PROBLEM SET 5 DUE: Mar.24

Problem 1

Let $\alpha_0 < \alpha_1 \le \alpha_2$ be integers, and p be a prime. Consider the diagonal homomorphism:

$$\phi: \mathbf{Z}/p^{\alpha_0}\mathbf{Z} \to \mathbf{Z}/p^{\alpha_1}\mathbf{Z} \times \mathbf{Z}/p^{\alpha_2}\mathbf{Z}$$
$$x \mapsto (p^{\alpha_1 - \alpha_0}x, p^{\alpha_2 - \alpha_0}x)$$

We shall denote $\mathbf{Z}/p^{\alpha_1}\mathbf{Z} \times \mathbf{Z}/p^{\alpha_2}\mathbf{Z}$ by G and $H = im(\phi)$. Determine the quotient group G/H as a direct product.

Problem 2 Permutation groups

- (1). Let $\sigma = [123...n]$ in S_n . Show that the conjugacy class of σ has (n-1)! elements. Show that the centralizer of σ is the cyclic group generated by σ .
 - (2). Prove the following formula:

$$\gamma[i_1 \ i_2 \i_k]\gamma^{-1} = [\gamma(i_1) \ \gamma(i_2) \\gamma(i_k)]$$

where $\gamma \in S_n$ and $k \leq n$.

- (3). Suppose that a permutation σ in S_n can be written as a product of r disjoint cycles, and let $d_1, d_2, ..., d_r$ be the number of elements in each cycle, in increasing order. Let τ be another permutation which can be written as a product of disjoint cycle, whose cardinalities are $d_1', d_2', ..., d_s'$ in increasing order. Prove that σ is conjugate to τ if and only if r = s and $d_i = d_i'$ for all i = 1, 2, ..., r.
- (4). Show that S_n is generated by the transpositions [12], [23], [34],, [n-1, n].
 - (5). Show that S_n is generated by the cycles [12] and [12....n].
- (6). Assume that n is prime. Let $\sigma = [12...n]$ and let $\tau = [rs]$ be any transposition. Show that σ, τ generate S_n .

Problem 3

Consider the following game:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	*

Each time we can transpose the * block with a nearby block. Is it possible that we can get the following status after finite steps?

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	*

Problem 4

Let G be a group and H a subgroup of finite index. Show that there exists a normal subgroup N of G which is contained in H and also of finite index.

Problem 5

Let G be a finite group operating on a finite set S with $\#(S) \geq 2$. Assume that there is only one orbit. Prove that there exists an element $x \in G$ which has no fixed point, i.e. $xs \neq s$ for all $s \in S$.

Problem 6

Let X, Y be finite sets and let C be a subset of $X \times Y$. For $x \in X$ let $\phi(x) =$ number of elements of $y \in Y$ such that $(x, y) \in C$. Verify that

$$\#(C) = \sum_{x \in X} \phi(x).$$

remark: A subset C as in the above exercise is often called a **correspondence**, and $\phi(x)$ is the number of elements in Y which correspond to a given element $x \in X$.