Hint1. We use the following notations: $M|x:=(M, M-\{x\}), N| y:=(N, N-\{y\})$, then

$$
\begin{aligned}
(M \mid x) \times(N \mid y) & =(M, M-\{x\}) \times(N, N-\{y\}) \\
& =(M \times N,(M \times(N-\{y\})) \cup((M-\{x\}) \times N)) \\
& =(M \times N, M \times N-\{x\} \times N \cap M \times\{y\}) \\
& =(M \times N, M \times N-\{(x, y)\})=: M \times N \mid(x, y) .
\end{aligned}
$$

Using the Künneth homomorphism of relative homology

$$
\mu: H_{m}(M \mid x) \otimes H_{n}(N \mid y) \rightarrow H_{m+n}(M \times N \mid(x, y)),
$$

we define $o(x, y)=\mu\left(o_{M}(x) \otimes o_{N}(y)\right)$, where o_{M} and o_{N} are the orientation of M and N respectively. Since $H_{i}(N \mid y)$ are all free, $\forall i$, the Künneth formula tells us μ is an isomorphism. Hence $o(x, y)$ is a generater of $H_{m+n}(M \times N \mid(x, y)), \forall(x, y)$.

We need to show that o is continuous in the sense that there exists a neighbourhood W s.t. $o\left(x^{\prime}, y^{\prime}\right)=j_{*}^{x^{\prime} y^{\prime}}(\gamma), \forall\left(x^{\prime}, y^{\prime}\right) \in W$, for some $\gamma \in H_{m+n}(M \times N \mid M \times N-W)$, where $j^{x^{\prime} y^{\prime}}$ is the inclusion $\left(M \times N \mid\left(x^{\prime}, y^{\prime}\right)\right) \rightarrow(M \times N, M \times N-W)$. We can assume that $o_{M}\left(x^{\prime}\right)=i_{*}^{x^{\prime}}(\alpha)$ and $o_{N}\left(y^{\prime}\right)=\iota_{*}^{y^{\prime}}(\beta)$ for some $\left.\alpha \in H_{(} M, M-U\right)$ and $H_{n}(N, N-V)$ for the continuity of o_{M} and o_{N}. Künneth formula and its naturality implies the following commutative diagram:

which shows that $o\left(x^{\prime}, y^{\prime}\right)=j_{*}^{x^{\prime} y^{\prime}}(\nu(\alpha \otimes \beta))$.
Hint2. Let $D \subset M$ is an open set whose closet \bar{D} is homeomorphism to a closed n-ball. We assert that the quotient $\operatorname{map} q: M \rightarrow M /(M-D)=\bar{D} /(\bar{D}-D) \cong S^{n}$ is a degree 1 map. For a point $x \in D, f$ is a map between the pairs $(M, M-\{x\}) \rightarrow\left(S^{n}, S^{n}-\{q(s)\}\right)$, hence we have the following commutative diagram

where j^{x} and $j^{q(x)}$ are both inclusion of pairs. We can reset the orientation of S^{n} s.t. f_{*} sends $o(x)$, the local orientation at x to $o(q(x))$, the one at $q(x)$, since f is a local homeomorphism. According to the properties of the fundamental classes, $j_{*}^{x}([M])=o(x), j_{*}^{q(x)}\left(\left[S^{n}\right]\right)=o(q(x))$, and j_{*}^{x} and $j_{*}^{q(x)}$ are isomorphisms. Therefore $f_{*}([M])=\left[S^{n}\right]$ following from the above diagram.

Hint3. This problem can be solved by just emulating the proof of Proposition 2.30 in the textbook.

Hint4. We follow the hint. Let $p: \widetilde{N} \rightarrow N$ be a covering space s.t. $p_{*}\left(\pi_{1}(\widetilde{N})\right)=f_{*}\left(\pi_{1}(M)\right)$. Then there is a lifting of f, i.e. a map $F: M \rightarrow \widetilde{N}$ s.t. $f=p F$. The number of p 's sheets m
is larger than 1 unless f_{*} is surjective, because it equals the index $\left[f_{*} \pi_{1}(M): \pi_{1}(N)\right]$. When $1<m<\infty, \operatorname{deg} p=m$ hence we obtain an absurdity $1=\operatorname{deg} f=\operatorname{deg} f \operatorname{deg} F=m \operatorname{deg} F$. When $m=\infty, H_{n}(\tilde{N})=0$ since \widetilde{N} is noncompact, and we also obtain a absudity $1=\operatorname{deg} f=$ $\operatorname{deg} f \operatorname{deg} F=0$.

Hint5. We can immediately see that there is no map $M_{g} \rightarrow M_{h}$ with degree 1 when $g<h$, according to $\mathbf{E x 4}$, because $H_{1}\left(M_{g}\right) \approx \mathbb{Z}^{g}$ and there is no epimorphism $\mathbb{Z}^{g} \rightarrow \mathbb{Z}^{h}$ for $g<h$.

Hint6. When M is orientable, $H_{2}(M) \approx H^{1}(M) \approx \operatorname{Hom}\left(\mathbb{Z}^{r} \oplus F, \mathbb{Z}\right) \approx \mathbb{Z}^{r}$, where the first isomorphism is from the Poincaré duality, the second one is from the universal coefficient theorem, and $\operatorname{Ext}\left(H_{0}(M), \mathbb{Z}\right)=0$ since $H_{0}(M)$ is free.

When M is nonorientable, the betti numbers of M that we have known are $b_{0}=1$ (for M connected), $b_{1}=r, b_{3}=0$ (for M nonorientable). Hence $b_{2}=r-1$ because the Euler number $\chi(M):=b_{0}-b_{1}+b_{2}-b_{3}=0$. Therefore $H_{2}(M) \approx \mathbb{Z}^{r-1} \oplus G$, where G is a finite group, i.e. the torsion subgroup of $H_{2}(M)$, which is \mathbb{Z}_{2} according to Corollary $\mathbf{3 . 2 8}$ in the textbook.

Hint7. $H_{k}(M) \approx H^{k}(M) \approx \operatorname{Hom}\left(H_{k}(M), \mathbb{Z}\right) \oplus \operatorname{Ext}\left(H_{k-1}(M), \mathbb{Z}\right)=\operatorname{Hom}\left(H_{k}(M), \mathbb{Z}\right)$ is torsionfree.

