Hint1. If $f(x) \neq x, \forall x$, then $H(x, t)=((1-t) f(x)+t x) /|(1-t) f(x)-t x|$ gives a homotopy connecting f and A, where $A(x):=-x$. Similarly, $f \simeq \operatorname{Id}$ if $f(x) \neq-x, \forall x$. Neither $f \simeq A$ nor $f \simeq$ Id holds for $\operatorname{deg} f=0$ here. Hence there exist points x, y with $f(x)=x$ and $f(y)=-y$.

Let $G:=F /|F|: D^{n} \rightarrow S^{n-1}$. The composition $f: S^{n-1} \hookrightarrow D^{n} \xrightarrow{G} S^{n-1}$ is nullhomotopy so $\operatorname{deg} f=0$. There exist points $x, y \in S^{n-1}$ with $f(x)=x$ and $f(y)=-y$, i.e. $F(x)=|F(x)| x$ and $F(y)=-|F(y)| y$, according to the above discussion.

Hint2. Each even map f can be decomposed to $f: S^{n} \xrightarrow{q} \mathbb{R} P^{n} \rightarrow S^{n}$, where q is the quotient map. $H_{n}\left(\mathbb{R} P^{n}\right)=0$, hence $\operatorname{deg} f=0$, when n is even.

We knew that the degree of the composition

$$
S^{n} \xrightarrow{q} \mathbb{R} P^{n} \rightarrow \mathbb{R} P^{n} / \mathbb{R} P^{n-1} \cong S^{n}
$$

is $1+(-1)^{n}$ when we calculated the cellular homology groups of projective spaces. Therefore $H_{n}\left(\mathbb{R} P^{n}\right) \approx \mathbb{Z}$ and $q_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(\mathbb{R} P^{n}\right)$ is multiplication by 2 when n is odd, since the homomorphism $H_{n}\left(\mathbb{R} P^{n}\right) \rightarrow H_{n}\left(\mathbb{R} P^{n} / \mathbb{R} P^{n-1}\right)$ induced by quotient map is an isomorphism when n is odd, which can be prove by using the long exact sequences of homology groups of good pairs. Then it is distinct that the degree of $f: S^{n} \xrightarrow{q} \mathbb{R} P^{n} \rightarrow S^{n}$ is even.

To give a even map with degree $2 k$, we construct $g: S^{n} \rightarrow S^{n}$ with degree k, then the composition $S^{n} \xrightarrow{q} \mathbb{R} P^{n} \rightarrow \mathbb{R} P^{n} / \mathbb{R} P^{n-1} \cong S^{n} \xrightarrow{g} S^{n}$ has the degree $2 k$.

Hint3. We first emphasize that the cellular chain map $f_{n}^{C W}$ is defined as $f_{*}: H_{n}\left(X^{n}, X^{n-1}\right) \rightarrow$ $H_{n}\left(Y^{n}, Y^{n-1}\right)$, although we leave out the verifying that it is a chain map indeed. We have the following commutative graph

where all the vertical arrows are induced by inclusion, the arrows in left side are surjective, and arrows in right side are isomorphic in both rows. The isomorphism $I: H_{n}(X) \rightarrow H_{n}^{C W}(X)$ is given by the following process: for a given element α in $H_{n}(X)$, choose a preimage α_{n} in $H_{n}\left(X^{n}\right)$ along the first row in the above diagram, then $I(\alpha):=\left[j_{n}^{X}\left(\alpha_{n}\right)\right]$, where $j_{n}: H_{n}\left(X^{n}\right) \rightarrow$ $H_{n}\left(X^{n}, X^{n-1}\right)=C_{n}^{C W}(X)$ is the homomorphism induced by the quotient homomorphism of chain complex, and $[-]$ means the homology class in the cellular homology. Notice that we have known that $j_{n}^{X}\left(\alpha_{n}\right)$ is closed and uniquely determined by α up to homology, i.e. I is well defined when we proved $H_{n} \approx H_{n}^{C W}$. We can choose $f_{*}\left(\alpha_{n}\right)$ as one of the preimages of $f_{*}(\alpha)$ for the above commutative diagram. Hence $I\left(f_{*}(\alpha)\right)=\left[j_{n}^{Y} \circ f_{*}\left(\alpha_{n}\right)\right]=\left[f_{*} \circ j_{n}^{X}\left(\alpha_{n}\right)\right]$ for the following obvious commutative diagram

while $f_{*}^{C W}(I(\alpha))=\left[f_{*}\left(j_{n}^{X}\left(\alpha_{n}\right)\right)\right]=I\left(f_{*}(\alpha)\right)$. So we have proved $f_{*}^{C W} \circ I=I \circ f_{*}$.

Moreover, we want to illustrate the cellular chain map $f_{*}^{C W}$ when we treat $C_{n}^{C W}(X)=$ $H_{n}\left(X^{n}, X^{n-1}\right)$ as the free abelian group generated by n-cells of X. Precisely, we want to prove that the coefficient $a_{i j}^{n}$ in the expansion $f_{*}^{C W}\left(e_{i}^{n}\right)=\sum_{j} a_{i j}^{n} c_{j}^{n}$ is the degree of the composition

$$
D^{n} / S^{n-1} \xrightarrow{\bar{\varphi}_{i}} X^{n} / X^{n-1} \xrightarrow{\bar{f}} Y^{n} /\left(Y^{n}-c_{j}^{n}\right) \xrightarrow{\bar{\psi}_{j}^{-1}} D^{n} / S^{n-1}
$$

where $\left\{e_{i}^{n}\right\}_{i \in I_{n}}$ and $\left\{c_{j}^{n}\right\}_{j \in J_{n}}$ are the n-cells of X and Y, φ_{i} and ψ_{j} are the characteristic maps of e_{i}^{n} and c_{j}^{n} respectively, and \bar{f} means the map induced by f in the quotient spaces, etc. Recall that $H_{n}\left(X^{n}, X^{n-1}\right)$ is a free abelian group generated by $\left\{\varphi_{i *}\left(o^{n}\right)\right\}_{i \in I_{n}}$, where o^{n} is a generator of $H_{n}\left(D^{n}, S^{n-1}\right)$. Hence e_{i}^{n} just means $\left\{\varphi_{i *}\left(o^{n}\right)\right\}_{i \in I_{n}}$ when we treat $H_{n}\left(X^{n}, X^{n-1}\right)$ as the free abelian group generated by n-cells of X. Now what we want results from the following diagram:

where all the vertical arrows are the isomorphism for the good pairs.

Hint4. Let $i_{n}(g)(k)=k g, \forall g \in C_{n}(X)$ and $d_{n}(\alpha)=\partial_{n} \circ \alpha, \forall \alpha \in \operatorname{Hom}\left(\mathbb{Z}, C_{n}(X)\right)$, then it can be verified that $i_{n}: C_{n}(X) \rightarrow \operatorname{Hom}\left(\mathbb{Z}, C_{n}(X)\right)$ is an isomorphism and the diagram

is commutative, $\forall n$. Hence the chain complexes $\left(C_{*}(X), \partial_{*}\right)$ is isomorphic to $\left(\operatorname{Hom}\left(\mathbb{Z}, C_{*}(X)\right), d_{*}\right)$. So $h_{n}(X ; \mathbb{Z}) \approx H_{n}(X)$.

We show that $\operatorname{Hom}\left(\mathbb{Z}_{m}, H\right)=\operatorname{Hom}(\mathbb{Q}, H)=0$ when H is a free alelian group, hence $h_{n}\left(X ; \mathbb{Z}_{m}\right)=h_{n}(X ; \mathbb{Q})=0$. For an arbitrary $f \in \operatorname{Hom}\left(\mathbb{Z}_{m}, H\right), m f(k)=f(m k)=f(0)=0$, so $f(k)=0$ since H is free, $\forall k \in \mathbb{Z}_{m}$. For an arbitrary $f \in \operatorname{Hom}(\mathbb{Q}, H)$, there is one non-zero coefficient at least when we expand $f(1)$ by a basis if H, i.e. $f(1)=a e_{i_{0}}+\sum_{i \neq i_{0}} a_{i} e_{i}, a \neq 0$ and $\left\{e_{i}\right\}$ is a basis of H. Let $f(1 /(2 a))=b e_{i_{0}}+\sum_{i \neq i_{0}} b_{i} e_{i}$, then $f(1)=2 a f(1 /(2 a))=2 a b e_{i_{0}}+\sum_{i \neq i_{0}} 2 a b_{i} e_{i}$. But the coefficients are uniquely determined by $f(1)$, so we obtain a absurdity that $a=2 a b \neq 0$.
Hence $f(1)=0$, then $f=0$.
Hint5. It is easy to calculate the cellular homology groups: $H_{n}(X) \approx \mathbb{Z}_{m}, \widetilde{H}_{i}(X)=0, \forall i \neq n$. And $H^{n+1}(X) \approx \mathbb{Z}_{m}, \widetilde{H}^{i}(X)=0, \forall i \neq n$ follow from the universal coefficient theorem.
(a) It is obvious that the quotient map $q: X \rightarrow X / S^{n}=S^{n+1}$ induces the trivial map on $\widetilde{H}_{i}(-; \mathbb{Z})$. We have the following exact sequence

$$
H^{n+1}\left(X / S^{n}\right) \rightarrow H^{n+1}(X) \rightarrow H^{n+1}\left(S^{n}\right)=0
$$

for good pair $\left(X, S^{n}\right)$, hence $q^{*}: H^{n+1}\left(X / S^{n}\right) \rightarrow H^{n+1}(X) \approx \mathbb{Z}_{m}$ is surjective, and nontrivial.
If the splitting in the universal coefficient theorem for cohomology were natural, the diagram

would be commutative. The vertical arrow in the right side is the direct of $\operatorname{Hom}\left(H_{n+1}(Y), \mathbb{Z}\right) \rightarrow$ $\operatorname{Hom}\left(H_{n+1}(X), \mathbb{Z}\right)$ and $\operatorname{Ext}\left(H_{n}(Y), \mathbb{Z}\right) \rightarrow \operatorname{Ext}\left(H_{n}(X), \mathbb{Z}\right)$, hence trivial, (for $\operatorname{Hom}\left(H_{n+1}(X), \mathbb{Z}\right)=$ 0 and $\operatorname{Ext}\left(H_{n}\left(X / S^{n}\right), \mathbb{Z}\right)=0$.) But q^{*} is nontrivial so the diagram is not commutative.
(b) Similarly.

