USTC, School of Mathematical Sciences Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu Posted online by Dr. Muxi Li

Winter semester 2018/11/30
Exercise sheet 9
10 points
2 points for a problem

Ex1. Construct a map $S^{n} \rightarrow S^{n}$ of degree k, for each $n \geqslant 1$ and $k \in \mathbb{Z}$.
Ex2. Given a map $f: S^{2 n} \rightarrow S^{2 n}$, show that there is some point $x \in S^{2 n}$ with either $f(x)=x$ or $f(x)=-x$. Deduce that every map $\mathbb{R} P^{2 n} \rightarrow \mathbb{R} P^{2 n}$ has a fixed point. Construct maps $\mathbb{R} P^{2 n} \rightarrow \mathbb{R} P^{2 n}$ without fixed points from linear transformations $\mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ without eigenvectors.

Ex3. For an invertible linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ show that the induced map on $H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\{0\}\right) \approx \widetilde{H}_{n-1}\left(\mathbb{R}^{n}-\{0\}\right) \approx \mathbb{Z}$ is $\mathbf{1}$ or $\mathbf{- 1}$ according to whether the determinant of f is positive or negative. [Use Gaussian elimination to show that the matrix of f can be joined by a path of invertible matrices to a diagonal matrix with 1 s on the diagonal.]

Ex4. A polynomial $f(z)$ with complex coefficients, viewed as a map $\mathbb{C} \rightarrow \mathbb{C}$, can always be extended to a continuous map of one-point compactifications $f: S^{2} \rightarrow S^{2}$. Show that the degree of f equals the degree of f as a polynomial. Show also that the local degree of f at a root of f is the multiplicity of the root.

Ex5. Compute the homology groups of the following 2-complexes:
(a) The quotient of S^{2} obtained by identifying north and south poles to a point.
(b) $S^{1} \times\left(S^{1} \mid S^{1}\right)$.
(c) The space obtained from D^{2} by first deleting the interiors of two disjoint subdisks in the interior of D^{2} and then identifying all three resulting boundary circles together via homeomorphisms preserving clockwise orientations of these circles.
(d) The quotient space of $S^{1} \times S^{1}$ obtained by identifying points in the circle $S^{1} \times\left\{x_{0}\right\}$ that differ by $2 \pi / m$ rotation and identifying points in the circle $\left\{x_{0}\right\} \times S^{1}$ that differ by $2 \pi / n$ rotation.

Please hand in this homework on 5th Dec. 2018.

