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PROBLEM SET 3

DUE: Mar.10

Problem 1

(1). Compute the centralizer of the group GLn(F ), where F is a field.

Let G be a group and S a subset of G. Then

(2). Show that ZS � NS , where ZS and NS are the centralizer and

normalizer of S respectively.

We say two subsets A and B are conjugate in G if there exists an

element g ∈ G such that A = gBg−1, and two elements x and y are conjugate

if {x} and {y} are conjugate.

(3). Show that conjugation in G is an equivalence relation.

A conjugacy class is the equivalence class under this equivalence rela-

tion.

(4). Show that the number of conjugate sets to S is equal to the index

[G : NS ] of the normalizer of S.

(5). Use (4) to prove the class formula:

|G| =
∑
x∈C

[G : Zx],

where C is a set of representatives for the distinct conjugacy classes, and

the sum is taken over all x ∈ C.

(6). Let H be a proper subgroup of a finite group G. Show that G can

not be written as the union of all the conjugates of H.

Problem 2

We say an element a ∈ G is of order (or period) n (n ∈ Z), if n is the

smallest positive integer such that an = e, denoted by ord(a) = n. If for

any positive integer n, an 6= e, then we say a has infinite order (or period).

(1). Let G ba an abelian group and a, b ∈ G. If ord(a) = m, ord(b) = n,

then show that ord(ab) = [m,n], where [m,n] denotes the least common

multiple of m and n.

(2). Show that the same conclusion does not hold for a nonabelian

group.
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(3). Prove that if H � G, [G : H] = n, then for any g ∈ G, we have

gn ∈ H.

*(4). Given a group G = {g1, g2, ...., gn} with n odd. Set x = g1g2...gn.

Show that x is an element of the commutator subgroup of G.

Problem 3

Prove the following basic properties of cyclic groups:

(1). Show that a cyclic group is either isomorphic to Z/nZ or Z

(n ∈ Z).

(2). Show that a subgroup of a cyclic group is also cyclic.

(3). Let G be a finite cyclic group of order n. Then for any positive

integer d dividing n, there exists a unique subgroup of order d.

*(4). Conversely, let G be a finite group of order n. If for any positive

integer d dividing n, there exists at most one subgroup of order d, then G

must be cyclic. (Hint: use the following identity:

n =
∑
d|n

ϕ(d),

and see problem 5 for the definition of ϕ).

Problem 4

(1). Let (G, ∗) be a finite abelian group containing no elements a 6= e

with a2 = e. Evaluate a1 ∗ a2 ∗ .... ∗ an where a1, a2, ...., an is a list with no

repetitions, of all elements of G.

(2). Then prove the Wilson’s theorem: If p is a prime, then

(p− 1)! ≡ −1 mod p

(Hint: The nonzero elements of Z/pZ form a multiplicative group).

Problem 5

Definition. The Euler ϕ-function is defined as follows:

ϕ(1) = 1; if n > 1, then ϕ(n) = |{k : 1 ≤ k ≤ n and (k, n) = 1}|.

(1). If G =< a > is cyclic of order n, then ak is also a generator of G
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if and only if (k, n) = 1. Conclude that the number of generators of G is

ϕ(n).

(2). Let G =< a > have order rs, where (r, s) = 1. Show that there

are unique b, c ∈ G with b of order r, c of order s, and a = bc.

(3). Use (2) to prove that if (r, s) = 1, then ϕ(rs) = ϕ(r)ϕ(s).

(4). If p is a prime, then ϕ(pk) = pk − pk−1 = pk(1− 1/p).

(5). Finally, if the distinct prime divisors of n are p1, p2, ....., pt, then

ϕ(n) = n(1− 1

p1
)(1− 1

p2
)....(1− 1

pt
)

.

Problem 6 (problem 5 continued)(Euler’s theorem)

If (r, s) = 1, then sϕ(r) ≡ 1modr. (Hint: The order of the multiplicative

group of Z/nZ is ϕ(n)).

Problem *7

Use the Euler’s theorem and Wilson’s theorem to show that the equa-

tion x2 +y2 = p is solvable in Z, where p is a prime and p ≡ 1 mod 4. (This

result will be used in the ideal theory, as a famous example).

Problem 8

The dihedral group D2n is the symmetric group of regular n-gon. It

can be characterized by

D2n =< σ, τ |σn = τ2 = e, τστ = σ−1 >,

where σis the counterclockwise rotation of degree 2π
n

, and τ is the certain

reflection.

Prove that the dihedral group D2n is isomorphic to the semidirect prod-

uct of Z/2Z and Z/nZ.

Problem 9

We say a normal tower of a group G

G = G0 �G1 �G2 � ....�Gn = 0
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is a composition series, if all the factors Gi/Gi+1 are simple.

(1). Give a composition series of GL2(F2) where F2 is the finite field

of two elements.

(2). One should regard the Jordan-Holder theorem as a unique fac-

torization theorem. Then use the theorem to prove the Fundamental

Theorem of Arithmetic: The primes and their multiplicities occurring

in the factorization of an integer n ≥ 2 are uniquely determined by n. (Hint:

write down a composition series of the cyclic group Z/nZ.)


