USTC, School of Mathematical Sciences Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu Posted online by Dr. Muxi Li

Ex1. (a) Using the cup product structure, show there is no map $\mathbb{R} P^{n} \rightarrow \mathbb{R} P^{m}$ inducing a nontrivial map $H^{1}\left(\mathbb{R} P^{m} ; \mathbb{Z}_{2}\right) \rightarrow H^{1}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)$ if $n>m$. What is the corresponding result for maps $\mathbb{C} P^{n} \rightarrow \mathbb{C} P^{m}$?
(b) Prove the Borsuk-Ulam theorem by the following argument. Suppose on the contrary that $f: S^{n} \rightarrow \mathbb{R}^{n}$ satisfies $f(x) \neq f(-x)$ for all x. Then define $g: S^{n} \rightarrow S^{n-1}$ by $g(x)=(f(x)-f(-x)) /|f(x)-f(-x)|$, so $g(-x)=-g(x)$ and g induces a map $\mathbb{R} P^{n} \rightarrow \mathbb{R} P^{n-1}$. Show that part (a) applies to this map. [Hint: the quotient map $S^{n} \rightarrow \mathbb{R} P^{n}$ sends each path connecting a pair of antipodal points to a closed 1-simplex which represents the generator of $H_{1}\left(\mathbb{R} P^{n}, \mathbb{Z}_{2}\right)$.]

Ex2. Use cup products to show that $\mathbb{R} P^{3}$ is not homotopy equivalent to $\mathbb{R} P^{2} \vee S^{3}$.

Ex3. Show that the cross product map $H^{*}(X ; \mathbb{Z}) \otimes H^{*}(Y ; \mathbb{Z}) \rightarrow H^{*}(X \times Y ; \mathbb{Z})$ is not an isomorphism if X and Y are infinite discrete sets. [This shows the necessity of the hypothesis of finite generation in Theorem 3.15.]

Ex4. Using cup products, show that every map $S^{k+\ell} \rightarrow S^{k} \times S^{\ell}$ induces the trivial homomorphism $H^{k+\ell}\left(S^{k+\ell}\right) \rightarrow H^{k+\ell}\left(S^{k} \times S^{\ell}\right)$, assuming $k>0$ and $\ell>0$.

Ex5. Show that the spaces $\left(S^{1} \times \mathbb{C} P^{\infty}\right) /\left(S^{1} \times\left\{x_{0}\right\}\right)$ and $S^{3} \times \mathbb{C} P^{\infty}$ have isomorphic cohomology rings with \mathbb{Z} or any other coefficients. [An exercise for §4.L is to show these two spaces are not homotopy equivalent.]

Ex. 6 Show the ring $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2 k}\right)$ is isomorphic to $\mathbb{Z}_{2 k}[\alpha, \beta] /\left(2 \alpha, 2 \beta, \alpha^{2}-k \beta\right)$ where $|\alpha|=1$ and $|\beta|=2$. [Use the coefficient map $\mathbb{Z}_{2 k} \rightarrow \mathbb{Z}_{2}$ and the proof of Theorem 3.19.]

Please hand in this homework on 26th Dec. 2018.

