PROBLEM SET 15

DUE: June 16

Problem 1

What is the Galois groups of the following polynomials?

- (1). $x^3 x 1$ over **Q**.
- (2). $x^3 10$ over **Q**.
- (3). $x^3 10$ over $\mathbf{Q}(\sqrt{2})$.
- (4). $x^3 10$ over $\mathbf{Q}(\sqrt{-3})$.
- (5). $(x^2-2)(x^2-3)(x^2-5)(x^2-7)$ over \mathbf{Q} .
- (6). $x^n t$ where t is transcendental over the complex numbers C and n is a positive integer, over C(t).

Problem 2

Let k be a field of characteristic $\neq 2$. Let $c \in k$, $c \notin k^2$. Let $F = k(\sqrt{c})$. Let $\alpha = a + b\sqrt{c}$ with $a, b \in k$ and not both a, b = 0. Let $E = F(\sqrt{\alpha})$. Prove that the following conditions are equivalent:

- (1). E is Galois over k.
- (2). $E = F(\sqrt{\alpha'})$, where $\alpha' = a b\sqrt{c}$.
- (3). Either $\alpha \alpha' \in k^2$ or $c\alpha \alpha' \in k^2$.

Show that when these conditions are satisfied then E is cyclic over k of degree 4 if and only if $c\alpha\alpha' \in k^2$.

Problem 3

Show that the regular pentagon is ruler and compass constructible.

Problem 4(cyclotomic polynomials)

(1). Let $\Phi_d(x) = \prod_{period\zeta=d} (x-\zeta)$, where the product is taken over all n-th roots of unity of period d. Show that

$$\Phi_n(x) = \frac{x^n - 1}{\prod_{d|n, d \le n} \Phi_d(x)}.$$

And compute $\Phi_n(x)$ for $1 \le n \le 12$.

(2). $\Phi_n(x)$ is called the **n-th cyclotomic polynomial**. Show that if

p is a prime number, then

$$\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + 1.$$

and for an integer $r \geq 1$,

$$\Phi_{p^r}(x) = \Phi_p(x^{p^{r-1}}).$$

(3). Let $n=p_1^{r_1}....p_s^{r_s}$ be a positive integer with its prime factorization. Then

$$\Phi_n(x) = \Phi_{p_1...p_s}(x^{p_1^{r_1-1}...p_s^{r_s-1}}).$$

- (4). If *n* is odd > 1, then $\Phi_{2n}(x) = \Phi_n(-x)$.
- (5). If p is a prime number not dividing n, then

$$\Phi_{pn}(x) = \frac{\Phi_n(x^p)}{\Phi_n(x)}.$$

On the other hand, if p|n, then $\Phi_{pn} = \Phi_n(x^p)$.

(6). We have

$$\Phi_n(x) = \prod_{d|n} (x^{\frac{n}{d}} - 1)^{\mu(d)}.$$

As usual, μ is the Mobius function.

Problem 5

Show that $\sum_{x \in F_q} x^m = 0$ for q not dividing m, where F_q is a finite field and the summation is taken over all elements $x \in F_q$. While $\sum_{x \in F_q} x^m = -1$ for q dividing m.

Problem 6

- (1). Let $K_1, ..., K_n$ be Galois extensions of k with Galois groups $G_1, ..., G_n$. Assume that $K_{i+1} \cap (K_1...K_i) = k$ for each i = 1, 2, ..., n-1. Then the Galois group of $K_1...K_n$ is isomorphic to the product $G_1 \times ... \times G_n$ in a natural way.
- (2). Let $p_1 < p_2 < < p_n <$ be a sequence of prime numbers, and $K_1 = \mathbf{Q}(\sqrt{p_1}), \ K_{i+1} = K_i(\sqrt{p_{i+1}})$. Compute the Galois group of $K_1....K_n$ over \mathbf{Q} .