USTC, School of Mathematical Sciences
Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu Posted online by Dr. Muxi Li

Winter semester 2018/12/06
Exercise sheet 10
10 points
2 points for a problem

Ex1. Let $f: S^{n} \rightarrow S^{n}$ be a map of degree zero. Show that there exist points $x, y \in S^{n}$ with $f(x)=x$ and $f(y)=y$. Use this to show that if F is a continuous vector field defined on the unit ball D^{n} in \mathbb{R}^{n} such that $F(x) \neq 0$ for all x, then there exists a point on ∂D^{n} where F points radially outward and another point on ∂D^{n} where F points radially inward.

Ex2. A map $f: S^{n} \rightarrow S^{n}$ satisfying $f(x)=f(-x)$ for all x is called an even map. Show that an even map $S^{n} \rightarrow S^{n}$ must have even degree, and that the degree must in fact be zero when n is even. When n is odd, show there exist even maps of any given even degree. [Hints: If f is even, it factors as a composition $S^{n} \rightarrow \mathbb{R} P^{n} \rightarrow S^{n}$. Using the calculation of $H_{n}\left(\mathbb{R} P^{n}\right)$ in the text, show that the induced map $H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(\mathbb{R} P^{n}\right)$ sends a generator to twice a generator when n is odd. It may be helpful to show that the quotient map $\mathbb{R} P^{n} \rightarrow \mathbb{R} P^{n} / \mathbb{R} P^{n-1}$ induces an isomorphism on H_{n} when n is odd.]

Ex3. Show the isomorphism between cellular and singular homology is natural in the following sense: A map $f: X \rightarrow Y$ that is cellular - satisfying $f\left(X^{n}\right) \subset Y^{n}$ for all n - induces a chain map f_{*} between the cellular chain complexes of X and Y, and the map $f_{*}: H_{n}^{C W}(X) \rightarrow H_{n}^{C W}(Y)$ induced by this chain map corresponds to $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$ under the isomorphism $H_{n}^{C W} \approx H_{n}$.

Ex4. What happens if one defines homology groups $h_{n}(X ; G)$ as the homology groups of the chain complex

$$
\cdots \rightarrow \operatorname{Hom}\left(G, C_{n}(X)\right) \rightarrow \operatorname{Hom}\left(G, C_{n-1}(X)\right) \rightarrow \cdots ?
$$

More specifically, what are the groups $h_{n}(X ; G)$ when $G=\mathbb{Z}, \mathbb{Z}_{m}$, and \mathbb{Q} ?
Ex5. Let X be a Moore space $M\left(\mathbb{Z}_{m}, n\right)$ obtained from S^{n} by attaching a cell e_{n+1} by a map of degree m.
(a) Show that the quotient map $X \rightarrow X / S_{n}=S_{n+1}$ induces the trivial map on $\widetilde{H}_{i}(-; \mathbb{Z})$ for all i, but not on $H^{n+1}(-; \mathbb{Z})$. Deduce that the splitting in the universal coefficient theorem for cohomology cannot be natural.
(b) Show that the inclusion $S_{n} \hookrightarrow X$ induces the trivial map on $\widetilde{H}^{i}(; \mathbb{Z})$ for all i, but not on $H_{n}(-; \mathbb{Z})$.

