PROBLEM SET 13

DUE: June 2

Problem 1
Let K be a finite field with p^{n} elements. Show that every element of K must have a unique p-th root in K.

Problem 2
Write down the explicit structure of the finite field of order 8.

Problem 3
Let $f(x)$ be a monic irreducible polynomial in $F_{p}[x]$ of degree n.
(1). If u is a zero of $f(x)$, then $f(x)$ has n distinct zeros, $u, u^{p}, \ldots, u^{p^{n-1}}$.
(2). If a zero u is the generator of the multiplicative group of $F_{p}(u)$, then each zero of $f(x)$ is also the generator of $F_{p}(u)^{*}$.
(3). We say a polynomial $g(x)$ is primitive in $F_{p}[x]$, if one of its zero u is a generator of $F_{p}(u)^{*}$. Then show that the number of primitive polynomials in $F_{p}[x]$ of degree n is $\frac{\phi\left(p^{n}-1\right)}{n}$.

Problem 4
(1). Show that $F_{p^{m}} \subset F_{p^{n}}$, if and only if $m \mid n$.
(2). Suppose $F_{p^{m}} \subset F_{p^{n}}$, compute the Galois group $\operatorname{Gal}\left(F_{p^{n}} / F_{p^{m}}\right)$.

Problem 5
Let E / F be a separable extension and M is a intermediate field. Show that E / M and M / F are separable.

Problem 6
Let K be a field of characteristic p and let u, v be algebraically independent over K. Show that
(1). $K(u, v)$ has degree p^{2} over $K\left(u^{p}, v^{p}\right)$.
(2). $K(u, v) / K\left(u^{p}, v^{p}\right)$ is not a simple extension.
(3). There exist infinitely many intermediate field of $K(u, v) / K\left(u^{p}, v^{p}\right)$.

Problem 7
(1). Let $E=F(x)$ where x is transcendental over F. Let $K \neq F$ be a subfield of E which contains F. Show that x is algebraic over K.
(2). Let $E=F(x)$. Let $y=\frac{f(x)}{g(x)}$ be a rational function, with relatively prime polynomials $f, g \in F[x]$. Let $n=\max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$, and suppose $n \geq 1$. Prove that $[F(x): F(y)]=n$.

Problem *8

Let P be the set of positive integers and R the set of functions defined on P with values in a commutative ring K. Define the sum in R to be the ordinary addition of functions and define the convolution product by the formula:

$$
(f * g)(m)=\sum_{x y=m} f(x) g(y)
$$

where the sum is taken over all pairs (x, y) of positive integers such that $x y=m$.
(1). Show that R is a commutative ring, whose unit element is the function δ such that $\delta(1)=1$ and $\delta(x)=0$ if $x \neq 1$.
(2). A function is said to be multiplicative if $f(m n)=f(m) f(n)$ whenever m, n are relatively prime. If f, g are multiplicative, show that $f * g$ is also multiplicative.
(3). Let μ be the Mobius function such that $\mu(1)=1, \mu\left(p_{1} \ldots p_{r}\right)=$ $(-1)^{r}$ if p_{1}, \ldots, p_{r} are distinct primes, and $\mu(m)=0$ if m is divisible by p^{2} for some prime p.

Show that $\mu * 1=\delta$. The Mobius inversion formula of elementary number theory is then nothing else but the relation $\mu * 1 * f=f$.
(4). Let $f, g: P \rightarrow A$ be maps where A is an additive abelian group. Suppose that for all n,

$$
f(n)=\sum_{d \mid n} g(d)
$$

Let μ be the Mobius function. Prove that

$$
g(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) f(d)
$$

(5). Let K be a finite field of order q. Let $f(x) \in K[x]$ be irreducible. Show that $f(x)$ divides $x^{q^{n}}-x$ if and only if $\operatorname{deg}(f)$ divides n. And show the multiplication formula

$$
x^{q^{n}}-x=\prod_{d \mid n} \prod_{f_{d}, i r r} f_{d}(x)
$$

where the inner product is over all irreducible polynomials of degree d with leading coefficient 1 . Counting degrees, show that

$$
q^{n}=\sum_{d \mid n} d \psi(d)
$$

where $\psi(d)$ is the number of irreducible polynomials of degree d. Invert by (4), find that

$$
n \psi(n)=\sum_{d \mid n} \mu(d) q^{\frac{n}{d}}
$$

(6). As a consequence, what is the number of irreducible polynomials of degree 6 over F_{2} ?
(7). Furthermore, let p_{n} be the probability that a polynomial of degree n is irreducible. What is the limit of p_{n} ? And what does it mean?

