USTC, School of Mathematical Sciences Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu Posted online by Dr. Muxi Li

Ex 1. (1 pt) Define $f: S^{1} \times I \rightarrow S^{1} \times I$ by $f(\theta, s)=(\theta+2 \pi s, s)$, so $f$ restricts to identity on the two bundary circles of $S^{1} \times I$. Show that $f$ is homotopic to the identity by a homotopy $f_{t}$ that is stationary on one of the boundary circles, but not by any homotopy $f_{t}$ that is stationary on both boundary circles. [Consider what $f$ does to the path $s \mapsto\left(\theta_{0}, s\right)$ for fixed $\theta_{0} \in S^{1}$.]

Ex 2. (1 pt) Does the Borsuk-Ulam theorem hold for the torus? In other words, for every map $f: S^{1} \times S^{1} \rightarrow \mathbb{R}^{2}$ must there exist $(x, y) \in S^{1} \times S^{1}$ such that $f(x, y)=f(-x,-y)$ ?

Ex 3. (1 pt) Let $A_{1}, A_{2}, A_{3}$ be compact sets in $\mathbb{R}^{3}$. Use the Borsuk-Ulam theorem to show that there is one plane $P \subset \mathbb{R}^{3}$ that simultaneously divides each $A_{i}$ into two pieces of equal measure.

Ex 4. (1 pt) From the isomorphism $\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \approx \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)$ it follows that loops in $X \times\left\{y_{0}\right\}$ and $\left\{x_{0}\right\} \times Y$ represent commuting elements of $\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$. Construct an explicit homotopy demonstrating this.

Ex 5. (3 pts) Show that there are no retraction $r: X \rightarrow A$ in the following cases:
(a) $X=\mathbb{R}^{3}$ with $A$ any subspace homeomorphic to $S^{1}$.
(b) $X=S^{1} \times D^{2}$ with $A$ its boundary torus $S^{1} \times S^{1}$.
(c) $X=S^{1} \times D^{2}$ and $A$ the circle shown in the figure.
(d) $X=D^{2} \vee D^{2}$ with $A$ its boundary $S^{1} \vee S^{1}$.
(e) $X$ a disk with two points on its boundary identified and $A$ its boundary $S^{1} \vee S^{1}$.
(f) $X$ the Möbius band and $A$ its boundary circle.

Ex 6. (2 pts) Using the technique in the proof of Proposition 1.14, show that if a space $X$ is obtained from a path-connected subspace $A$ by attaching a cell $e^{n}$ with $n \geq 2$, then the inclusion $A \hookrightarrow X$ induces a surjection on $\pi_{1}$. Apply this to show:
(a) The wedge sum $S^{1} \vee S^{2}$ has fundamental group $\mathbb{Z}$.
(b) For a path-connected $C W$ complex $X$ the inclusion map $X^{1} \hookrightarrow X$ of its 1 -skeleton induces a surjection $\pi_{1}\left(X^{1}\right) \rightarrow \pi_{1}(X)$. [For the case that $X$ has infinitely many cells, see Proposition A. 1 in Appendix.]

Note: Please hand in this homework on next Wednesday (26 ${ }^{\text {th }}$ Sep. 2018).

