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Ex 1. (1 pt) Define f : S1 × I → S1 × I by f(θ, s) = (θ + 2πs, s), so
f restricts to identity on the two bundary circles of S1 × I. Show that f
is homotopic to the identity by a homotopy ft that is stationary on one of
the boundary circles, but not by any homotopy ft that is stationary on both
boundary circles. [Consider what f does to the path s 7→ (θ0, s) for fixed
θ0 ∈ S1.]

Hint. For the first part, consider a map Ft : S
1 × I → S1 × I by Ft(θ, s) =

(θ + 2πst, s). For the second part, consider projection p : S1 × I → S1 and
the path s 7→ (θ0, s).

Ex 2. (1 pt) Does the Borsuk-Ulam theorem hold for the torus? In other
words, for every map f : S1 × S1 → R2 must there exist (x, y) ∈ S1 × S1

such that f(x, y) = f(−x,−y)?

Hint. Consider the projection p1 : S1 × S1 → S1 by p1(s1, s2) = s1 and the
natural imbedding i : S1 ↪→ R2. Let f = i ◦ p1, then Borsuk-Ulam theorem
doesn’t hold in this case.

Ex 3. (1 pt) Let A1, A2, A3 be compact sets in R3. Use the Borsuk-Ulam
theorem to show that there is one plane P ⊂ R3 that simultaneously divides
each Ai into two pieces of equal measure.

Hint. Method 1, take s ∈ S2 ⊂ R3, then ∃ ! one plane P s
1 in R3 with normal

vector
−→
0s such that P s

1 divides A1 into two pieces of equal measure. Take
ps ∈ P s

1 , then define Ps = {v ∈ R3|−→vps ·
−→
0s ≥ 0} (note: this is independent

of the choice of ps). Let f1(s) (resp. f2(s)) be the measure of Ps ∩A2 (resp.
Ps ∩ A3). In this way, we get a map f : S2 → R2 by f(s) = (f1(s), f2(s)).
By the Borsuk-Ulam theorem, we get a s0 ∈ S2 such that f(s0) = f(−s0),
then P s0

1 is just the plane we want.
Method 2, using the Borsuk-Ulam theorem for maps S3 → R3.
Take s = (s1, s2, s3, s4) ∈ S3 ⊂ R4, then consider Ps = {(x, y, z) ∈ R3|xs1 +
ys2 + zs3 + s4 ≥ 0}. Let f1(s) (resp. f2(s), f3(s)) be the measure of Ps ∩A1

(resp. Ps ∩ A2, Ps ∩ A3). In this way, we get a map f : S3 → R3 by f(s) =
(f1(s), f2(s), f3(s)). By the Borsuk-Ulam theorem, we get a v ∈ S3 such that
f(v) = f(−v). For (v1, v2, v3) ∈ R3\{0}, the plane xv1 + yv2 + zv3 + v4 = 0
is just what we want.

Ex 4. (1 pt) From the isomorphism π1(X × Y, (x0, y0)) ≈ π1(X,x0) ×
π1(Y, y0) it follows that loops in X×{y0} and {x0}×Y represent commuting
elements of π1(X × Y, (x0, y0)). Construct an explicit homotopy demonstrat-
ing this.
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Hint. Let [f ], [g] be elements in π1(X,x0), π1(Y, y0) respectively. We need
to construct an explicit homotopy in X×Y from f · g to g · f with base point
(x0, y0). By definition

f · g(s) =

{
(f(2s), y0) for 0 ≤ s ≤ 1/2

(x0, g(2s− 1)) for 1/2 < s ≤ 1

g · f(s) =

{
(x0, g(2s)) for 0 ≤ s ≤ 1/2

(f(2s− 1), y0) for 1/2 < s ≤ 1

Let

F1t(s) =


x0 for 0 ≤ s ≤ t/2
f(2s− t) for t/2 < s ≤ (t+ 1)/2

x0 for (t+ 1)/2 < s ≤ 2

F2t(s) =


y0 for 0 ≤ s ≤ (1− t)/2
g(2s+ t− 1) for (1− t)/2 < s ≤ (2− t)/2
y0 for (2− t)/2 < s ≤ 1

.

Then F (t, s) : I×I → X×Y given by F (t, s) = (F1t(s), F2t(s)) is a homotopy
from f · g to g · f with base point (x0, y0).
Alternatively, we can construct an explicit homotopy in X × Y from f · g
to (f, g) with base point (x0, y0). Let

F1t(s) =

{
f(2s/(1 + t)) for 0 ≤ s ≤ (1 + t)/2

x0 for (1 + t)/2 < s ≤ 1

F2t(s) =

{
y0 for 0 ≤ s ≤ (1− t)/2
g(2(s− 1)/(1 + t) + 1) for (1− t)/2 < s ≤ 1

Then F (t, s) : I×I → X×Y given by F (t, s) = (F1t(s), F2t(s)) is a homotopy
from f · g to (f, g) with base point (x0, y0).
Similarly, we can construct an explicit homotopy in X×Y from g ·f to (f, g)
with base point (x0, y0).

Ex 5. (3 pts) Show that there are no retractions r : X → A in the following
cases:
(a) X = R3 with A any subspace homeomorphic to S1.
(b) X = S1 ×D2 with A its boundary torus S1 × S1.
(c) X = S1 ×D2 and A the circle shown in the figure.
(d) X = D2 ∨D2 with A its boundary S1 ∨ S1.
(e) X a disk with two points on its boundary identified and A its boundary S1 ∨ S1.
(f) X the Möbius band and A its boundary circle.
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Hint. If there exists retraction r : X → A, then the inclusion i : A → X
induces an isomorphism i∗ : π1(A)→ π1(X).
(a) π1(A) = Z, π1(X) = 0.
(b) π1(A) = Z× Z, π1(X) = Z.
(c) π1(A) = Z, π1(X) = Z, i∗ = 0
(d) π1(A) = Z ∗ Z, π1(X) = 0.
(e) π1(A) = Z ∗ Z, π1(X) = Z.
(f) π1(A) = Z, π1(X) = Z, i∗ = 2× .

Ex 6. (2 pts) Using the technique in the proof of Proposition 1.14, show that
if a space X is obtained from a path-connected subspace A by attaching a cell
en with n ≥ 2, then the inclusion A ↪→ X induces a surjection on π1. Apply
this to show:
(a) The wedge sum S1 ∨ S2 has fundamental group Z.
(b) For a path-connected CW complex X the inclusion map X1 ↪→ X of its

1-skeleton induces a surjection π1(X1)→ π1(X). [For the case that X
has infinitely many cells, see Proposition A.1 in Appendix.]

Hint. The same as in the proof of Proposition 1.14, every path in X, is
homotopy to a path in A.
(a) Consider the natural inclusion S1 ↪→ S1 ∨ S2 ↪→ S1 ∨D3, the second

injection using ∂(D3) = S2.
(b) If dim (X) <∞, inductively use the result we get.

If dim (X) =∞, consider a path f in X. By compactness of f(I),
this f(I) ⊂ Xn for some n.
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