USTC, School of Mathematical Sciences Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu Posted online by Dr. Muxi Li Winter semester 2018/19 Exercise sheet 5 15 points

Ex 1. (2 pt) Let X be a path-connected space with base point x_0 . Let $\gamma : S^1 \to X$ be a loop and $f : (D^n, \partial D^n) \to (X, x_0)$ be a map. Define $\gamma f := (D^n, \partial D^n) \to (X, x_0)$ by

$$\gamma f = \begin{cases} f(2x) & if \quad 0 \le |x| < 1/2 \\ \gamma(2|x|-1) & if \quad 1/2 \le |x| \le 1 \end{cases}$$

Show that this induces a well-defined action of $\pi_1(X, x_0)$ on $\pi_n(X, x_0)$.

Ex 2. (2 pt) Let (X, A) be a CW pair and let (Y, B) be any pair with $B \neq \emptyset$. For each n such that X - A has cells of dimension n, assume that $\pi_n(Y, B, y_0) = 0$ for all $y_0 \in B$. Then every map $f : (X, A) \to (Y, B)$ is homotopic rel A to a map $X \to B$.

Ex 3. (2 pt) Given the definition of complex and its exactness, then split a long exact sequence into short exact sequences.

Ex 4. (3 pt) Let X be connected space with base point x_0 . For any positive integer n, show that the following conditions are equivalent.

- (1) Every map $S^n \to X$ is homotopic to a constant map.
- (2) Every map $S^n \to X$ extends to a map $D^{n+1} \to X$.
- (3) $\pi_n(X, x_0) = 0.$

Ex 5. (2 pt) Given a CW pair (X, A) and a map $f : A \to Y$ with Y pathconnected, then f can be extended to a map $X \to Y$ if $\pi_{n-1}(Y) = 0$ for all n such that X - A has cells of dimension n.

Ex 6. (2 pts) Let $f : X \to Y$ be a cellular map between CW complexes. Show that the mapping cylinder M(f) of f has a natural CW-structure such that X, Y are CW-subcomplexes of M(f).

Ex 7. (2 pts) Let (X, A) be a CW-pair and $x_0 \in A$. Show that the sequence $\pi_1(A, x_0) \to \pi_1(X, x_0) \to \pi_1(A, X, x_0) \to \pi_0(A, x_0) \to \pi_0(X, x_0)$ is exact.

Note: Please hand in this homework on 7th Nov. 2018.