PROBLEM SET 14 #### DUE: June 9 #### Problem 1 Let F be a finite field with $q = p^n$ elements, where p is a prime. $f(x) \in F[x]$ is an irreducible polynomial. Show that f(x) has multiple zeros if and only if there exists $g(x) \in F[x]$ such that $f(x) = g(x^p)$. #### Problem 2 Let F be a finite field with $q=p^n$ elements, where p is a prime. Let H be a subgroup of Aut(F) of order m. $K=\{a\in F|\forall\sigma\in H,\ \sigma(a)=a\}$. Prove that: - (1). m|n. - (2). K is the unique subfield of F of order $p^{\frac{n}{m}}$. #### Problem 3 Let Ω_p be the algebraic closure of the finite field F_p where p is a prime, and the unique subfield of Ω_p of order p^n is denoted by F_{p^n} . Show that: - (1). $F_{p^m} \subset F_{p^n}$ if and only if m|n. - (2). Suppose that $F_{p^m} \subset F_{p^n}$. Let $G = \{ \sigma \in Aut(F_{p^n}) | \forall a \in F_{p^m}, \ \sigma(a) = a \}$. Then G is a cyclic group of order $\frac{n}{m}$. ### Problem 4 Let K be a field, $\sigma \in Aut(K)$. Show that K/K^{σ} is a separable extension. ## Problem 5 Show that for $n \leq m$, there exist n matrices $A_1, A_2, ..., A_n \in M_{m \times m}(F_q)$ such that $\forall (x_1, x_2, ..., x_n) \neq 0$, we have $$x_1A_1 + x_2A_2 + \dots + x_nA_n \neq 0.$$ #### Problem 6 - (1). Show that any functions $f: F_q^n \to F_q$ can be represented by an element in $F_q[x_1,....,x_n]$. That is, there exists a polynomial $g \in F_q[x_1,....,x_n]$ such that $\forall x \in F_q^n, \ g(x) = f(x)$. - *(2). For the given f as above, $g \in F_q[x_1,...,x_n]$ is uniquely determined after modulo the ideal $(x_1^q-x_1,...,x_n^q-x_n)$. ## Problem 7 Let $E = \mathbf{Q}(\sqrt{2}, \sqrt{3}, u)$, $u^2 = (9 - 5\sqrt{3})(2 - \sqrt{2})$. Show that E/\mathbf{Q} is a Galois extension and determine its Galois group.