USTC, School of Mathematical Sciences Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu Posted online by Dr. Muxi Li

Ex 1. (3 pt) Prove by induction on dimension the following facts about the homology of a finite-dimensional CW complex X, using the observation that X^n/X^{n-1} is the wedge sum of n-spheres:

- (a) If X has dimension n then $H_i(X) = 0$ for i > n and $H_n(X)$ is free.
- (b) $H_n(X)$ is free with basis in bijective correspondence with the n-cells if there are no cells of dimension n-1 or n+1.
- (c) If X has k n-cells, then $H_n(X)$ is generated by at most k elements.

Ex 2. (2 pt) Show that the second barycentric subdivision of a \triangle -complex is a simplicial complex. Namely, show that the first barycentric subdivision produces a \triangle -complex with the property that each simplex has all its vertices distinct, then show that for a \triangle -complex with this property, barycentric subdivision produces a simplicial complex.

Ex 3. (2 pt) Show that a simplicial complex structure on the torus needs at least 14 triangles, 21 edges and 7 vertices. Write down this simplicial structure explicitly. [hint: using Euler formula for torus to get the relation of the number of triangles, edges and vertices.]

Ex 4. (2 pt) Let $f : (X, A) \to (Y, B)$ be a map such that both $f : X \to Y$ and the restriction $f : A \to B$ are homotopy equivalences.

- (a) Show that $f_*: H_n(X, A) \to H_n(Y, B)$ are isomorphism for all n.
- (b) For the case of the inclusion $f: (D^n, S^{n-1}) \to (D^n, D^n \{0\})$, show that f is not a homotopy equivalence of pairs—there is no $g: (D^n, D^n - \{0\}) \to (D^n, S^{n-1})$ such that fg and gf are homotopic to the identity through maps of pairs.

Ex 5. (2 pts) Recall that for a good pair (X, A), the relative homology $H_n(X, A)$ can be expressed as reduced absolute homology $\tilde{H}_n(X/A)$. Now, for an arbitrary pair (X, A), show that $H_n(X, A) \cong \tilde{H}_n(X \cup_A CA)$, where CA is the cone $(A \times I)/(A \times \{0\})$, and \cup_A means identifying $A \subset X$ with the base of the cone $A \times \{1\}$.

Note: Please hand in this homework on 28th Nov. 2018.