USTC, School of Mathematical Sciences
Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu Posted online by Dr. Muxi Li

Ex 1. (3 pt) Prove by induction on dimension the following facts about the homology of a finite-dimensional $C W$ complex $X$, using the observation that $X^{n} / X^{n-1}$ is the wedge sum of $n$-spheres:
(a) If $X$ has dimension $n$ then $H_{i}(X)=0$ for $i>n$ and $H_{n}(X)$ is free.
(b) $H_{n}(X)$ is free with basis in bijective correspondence with the $n$-cells if there are no cells of dimension $n-1$ or $n+1$.
(c) If $X$ has $k n$-cells, then $H_{n}(X)$ is generated by at most $k$ elements.

Ex 2. (2 pt) Show that the second barycentric subdivision of a $\triangle$-complex is a simplicial complex. Namely, show that the first barycentric subdivision produces a $\triangle$-complex with the property that each simplex has all its vertices distinct, then show that for a $\triangle$-complex with this property, barycentric subdivision produces a simplicial complex.

Ex 3. (2 pt) Show that a simplicial complex structure on the torus needs at least 14 triangles, 21 edges and 7 vertices. Write down this simplicial structure explicitly. [hint: using Euler formula for torus to get the relation of the number of triangles, edges and vertices.]

Ex 4. (2 pt) Let $f:(X, A) \rightarrow(Y, B)$ be a map such that both $f: X \rightarrow Y$ and the restriction $f: A \rightarrow B$ are homotopy equivalences.
(a) Show that $f_{*}: H_{n}(X, A) \rightarrow H_{n}(Y, B)$ are isomorphism for all $n$.
(b) For the case of the inclusion $f:\left(D^{n}, S^{n-1}\right) \rightarrow\left(D^{n}, D^{n}-\{0\}\right)$, show that $f$ is not a homotopy equivalence of pairs-there is no $g:\left(D^{n}, D^{n}-\{0\}\right) \rightarrow\left(D^{n}, S^{n-1}\right)$ such that $f g$ and $g f$ are homotopic to the identity through maps of pairs.

Ex 5. (2 pts) Recall that for a good pair $(X, A)$, the relative homology $H_{n}(X, A)$ can be expressed as reduced absolute homology $\tilde{H}_{n}(X / A)$. Now, for an arbitary pair $(X, A)$, show that $H_{n}(X, A) \cong \tilde{H}_{n}\left(X \cup_{A} C A\right)$, where $C A$ is the cone $(A \times I) /(A \times\{0\})$, and $\cup_{A}$ means identifying $A \subset X$ with the base of the cone $A \times\{1\}$.

Note: Please hand in this homework on $28^{\text {th }}$ Nov. 2018.

