PROBLEM SET 4 DUE: Mar.17

Problem 1

Let $\phi : \mathbb{Z}/5\mathbb{Z} \to Aut(\mathbb{Z}/11\mathbb{Z})$ be a nontrivial homomorphism. Then we can construct a semidirect product

$$G = \mathbf{Z}/5\mathbf{Z} \rtimes_{\phi} \mathbf{Z}/11\mathbf{Z}.$$

Show that G is not isomorphic to the direct product of $\mathbf{Z}/5\mathbf{Z}$ and $\mathbf{Z}/11\mathbf{Z}$. Problem 2

Recall that the **dihedral group** D_{2n} is the symmetric group of a regular n-gon, generated by the rotation and certain reflection. That is,

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = b^{-1} \rangle,$$

where a is the rotation and b is the reflection.

(1). Give the order of each element of D_8 .

(2). Compute $Aut(D_8)$.

Problem 3

Let G be a group. Show that G is abelian if and only if the map $\alpha: g \to g^{-1}$ is an automorphism.

Problem 4

(1). Show that S_3 , S_4 are solvable, and write down all the composition series of them. (Recall that a tower

$$1 = G_0 \lhd G_1 \lhd \ldots \lhd G_n = G$$

is a composition series, if each factor G_{i+1}/G_i is abelian.)

Definition: Let G be a group, and $G^{(1)} = [G, G]$ denote its commutator subgroup. Then we define the **higher commutator subgroup** inductively by $G^{(i+1)} = [G^{(i)}, G^{(i)}]$.

(2). Show that if

$$1 = G_0 \lhd G_1 \lhd \dots \lhd G_n = G$$

is a solvable series, that is, G_{i+1}/G_i 's are abelian groups, then $G_i \ge G^{(i)}$.

(3). A subgroup H of G is said to be **fully invariant**, if $\phi(H) = H$ for every homomorphism $\phi \in End(G)$. Show that the higher commutator subgroups are fully invariant.

Problem 5

Show that the center of a group of order p^n is nontrivial, where p is a prime. (Hint: use the class formula.)

Problem *6 nilpotent groups

Definition: If $H, K \leq G$, then

$$[H,k] = < [h,k] | h \in H \quad and \quad k \in K >,$$

where [h, k] is the commutator $hkh^{-1}k^{-1}$.

(1). If $K \lhd G$ and $K \le H \le G$, then $[H,G] \le K$ if and only if $H/K \le Z(G/K)$.

(2). If $H, K \leq G$ and $f: G \to L$ is a homomorphism, then f([H, K]) = [f(H), f(K)].

Definition: The lower central series (or descending central series) of G is the series

$$G = \gamma_1(G) \ge \gamma_2(G) \ge \dots$$

where $\gamma_{i+1}(G) = [\gamma_i(G), G]$. (This need not to be a normal series because it may not reach 1).

Definition: The higher centers $\zeta^i(G)$ are the subgroups defined by induction:

$$\zeta^{0}(G) = 1;$$
 $\zeta^{i+1}(G)/\zeta^{i}(G) = Z(G/\zeta^{i}(G));$

that is, if $\nu_i: G \to G/\zeta^i(G)$ is the natural map, then $\zeta^{i+1}(G)$ is the inverse image of the center.

Definition: The **upper central series** (or ascending central series) of G is

$$\mathbf{l} = \zeta^0(G) \le \zeta^1(G) \le \dots$$

(3). Prove the theorem: If G is a group, then there is an integer c with $\zeta^{c}(G) = G$ if and only if $\gamma_{c+1}(G) = 1$. Moreover, in this case,

$$\gamma_{i+1}(G) \le \zeta^{c-i}(G)$$

for all i.

Definition: A group G is **nilpotent** if there is an integer c such that $\gamma_{c+1}(G) = 1$; the least such c is call the **class** of the nilpotent group G.

(4). Show that every finite group of order p^n is nilpotent, where p is a prime. (Hint: use problem 6).

(5). Show that every nilpotent group is solvable.

(6). If $G \neq 1$ is nilpotent, then $Z(G) \neq 1$.

(7). S_3 is a solvable group but not nilpotent.

(8). Show that every subgroup H of a nilpotent group G is nilpotent. Moreover, if G is nilpotent of class c, then H is nilpotent of class $\leq c$.

(9). If G is nilpotent of class c, and $H \lhd G$, then G/H is nilpotent of class $\leq c$.