PROBLEM SET 11

DUE: May. 19

Problem 1

Show that the followings are equivalent:

- (1). $f(x) \in k[x]$ is irreducible.
- (2). (f(x)) is a maximal ideal of k[x].
- (3). (f(x)) is a prime ideal of k[x].

(We shall see in Problem 7 that the same conclusion fails for polynomial ring in n variables, n > 1.)

Problem 2

Let F/K be an algebraic extension, and $K \subset D \subset F$ where D is an integral domain. Show that D is a field.

Problem 3

- (1). Let $\phi: E \to F$ be a homomorphism of fields. Show that ϕ is either an embedding or the zero mapping.
- (2). Construct a field K and a homomorphism $\psi: K \to K$ such that ψ is not surjective. (Hint: Compare with Lemma 2.1).

Problem 4

Let F be a field of characteristic p where p is a prime.

- (1). (The Freshman's dream) Show that for $a,b\in F$, we have $(a+b)^{p^n}=a^{p^n}+b^{p^n}.$
- (2). Show that $x^p c$ is irreducible in F[x], if and only if $x^p c = 0$ is not solvable in F.
- (*3). Show that $x^p x c$ is irreducible in F[x] if and only if $x^p x c = 0$ is not solvable in F.

Problem 5

Let $f(x) \in k[x]$ be a polynomial of degree n. Show that there exists a fields K in which f(x) splits into linear factors, and [K:k] divides n!.

Problem 6

Describe the splitting fields of the following polynomials over Q, and find the degree of each such splitting field.

- (1). $x^2 2$
- (2). $x^2 1$
- $(3). x^3 2$
- $(4). (x^3-2)(x^2-2)$
- (5). $x^2 + x + 1$
- (6). $x^6 + x^3 + 1$
- $(7). x^5 7$

Problem *7

- (1). Recall that an element α is integral over the ring R if it is a zero of a monic polynomial ring $f(x) \in R[x]$. And we say a ring S integral over R if every element $s \in S$ is integral over R. Show that if T is integral over S, and S is integral over R, then T is integral over R.
- (2). Recall that an R-module M is an abelian group over a ring R. Prove that if $R \subset S$ are two commutative rings with identity and S is integral over R, then R is a field if and only if S is a field.
- (3). A finitely generated k-algebra is a finitely generated ring which is also a k-vector space. Give an example of a finitely generated k-algebra.

Noether's Normalization theorem: Let R be a finitely generated k-algebra. Then there exist an integer n and n algebraic independent elements $y_1, y_2,, y_n \in R$, such that R is integral over the ring $k[y_1, y_2,, y_n]$.

(4). Using Noether's Normalization theorem prove the **Hilbert's Null-stellensatz**: Let k be an algebraically closed field, then every maximal ideal of the polynomial ring in n variables over k has the form $(x - a_1, ..., x - a_n)$ where $a_i \in k$.

(The great importance of this result is that it gives us a way to translate affine space k^n into pure algebra. We have a bijection between k^n , on the one hand, and the set of maximal ideals in $k[x_1,...,x_n]$ on the other hand. This is the origin of the connection between algebra and geometry that gives rise to the whole subject.)