USTC, School of Mathematical Sciences Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu Posted online by Dr. Muxi Li Winter semester 2018/19 Exercise sheet 2 8 points

Ex 1. (1 pt) Let $X \subset \mathbb{R}^m$ be the union of convex open sets X_1, \dots, X_n such that $X_i \bigcap X_j \neq \emptyset$ for all i, j. Give an example to show that X is not necessarily simply-connected.

Ex 2. (1 pt) Let $X \subset \mathbb{R}^m$ be the union of simply-connected open sets X_1, \dots, X_n such that $X_i \cap X_j \cap X_k$ are path-connected for all i, j, k. Show that X is simply-connected.

Ex 3. (1 pt) Let $X \subset \mathbb{R}^3$ be the union of n lines through the origin. Compute $\pi_1(\mathbb{R}^3 - X)$.

Ex 4. (1 pt) Let $X \subset \mathbb{R}^2$ be a connected graph that is the union of a finite number of straight line segments. Show that $\pi_1(X)$ is free with a basis consisting of loops formed by the boundaries of the bounded complementary regions of X, joined to a basepoint by suitably chosen paths in X. [Assume the Jordan curve theorem for polygonal simple closed curves, which is equivalent to the case that X is homemorphic to S^1 .]

Ex 5. (1 pts) Suppose a space Y is obtained from a path-connected subspace X by attaching n-cells for a fixed $n \ge 3$. Show that the inclusion $X \hookrightarrow Y$ induces an isomorphism on π_1 . [See the proof of Proposition 1.26.] Apply this to show that the complement of a discrete subspace of \mathbb{R}^n is simply-connected if $n \ge 3$.

Ex 6. (1 pts) Let X be the quotient space of S^2 obtained by identifying the north and south poles to a single point. Put a cell complex structure on X and use this to compute $\pi_1(X)$.

Ex 7. (1 pts) Compute the fundamental group of the space obtained from two tori $S^1 \times S^1$ by identifying a circle $S^1 \times \{x_0\}$ in one torus with the corresponding circle $S^1 \times \{x_0\}$ in the other torus.

Ex 8. (1 pts) Show that $\pi_1(\mathbb{R}^2 - \mathbb{Q}^2)$ is uncountable.

Note: Please hand in this homework on 10th Oct. 2018.