USTC, School of Mathematical Sciences
Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu

Winter semester 2018/19
Hint to exercise sheet 2
Posted by Dr. Muxi Li

Ex 1. (1 pt) Define $f: S^{1} \times I \rightarrow S^{1} \times I$ by $f(\theta, s)=(\theta+2 \pi s, s)$, so f restricts to identity on the two bundary circles of $S^{1} \times I$. Show that f is homotopic to the identity by a homotopy f_{t} that is stationary on one of the boundary circles, but not by any homotopy f_{t} that is stationary on both boundary circles. [Consider what f does to the path $s \mapsto\left(\theta_{0}, s\right)$ for fixed $\theta_{0} \in S^{1}$.]

Hint. For the first part, consider a map $F_{t}: S^{1} \times I \rightarrow S^{1} \times I$ by $F_{t}(\theta, s)=$ $(\theta+2 \pi s t, s)$. For the second part, consider projection $p: S^{1} \times I \rightarrow S^{1}$ and the path $s \mapsto\left(\theta_{0}, s\right)$.

Ex 2. (1 pt) Does the Borsuk-Ulam theorem hold for the torus? In other words, for every map $f: S^{1} \times S^{1} \rightarrow \mathbb{R}^{2}$ must there exist $(x, y) \in S^{1} \times S^{1}$ such that $f(x, y)=f(-x,-y)$?

Hint. Consider the projection $p_{1}: S^{1} \times S^{1} \rightarrow S^{1}$ by $p_{1}\left(s_{1}, s_{2}\right)=s_{1}$ and the natural imbedding $i: S^{1} \hookrightarrow \mathbb{R}^{2}$. Let $f=i \circ p_{1}$, then Borsuk-Ulam theorem doesn't hold in this case.

Ex 3. (1 pt) Let A_{1}, A_{2}, A_{3} be compact sets in \mathbb{R}^{3}. Use the Borsuk-Ulam theorem to show that there is one plane $P \subset \mathbb{R}^{3}$ that simultaneously divides each A_{i} into two pieces of equal measure.

Hint. Method 1, take $s \in S^{2} \subset \mathbb{R}^{3}$, then \exists ! one plane P_{1}^{s} in \mathbb{R}^{3} with normal vector $\overrightarrow{0 s}$ such that P_{1}^{s} divides A_{1} into two pieces of equal measure. Take $p_{s} \in P_{1}^{s}$, then define $P_{s}=\left\{v \in \mathbb{R}^{3} \mid \overrightarrow{v p_{s}} \cdot \overrightarrow{0 s} \geq 0\right\}$ (note: this is independent of the choice of p_{s}). Let $f_{1}(s)$ (resp. $\left.f_{2}(s)\right)$ be the measure of $P_{s} \cap A_{2}$ (resp. $\left.P_{s} \cap A_{3}\right)$. In this way, we get a map $f: S^{2} \rightarrow \mathbb{R}^{2}$ by $f(s)=\left(f_{1}(s), f_{2}(s)\right)$. By the Borsuk-Ulam theorem, we get a $s_{0} \in S^{2}$ such that $f\left(s_{0}\right)=f\left(-s_{0}\right)$, then $P_{1}^{s_{0}}$ is just the plane we want.
Method 2, using the Borsuk-Ulam theorem for maps $S^{3} \rightarrow \mathbb{R}^{3}$.
Take $s=\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \in S^{3} \subset \mathbb{R}^{4}$, then consider $P_{s}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x s_{1}+\right.$ $\left.y s_{2}+z s_{3}+s_{4} \geq 0\right\}$. Let $f_{1}(s)$ (resp. $\left.f_{2}(s), f_{3}(s)\right)$ be the measure of $P_{s} \cap A_{1}$ (resp. $P_{s} \cap A_{2}, P_{s} \cap A_{3}$). In this way, we get a map $f: S^{3} \rightarrow \mathbb{R}^{3}$ by $f(s)=$ $\left(f_{1}(s), f_{2}(s), f_{3}(s)\right)$. By the Borsuk-Ulam theorem, we get a $v \in S^{3}$ such that $f(v)=f(-v)$. For $\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3} \backslash\{0\}$, the plane $x v_{1}+y v_{2}+z v_{3}+v_{4}=0$ is just what we want.

Ex 4. (1 pt) From the isomorphism $\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \approx \pi_{1}\left(X, x_{0}\right) \times$ $\pi_{1}\left(Y, y_{0}\right)$ it follows that loops in $X \times\left\{y_{0}\right\}$ and $\left\{x_{0}\right\} \times Y$ represent commuting elements of $\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$. Construct an explicit homotopy demonstrating this.

Hint. Let $[f],[g]$ be elements in $\pi_{1}\left(X, x_{0}\right), \pi_{1}\left(Y, y_{0}\right)$ respectively. We need to construct an explicit homotopy in $X \times Y$ from $f \cdot g$ to $g \cdot f$ with base point $\left(x_{0}, y_{0}\right)$. By definition

$$
\begin{aligned}
& f \cdot g(s)= \begin{cases}\left(f(2 s), y_{0}\right) & \text { for } 0 \leq s \leq 1 / 2 \\
\left(x_{0}, g(2 s-1)\right) & \text { for } 1 / 2<s \leq 1\end{cases} \\
& g \cdot f(s)= \begin{cases}\left(x_{0}, g(2 s)\right) & \text { for } 0 \leq s \leq 1 / 2 \\
\left(f(2 s-1), y_{0}\right) & \text { for } 1 / 2<s \leq 1\end{cases}
\end{aligned}
$$

Let

$$
\begin{gathered}
F_{1 t}(s)= \begin{cases}x_{0} & \text { for } 0 \leq s \leq t / 2 \\
f(2 s-t) & \text { for } t / 2<s \leq(t+1) / 2 \\
x_{0} & \text { for }(t+1) / 2<s \leq 2\end{cases} \\
F_{2 t}(s)= \begin{cases}y_{0} & \text { for } 0 \leq s \leq(1-t) / 2 \\
g(2 s+t-1) & \text { for }(1-t) / 2<s \leq(2-t) / 2 . \\
y_{0} & \text { for }(2-t) / 2<s \leq 1\end{cases}
\end{gathered}
$$

Then $F(t, s): I \times I \rightarrow X \times Y$ given by $F(t, s)=\left(F_{1 t}(s), F_{2 t}(s)\right)$ is a homotopy from $f \cdot g$ to $g \cdot f$ with base point $\left(x_{0}, y_{0}\right)$.
Alternatively, we can construct an explicit homotopy in $X \times Y$ from $f \cdot g$ to (f, g) with base point $\left(x_{0}, y_{0}\right)$. Let

$$
\begin{gathered}
F_{1 t}(s)= \begin{cases}f(2 s /(1+t)) & \text { for } 0 \leq s \leq(1+t) / 2 \\
x_{0} & \text { for }(1+t) / 2<s \leq 1\end{cases} \\
F_{2 t}(s)= \begin{cases}y_{0} & \text { for } 0 \leq s \leq(1-t) / 2 \\
g(2(s-1) /(1+t)+1) & \text { for }(1-t) / 2<s \leq 1\end{cases}
\end{gathered}
$$

Then $F(t, s): I \times I \rightarrow X \times Y$ given by $F(t, s)=\left(F_{1 t}(s), F_{2 t}(s)\right)$ is a homotopy from $f \cdot g$ to (f, g) with base point $\left(x_{0}, y_{0}\right)$.
Similarly, we can construct an explicit homotopy in $X \times Y$ from $g \cdot f$ to (f, g) with base point $\left(x_{0}, y_{0}\right)$.

Ex 5. (3 pts) Show that there are no retractions $r: X \rightarrow A$ in the following cases:
(a) $X=\mathbb{R}^{3}$ with A any subspace homeomorphic to S^{1}.
(b) $X=S^{1} \times D^{2}$ with A its boundary torus $S^{1} \times S^{1}$.
(c) $X=S^{1} \times D^{2}$ and A the circle shown in the figure.
(d) $X=D^{2} \vee D^{2}$ with A its boundary $S^{1} \vee S^{1}$.
(e) X a disk with two points on its boundary identified and A its boundary $S^{1} \vee S^{1}$.
(f) X the Möbius band and A its boundary circle.

Hint. If there exists retraction $r: X \rightarrow A$, then the inclusion $i: A \rightarrow X$ induces an isomorphism $i_{*}: \pi_{1}(A) \rightarrow \pi_{1}(X)$.
(a) $\pi_{1}(A)=\mathbb{Z}, \pi_{1}(X)=0$.
(b) $\pi_{1}(A)=\mathbb{Z} \times \mathbb{Z}, \pi_{1}(X)=\mathbb{Z}$.
(c) $\pi_{1}(A)=\mathbb{Z}, \pi_{1}(X)=\mathbb{Z}, i_{*}=0$
(d) $\pi_{1}(A)=\mathbb{Z} * \mathbb{Z}, \pi_{1}(X)=0$.
(e) $\pi_{1}(A)=\mathbb{Z} * \mathbb{Z}, \pi_{1}(X)=\mathbb{Z}$.
(f) $\pi_{1}(A)=\mathbb{Z}, \pi_{1}(X)=\mathbb{Z}, i_{*}=2 \times$.

Ex 6. (2 pts) Using the technique in the proof of Proposition 1.14, show that if a space X is obtained from a path-connected subspace A by attaching a cell e^{n} with $n \geq 2$, then the inclusion $A \hookrightarrow X$ induces a surjection on π_{1}. Apply this to show:
(a) The wedge sum $S^{1} \vee S^{2}$ has fundamental group \mathbb{Z}.
(b) For a path-connected $C W$ complex X the inclusion map $X^{1} \hookrightarrow X$ of its 1 -skeleton induces a surjection $\pi_{1}\left(X^{1}\right) \rightarrow \pi_{1}(X)$. [For the case that X has infinitely many cells, see Proposition A. 1 in Appendix.]

Hint. The same as in the proof of Proposition 1.14, every path in X, is homotopy to a path in A.
(a) Consider the natural inclusion $S^{1} \hookrightarrow S^{1} \vee S^{2} \hookrightarrow S^{1} \vee D^{3}$, the second injection using $\partial\left(D^{3}\right)=S^{2}$.
(b) If $\operatorname{dim}(X)<\infty$, inductively use the result we get. If $\operatorname{dim}(X)=\infty$, consider a path f in X. By compactness of $f(I)$, this $f(I) \subset X^{n}$ for some n.

