PROBLEM SET 12

DUE: May. 26

Problem 1

Let α be a real number such that $\alpha^4 = 5$.

- (1). Show that $Q(i\alpha^2)$ is normal over Q.
- (2). Show that $\mathbf{Q}(\alpha + i\alpha)$ is normal over $\mathbf{Q}(i\alpha^2)$.
- (3). Show that $Q(\alpha + i\alpha)$ is not normal over Q.

Problem 2

Let $f(x) = \sum_{i=0}^{i=n} a_i x^i \in k[x]$. Define its derivative formally to be $f'(x) = \sum_{i=0}^{i=n} i a_i x^{i-1}$. Show that f(x) has no multiple roots if and only if g.c.d.(f(x), f'(x)) = 1.

Problem 3

Let $char\ K = p$. Let L be a finite extension of K, and suppose [L:K] prime to p. Show that L is separable over K.

Problem 4

If the roots of a monic polynomial $f(x) \in k[x]$ in some splitting field are distinct, and form a field, then $char\ k = p$ and $f(x) = x^{p^n} - x$ for some $n \ge 1$.

Problem 5

Suppose char K = p. Let $a \in K$. If a has no p-th root in K, show that $x^{p^n} - a$ is irreducible in K[x] for all positive integers n.

Problem 6

Let char K = p. Let α be algebraic over K. Show that α is separable if and only if $K(\alpha) = K(\alpha^{p^n})$ for all positive integers n.

Problem 7

Prove that the following two properties are equivalent:

(1). Every algebraic extension of K is separable.

(2). Either $char\ K=0,$ or $char\ K=p$ and every element of K has a p-th root in K.

Problem 8

Let E be an algebraic extension of F. Show that every subring of E which contains F is actually a field. Is this necessarily true if E is not algebraic over F? Prove or give a counterexample.

Problem 9

Let $k = \mathbf{F}_p(t)$, and $f(x) = x^p - t \in k[x]$. Then f(x) is irreducible but not separable.