi
∗ − 𝑟Wi

I
Jli

𝑝N 𝑚𝑜𝑑𝑁  (6-2) 

=>       𝑎Wi𝑠Wi = (𝑠Wi
� − 𝑟Wi𝑝N)𝑚𝑜𝑑	𝑝Wi  (6-3) 



It is followed by 𝑎Wi𝑠Wi = (𝑠Wi
� − 𝑟Wi𝑝N)𝑚𝑜𝑑	𝑝Wi because of		 I

Jli
|𝑠Wi
∗ , gcd I

Jli
, 𝑝Wi = 1 and gcd 𝑎Wi, 𝑝Wi = 1, 

where 𝑠Wi
� 𝑁/𝑝Wi = 𝑠Wi

∗ 	𝑚𝑜𝑑	𝑁. As the result, each different 𝑟Wi produces a unique value of 𝑠Wi for given 𝑠Wi
�  in (6-3). 

Since 𝑟Wi is randomly selected in 𝑍JU, the probability of deriving the original share	𝑠Wi is 1/𝑝N with the knowledge 𝑠Wi
∗ . 

(2) Without losing the generality, suppose the adversary has the (𝑚 − 1) components {	𝑠Wo
∗ , 𝑠Wp

∗ , …	𝑠Wl�o
∗ } available. Although 

the adversary cannot derive 𝑠Wi from 𝑠Wi
∗ , it still can recover the secret if it obtains the following equation from 𝑠Wi

∗   

𝑐Wi =
𝑠Wi
∗

𝑝Wl

= (𝑠Wi

𝑁�

𝑝Wi

𝑎Wi
� + 𝑟Wi

� 𝑁�

𝑝Wi

𝑝N)𝑚𝑜𝑑	𝑁� 

where 𝑁� = I
Jll

, 𝑎Wi
� I�

Jli
= 1	𝑚𝑜𝑑	𝑝Wi, 𝑟Wi

� = 𝑟Wi

�li
�

�li
. If 𝑟Wi

�  is an integer, 𝑟Wi
� I�

Jli
𝑝N is still integral multiple of 𝑝N, 

which means that the adversary can use the (𝑚 − 1) new components 𝑐Wo, 𝑐Wp, … , 𝑐W��o to recover the secret. Therefore, we 
should prove that 𝑟Wi

�  is not an integer. From the definitions of 𝑎Wi and 𝑎Wi
� , we have  

𝑎Wi
I
Jli

= 1	𝑚𝑜𝑑	𝑝Wi 				=> 	𝑎Wi
I
Jli

= 1 + 𝜍@𝑝Wi		    (6-4) 

𝑎Wi
� I�

Jli
= 1	𝑚𝑜𝑑	𝑝Wi 				=> 	𝑎Wi

� I�

Jli
= 1 + 𝜍D𝑝Wi		    (6-5) 

Let (6-5) divide (6-4), and we get  
�li
� I�

�liI
=

@R�pJli
@R�oJli

					=> 			
�li
�

�li
=

@R�pJli
@R�oJli

𝑝Wl   (6-6) 

In (6-6), 	
�li
�

�li
 is an integer only if (1 + 𝜍@𝑝Wi)|(1 + 𝜍D𝑝Wi) due to 𝑝Wl  is a prime number. However, if (1 + 𝜍@𝑝Wi)|(1 +

𝜍D𝑝Wi) holds, 1 + 𝜍D𝑝Wi must be no less than 1 + 𝜍@𝑝Wi. Because 𝜍@ and 𝜍D are random integer in 𝑍I and 𝑍I�, the 
probability of 1 + 𝜍D𝑝Wi ≥ 1 + 𝜍@𝑝Wi is less than D

I�
, where D

I�
< @

JU
. Therefore, the probability of adversary uses the (𝑚 −

1) new components 𝑐Wo, 𝑐Wp, … , 𝑐W��o to recover the secret is less than @
JU

. 

  Besides, the adversary can directly compute a value 𝑠� = 𝑠Wi
∗WP@

<M@ 	𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N, where 𝑁 = 𝑝Wi
W
<M@ . If 𝑠� happens 

to be equal to the secret s, the adversary can figure out the secret. Let consider the probability of 𝑠� = 𝑠. 

𝑠� = 𝑠    

<=>  𝑠Wi
∗WP@

<M@ 	𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N = 𝑠Wi
∗W

<M@ 	𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N  (6-7) 

<=>  𝑠Wl
∗ + 𝑠Wi

∗WP@
<M@ 	𝑚𝑜𝑑	𝑁 	𝑚𝑜𝑑	𝑁 − 𝑠Wi

∗WP@
<M@ 	𝑚𝑜𝑑	𝑁 = 𝛾′𝑝N  𝛾′	ϵ	Z  (6-8) 

<=>  I
Jll

𝑠Wl𝑎Wl + 𝑟Wl𝑝N 	𝑚𝑜𝑑	𝑁 = 𝛾′𝑝N  𝛾′	ϵ	Z  (6-9) 

<=>  𝑠Wl𝑎Wl + 𝑟Wl𝑝N 	𝑚𝑜𝑑	𝑝Wl = 	𝛾𝑝N  𝛾	ϵ	Z  (6-10) 

For fixed value of 𝑟Wl, the left side of (6-9) varies within the range of 𝑁 with 𝑝Wl  discrete values because of 𝑠Wl ∈

𝑍Jll
. Due to gcd I

Jll
, 𝑝N = 1, (6-9) is equivalent to (6-10) with integer 𝛾� = 𝛾 I

Jll
 . For an adversary, without knowing 

𝑠Wl  and 𝑟Wl , the left side of (6-10) is indistinguishable from a random number uniformly distributed in 𝑍Jll
. In this case, 

the number of possible 𝛾  is at most 𝑝Wl/𝑝N + 1. Consequently, the probability of recovering the secret from (𝑚 − 1) 
components is ( Jll

JU
+ 1)/	𝑝Wl ≈ 1/	𝑝N. 

 

Theorem 6.3.  Our scheme can defeat IP attack. When 𝑚 (𝑚 ≥ 𝑡4) participants attempt to recover the secret in group 𝐺4, 
they can obtain the secret only if each of the 𝑚 participants has a valid share. In other words, anyone cannot obtain the secret 
if there is participant without a valid share. 
Proof. Suppose that there are 𝑚 (𝑚 ≥ 𝑡4) participants recover the secret in group 𝐺4 . However, one of them is an illegal 

participant, pretending to be a legal shareholder and using a mendacious component 𝑠Wl
� = 𝑠Wl + ∆𝑠Wl

I
Jll

𝑎Wl +

𝑟Wl
I

Jll
𝑝N 	𝑚𝑜𝑑	𝑁 to participate in recovering the secret, where ∆𝑠Wl ∈ 𝑍Jll

is the difference between the fake share and 

the correct share 𝑠Wl .   

(1) A legal shareholder will get (𝑚 − 1)  valid components and a fake component. It computes a value 𝑠� = (𝑠Wl
� +

𝑠Wi
∗WP@

< )	𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N. Then, let compute the probability of 𝑠� = 𝑠.  

 

𝑠� = 𝑠 



<=>  (𝑠Wl
� + 𝑠Wi

∗WP@
<M@ 	)𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N = 𝑠Wi

∗W
<M@ 	𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N  (6-11) 

<=>  (∆𝑠Wl
I

Jll
𝑎Wl	𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N + 𝑠Wi

∗W
<M@ − 𝑠Wi

∗W
<M@ )𝑚𝑜𝑑	𝑁	𝑚𝑜𝑑	𝑝N = 	0  (6-12) 

<=>  I
Jll

∆𝑠Wl𝑎Wl	𝑚𝑜𝑑	𝑁 = 𝜇�𝑝N     𝜇�	ϵ	Z    (6-13) 

<=>  ∆𝑠Wl𝑎Wl	𝑚𝑜𝑑	𝑝Wl = 	𝜇𝑝N  𝜇	ϵ	Z  (6-14) 

 

Similarly, because of gcd I
Jll

, 𝑝N = 1, (6-13) is equivalent to (6-14) with integer 𝜇� = 𝜇 I
Jll

. Note that ∆𝑠Wl	is actually 

a random number uniformly distributed in 𝑍Jll
since the illegal participant does not know the true share 𝑠Wl. Therefore, the 

number of possible 𝜇 in (6-14) is also no more than 𝑝Wl/𝑝N + 1. That is, the probability of recovering the secret from (𝑚 −
1) valid components and a fake component is ( Jll

JU
+ 1)/	𝑝Wl ≈ 1/	𝑝N. 

(2) For the illegal participant, it can receive (𝑚 − 1) components from legal participants. It cannot obtain 𝑡4 valid original 
shares, the proof is given in theorem 6.2-(1). If the illegal participant only uses the (𝑚 − 1) valid components, it cannot 
obtain the secret. The proof is also given in theorem 6.2-(2). If the illegal participant uses all the (𝑚 − 1) valid components 
and its fake component to recover the secret, it computes just like a legal shareholder. The probability also equals about 
1/	𝑝N and it is given in theorem 6.3-(1). 

 

Discussion. For improving the security of our scheme, we introduce the other notion of tightly coupled. As a significant side 

effect, the secret range has to be narrower. Because in Harn-Miao MLSS scheme, the secret 𝑠  is in 𝑍JU , where 

𝑝N𝑝EKPQKRD
4 𝑝EKPQKR[

4 … 𝑝EK
4 < 	 𝑝@4𝑝D4 … 𝑝QK

4 . But in our scheme, 𝑝N  has to satisfy 𝑝ND𝑝IKPQKRD
4 𝑝IKPQKR[

4 … 𝑝IK
4 < 	 𝑝@4𝑝D4 … 𝑝QK

4  and 

𝑁4𝑝N[ < 𝑝@4 (𝑝N − 1). In other words, the information rate of our scheme is much less than it of Harn-Miao MLSS, and thus our 

scheme is not so efficient as Harn-Miao MLSS. 
 

7. Numerical Example 
  To make our scheme more understandable, we use the following numerical example to illustrate our proposed scheme. 

  Suppose that there are 3 groups 𝐺@, 𝐺D  and 𝐺[ . 𝑈@@  and 𝑈D@  are two aboriginal shareholders in 𝐺@ . Then, 𝑈D@  can 
participate in secret reconstruction in 	𝐺D. Besides, 𝐺D has two aboriginal shareholders 𝑈@D and 𝑈DD, where 𝑈DD is also an 
immigrant shareholder in 𝐺[. The home group of 𝑈D[ and 𝑈[[ is 𝐺[. And 𝑈[[ is allowed to participate in recovering the secret 
in group 𝐺@. In this case, each group has totally three shareholders. Let all the three groups are (2,3) threshold. Obviously, the 
scheme is MGSS instead of MLSS since there is no hierarchical attribute of different groups. 

  The dealer picks a prime number 𝑝N = 7 and the secret 𝑠 = 5. In group 𝐺@, the dealer selects 3 pairwise coprime integers 
𝑝@@ = 179, 𝑝D@ = 191 and 𝑝[@ = 193, where 𝑝@@ and 𝑝D@ are associated with 𝑈@@ and 𝑈D@, while 𝑝[@ is a valid modulus of the 

immigrant shareholder 𝑈[[, i.e., 	𝑝[,[@ = 𝑝[@. 𝑝N, 𝑝@@, 𝑝D@ and 𝑝[@ satisfy 𝑝ND𝑝[@ < 𝑝@@𝑝D@ and 3𝑝N[ < 𝑝@@(𝑝N − 1), where 𝑝ND is the 

square of 𝑝N and 𝑝N[ is the cube of 𝑝N. Then, the dealer selects 𝛼@ = 512 such that 𝑝[@ < 𝑦@ = 𝑠 + 𝛼@𝑝N < 𝑝@@𝑝D@/𝑝N. The 
private share 𝑠@@ and 𝑠D@ of 𝑈@@ and 𝑈D@ are computed as 𝑠@@ = 𝑦@	𝑚𝑜𝑑	𝑝@@ = 9 and 𝑠D@ = 𝑦@	𝑚𝑜𝑑	𝑝D@ = 151. 

  In group 𝐺D, the dealer selects 𝑝@D = 173, 𝑝DD = 179 and 𝑝[D = 181, where 𝑝@D and 𝑝DD are associated with 𝑈@D and 𝑈DD. 

Besides, 𝑈D@ can use 𝑝[D participate in secret reconstruction in 	𝐺D due to 𝑝[D < 𝑝D@, i.e., 	𝑝D,@D = 𝑝[D. Then, the dealer selects 

𝛼D = 337 such that 𝑝[D < 𝑦D = 𝑠 + 𝛼D𝑝N < 𝑝@D𝑝DD/𝑝N. The private share 𝑠@@ and 𝑠D@ are 𝑠@D = 𝑦D	𝑚𝑜𝑑	𝑝@D = 115 and 𝑠DD =

𝑦D	𝑚𝑜𝑑	𝑝DD = 37. And the public value of 𝑈D@ is computed as ∆𝑠D,@D = 𝑠 + 𝛼D𝑝N − 𝑠D@ 𝑚𝑜𝑑	𝑝D,@D = 41. 

  In group 𝐺[, the dealer selects 𝑝@[ = 173, 𝑝D[ = 179 and 𝑝[[ = 197, where 𝑝@[ belongs to the immigrant shareholder 𝑈DD, 

i.e., 	𝑝D,D[ = 𝑝@[, and 𝑝D[ and 𝑝[[ are associated with aboriginal shareholders 𝑈D[ and 𝑈[[. Then, the dealer selects 𝛼[ = 459 

such that 𝑝[[ < 𝑦[ = 𝑠 + 𝛼[𝑝N < 𝑝@[𝑝D[/𝑝N . The private share 𝑠D[  and 𝑠[[  are 𝑠D[ = 𝑦[	𝑚𝑜𝑑	𝑝D[ = 175  and 𝑠[[ =

𝑦[	𝑚𝑜𝑑	𝑝[[ = 66. Besides, the public value of 𝑈DD  and 𝑈[[  are computed as ∆𝑠D,D[ = 𝑠 + 𝛼[𝑝N − 𝑠DD 𝑚𝑜𝑑	𝑝D,D[ = 67 and 

∆𝑠[,[@ = 𝑠 + 𝛼@𝑝N − 𝑠[[ 𝑚𝑜𝑑	𝑝[,[@ = 122. 

  Suppose that 𝑈D@ and 𝑈DD work together to recover the secret in group 𝐺D. 𝑈D@ is supposed to use its private share 𝑠D@ and 



public value ∆𝑠D,@D  to compute its new share 𝑠D,@D = 𝑠D@ + ∆𝑠D,@D 𝑚𝑜𝑑	𝑝D,@D = 11. Let remark the two shareholders as 𝑈Do and 

𝑈Dp . And their shares 𝑠D,@D , 𝑠DD, 	𝑝D,@D  and 𝑝DD are remarked as 𝑠Do = 11, 𝑠Dp = 37, 𝑝Do = 181 and 𝑝Dp = 179. Then, 𝑈Do 

selects a random integer 𝑟Do = 3 to constructs a randomized component	𝑠Do
∗ = 𝑠Do

I
Jpo

𝑎Do + 𝑟Do
I
Jpo

𝑝N 𝑚𝑜𝑑𝑁 = 18974，

where 𝑁 = 𝑝Do ∗ 𝑝Dp = 32399, 𝑎Do = 90 such that ( I
Jpo
)𝑎Do	𝑚𝑜𝑑	𝑝Do 	= 	1. As the same way, 𝑈Do selects a random integer 

𝑟Do = 6  to constructs its randomized component 	𝑠Do
∗ = 27150 . Finally, the secret 𝑠  can be evaluated as 𝑠 = 𝑠Do +

𝑠Dp 𝑚𝑜𝑑𝑁𝑚𝑜𝑑𝑝N = 46124𝑚𝑜𝑑32399𝑚𝑜𝑑7 = 13725𝑚𝑜𝑑7 = 5. 

8. Conclusion  
To make multilevel threshold secret sharing (MLSS) more flexible and popular in application, the paper presents first the 

notion of multi-group threshold secret sharing (MGSS), which allows a shareholder of one group to participate in secret 
reconstruction in another group without hierarchical limitation. However, threshold secret sharing schemes are vulnerable to IP 
and SC attacks. To construct MGSS scheme resistant to both attacks, the paper further puts forward the notion of tightly coupled 
MGSS and constructs a CRT-based tightly coupled MGSS scheme accordingly. In the scheme, a shareholder may participate in 
secret reconstruction in multiple groups while keeps only one private share. Moreover, when sufficient number of shareholders 
collaborate to recover the secret in a group, they first form a tightly coupled subgroup by producing a randomized component 
with the share, such that the secret can be recovered only if all shareholders have valid shares in the group and actually participate 
in secret reconstruction. Therefore, the proposed tightly couple MGSS scheme is not only resistant to IP and SC attacks but also 
more flexible and popular in applications. 
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