PROBLEM SET 3
DUE: Mar.10

Problem 1

(1). Compute the centralizer of the group GL, (F'), where F is a field.

Let G be a group and S a subset of G. Then

(2). Show that Zs < Ng, where Zg and Ng are the centralizer and
normalizer of S respectively.

We say two subsets A and B are conjugate in G if there exists an
element g € G such that A = gBg~!, and two elements z and y are conjugate
if {x} and {y} are conjugate.

(3). Show that conjugation in G is an equivalence relation.

A conjugacy class is the equivalence class under this equivalence rela-
tion.

(4). Show that the number of conjugate sets to S is equal to the index
[G : Ng] of the normalizer of S.

(5). Use (4) to prove the class formula:

Gl =) _"[G: Z,],

zeC

where C' is a set of representatives for the distinct conjugacy classes, and
the sum is taken over all x € C.
(6). Let H be a proper subgroup of a finite group G. Show that G can

not be written as the union of all the conjugates of H.

Problem 2
We say an element a € G is of order (or period) n (n € Z), if n is the
smallest positive integer such that a” = e, denoted by ord(a) = n. If for
any positive integer n, a™ # e, then we say a has infinite order (or period).
(1). Let G ba an abelian group and a,b € G. If ord(a) = m, ord(b) = n,
then show that ord(ab) = [m,n|, where [m,n| denotes the least common
multiple of m and n.

(2). Show that the same conclusion does not hold for a nonabelian

group.



(3). Prove that if H < G, [G : H] = n, then for any g € G, we have
g" € H.
*(4). Given a group G = {g1, g2, ...., gn } With n odd. Set x = g192...gn.

Show that z is an element of the commutator subgroup of G.

Problem 3

Prove the following basic properties of cyclic groups:

(1). Show that a cyclic group is either isomorphic to Z/nZ or Z
(neZ).

(2). Show that a subgroup of a cyclic group is also cyclic.

(3). Let G be a finite cyclic group of order n. Then for any positive
integer d dividing n, there exists a unique subgroup of order d.

*(4). Conversely, let G be a finite group of order n. If for any positive
integer d dividing n, there exists at most one subgroup of order d, then G

must be cyclic. (Hint: use the following identity:
n="> ed),
d|n

and see problem 5 for the definition of ¢).

Problem 4

(1). Let (G, %) be a finite abelian group containing no elements a # e
with a? = e. Evaluate aq * as * .... x a,, where ay, as, ...., a, is a list with no
repetitions, of all elements of G.

(2). Then prove the Wilson’s theorem: If p is a prime, then
(p—1)!=—-1modp

(Hint: The nonzero elements of Z/pZ form a multiplicative group).

Problem 5

Definition. The Euler p-function is defined as follows:
e(l)=1;if n>1, then on)=[{k:1<k<n and (k,n)=1}|

(1). If G =< a > is cyclic of order n, then a* is also a generator of G



if and only if (k,n) = 1. Conclude that the number of generators of G is
p(n).

(2). Let G =< a > have order rs, where (r,s) = 1. Show that there
are unique b, ¢ € G with b of order r, ¢ of order s, and a = be.

(3). Use (2) to prove that if (r,s) = 1, then p(rs) = ¢(r)e(s).

(4). If p is a prime, then p(p*) = p* — p*~1 = p*(1 — 1/p).

(5). Finally, if the distinct prime divisors of n are py, pa, ....., pt, then

1 1 1
e(n) =n(1-— p—l)(l - p—Q)....(l - ;t)

Problem 6 (problem 5 continued)(Euler’s theorem)
If (r,s) = 1, then s¥(") = 1modr. (Hint: The order of the multiplicative
group of Z/nZ is p(n)).

Problem *7
Use the Euler’s theorem and Wilson’s theorem to show that the equa-
tion 22 +y? = p is solvable in Z, where p is a prime and p = 1 mod 4. (This

result will be used in the ideal theory, as a famous example).

Problem 8
The dihedral group D, is the symmetric group of regular n-gon. It

can be characterized by

2

Dy, =<o,7lo" =1*=e¢, TOT=0""!

>

where ois the counterclockwise rotation of degree 27”, and 7 is the certain

reflection.
Prove that the dihedral group D5, is isomorphic to the semidirect prod-
uct of Z/2Z and Z/nZ.

Problem 9

We say a normal tower of a group G

G=Gy>G >G> ...0G, =0



is a composition series, if all the factors G;/G;,1 are simple.

(1). Give a composition series of GLy(F3) where F; is the finite field
of two elements.

(2). One should regard the Jordan-Holder theorem as a unique fac-
torization theorem. Then use the theorem to prove the Fundamental
Theorem of Arithmetic: The primes and their multiplicities occurring
in the factorization of an integer n > 2 are uniquely determined by n. (Hint:

write down a composition series of the cyclic group Z/nZ.)



