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1. Let X ⊂ Rm be the union of convex open sets X1, ..., Xn such that
Xi ∩Xj ̸= ∅ for all i, j. Give an example to show that X is not necessarily
simply-connected.
Hint. The following figure shows a union of three convex open sets in R2

which is not simply-connected, but those convex open sets intersect pair-
wise.

2. Let X ⊂ Rm be the union of simply-connected open sets X1, ..., Xn

such that Xi ∩Xj ∩Xk ̸= ∅ are path-connected for all i, j, k. Show that X
is simply-connected.
Hint. We prove X1 ∪ ... ∪Xn is simply-connected by induction on n. The
convex open set Xn is simply-connected and so is X1 ∪ ... ∪Xn−1 from the
induction, hence X1∪ ...∪Xn is simply-connected if Van Kampen’s theorem
works. So the key is to show (X1 ∪ ... ∪Xn−1) ∩Xn path-connected.

Noticed (X1∪...∪Xn−1)∩Xn = (X1∩Xn)∪...∪(Xn−1∩Xn) and Xk∩Xn

is path-connected, ∀k, then recall when the union of some path-connected
sets is path-connected.

3. Let X ⊂ R3 be the union of n lines through the origin. Compute
π(R3 −X).
Hint. Let R3 deformation retracts onto the unit sphere S2, and we observe
R3−X retracts onto S2−Y , where Y ⊂ S2 consists of 2n points. Moreover,
S2 − Y is homeomorphic to R2 − Z, where Z consists of 2n− 1 points. Let
R2−Z deformation retract onto an union of 2n− 1 circles like the following
picture shows.
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For the rigorousness, we give a proof of it that R2 −N is homeomorphic
to R2−K, where both N and K are finite and have the same number, in ad-
dition, K lies in a line. In fact we would like to find an auto-homeomorphism
of R2 which sends N to K. For every pair a, b ∈ N, there are two points
in the unit circle S1 perpendicular to a− b. We go through all of the pairs
in N and pick out finitely many points in S1 as the above. Now choose a
remaining point c ∈ S1, and we observe ⟨a, c⟩ ̸= ⟨b, c⟩, for any two different
points a, b ∈ N , that means the orthogonal projection K of N onto the line
Rc consists of the same number of points as N . By rotating, we consider
Rc as R× {0}, and choose some pairwise disjoint open intervals of R× {0}
s.t. every interval contains a point of K. Now it is sufficient to give a
auto-homeomorphism of R2, which sends (x0, y0) to (x0, 0) and keep every
point in (R− I)×R still, where I is an open interval contains x0. Choose a
continuous function f s.t. its support (closure of the set of non-zero points)
is contained in I and f(x0) = 1, then we construct

F (x, y) =

{
(x, y − f(x)y0), x ∈ I,

(x, y), x /∈ I,

that is the homeomorphism we want.

4. Let X ∈ R2 be a connected graph that is the union of a finite number
of straight line segments. Show that π1(X) is free with a basis consisting of
loops formed by the boundaries of the bounded complementary regions of
X, joined to a basepoint by suitably chosen paths in X. [Assume the Jordan
curve theorem for polygonal simple closed curves, which is equivalent to the
case that X is homeomorphic to S1.]
Hint. Choose a maximal tree T of X, and consider the quotient space X/T ,
which is a wedge sum of circles, where every circle comes from a edge not in
T . The quotient mapping X → X/T is a homotopy equivalence because T is
contractible and the CW-pair (X,T ) has the homotopy extension property.

For the basis of π1(X), we induct on the of the bounded complementary
regions. We obtain a subspace X ′ by removing an edge of X touching the
unbounded complementary region, and not in T . The subspace X ′ still
has the maximal tree T and loses a bounded complementary region whose
boundary contains the removed edge. Let {a1, ..., an} denote the standard
basis of π1(∨nS1) ∼= π1(X/T ), then the boundary of the region lost in X ′

stands for x ∗ an ∗ y, where x, y are elements of π1(∨n−1S1) ∼= π1(X
′/T ).

Now it is not hard to find {x1, ..., xn−1, x∗an∗y} a minimal set of generators
of π1(∨nS1), where {x1, ..., xn−1} is the basis of π1(∨n−1S1) represented by
the boundaries of bounded complementary regions of X ′.
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5. Suppose a space Y is obtained from a path-connected subspace X by
attaching n-cells for a fixed n > 3. Show that the inclusion X ↩→ Y induces
an isomorphism on π1. Apply this to show that the complement of a discrete
subspace of Rn is simply-connected if n > 3.
Hint. It is easy to solve the first part by using Van Kampen’s theorem
when the n-cells are finitely many. When the n-cells are infinitely many, we
observe that a loop of Y meets finitely many n-cells otherwise its image has
a infinite subset intersecting every n-cell in one point at most. It is easy to
check such a set closed , further, discrete since its every subset is closed for
the same reason. That is a contradiction to the compactness of the image
of the loop. So the inclusion induces a surjection π1(X) ∼= π1(X

′) → π1(Y ),
where X ′ forms by attaching finite number of cells onto X. Similarly, if a
loop is nullhomotopic in Y , the image of the homotopy lies in some X ′′, then
the loop represents zero in π1(X

′′) ∼= π1(X).
The rest part of the original problem lacks an assumption that the dis-

crete subspace is closed, which is supplied in the corrections (Section 1.2,
page 53, Exercise 6.) of Algebraic Topology by Allen Hatcher, although the
result still holds without this condition. A quite complicated proof of the
original result which is said to be given by Professor Hatcher himself can
be seen here. Now we only prove it with the additional condition and shall
give another proof of the original problem at the end of this sheet.

The image of an arbitrary loop must be contained in an bounded open
ball B, and there is only finite number of points of the closed discrete set in
B. So it is sufficient to prove B −N simply-connected, where N is a finite
subset. We replace B −N by B −N ′ for homotopy equivalence, where N ′

is an union of finitely many disjoint open balls whose closures are contained
in B. We obtain B by attaching finite number of n-cells onto B −N ′, but
it does not change π1 to attach n-cells, hence π1(B−N ′) = π1(B) is trivial.

6. Let X be the quotient space of S2 obtained by identifying the north
and south poles to a single point. Put a cell complex structure on X and
use this to compute π1(X).
Hint. The following picture shows a cell complex stucture of X. And use
Prop 1.26 (in Algebraic Topology by Allen Hatcher) to compute π1(X). The
result is π1(X) ≈ Z.
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7. Compute the fundamental group of the space obtained from two tori
S1×S1 by identifying a circle S1×{x0} in one torus with the corresponding
circle S1 × {x0} in the other torus.
Hint. It is easy to obtain that

π1(X) ≈ Z2 ∗ Z2/⟨(1, 0) ∗ (−1, 0)⟩

from Van Kampen’s theorem. And the result can be simplified as Z×(Z∗Z).
We can also observe that X is homeomorphisc to S1× (S1∨S1) and get the
same result from the conclusion on the π1 of the product spaces.

8. Show that π1(R2 −Q2) is uncountable.
Hint. It is sufficient to prove that loops La and Lb are not homotopic,
∀a, b ∈ R−Q, a > 0 > b, where

Lx = (0, c)(x, c) (x, c)(x, d) (x, d)(0, d) (0, d)(0, c),

∀x ∈ R − Q, where c ̸= d are fixed irrational numbers. Consider La · L−1
b ,

which is homotopic to the rectangular loop with vertex (a, c), (a, d), (b, d)
and (b, c). So what we need to do is to show that such a rectangular loop
is not nullhomotopic (in R2 −Q2). Recall the proof of it that the image of
f : D2 → R2 covers D2 if f |S1 = idS1 .

A proof of the second part in the original Ex.5

This elegant proof was given by an Internet user named Martin M. W.
at this page (Maybe there is someone credited with this proof earlier but we
have not verified that).

In fact one can prove the complement of any countable set X in Rn

simply-connected, for n > 3. First, C(D2,Rn), the space consisting of all
the continuous mappings D2 → Rn, can be equipped the uniform norm

4

https://mathoverflow.net/questions/215923/is-mathbbr3-setminus-mathbbq3-simply-connected/215930#215930


||F || := maxx∈D2 |F (x)| and forms a complete metric space. For an arbitrary
loop f lies in Rn −X, we consider

H := {F ∈ C(D2,Rn)| F |S1 = f}.

It is easy to check that H is a closed subspace of C(D2,Rn), hence is also
complete. Let x1, x2, ... denote all the points in X, and

Ui = {F ∈ H| xi /∈ F (D2)}, ∀i.

An element in
∩

i Ui is a mapping D2 → Rn − X, s.t. F |S1 = f , hence
gives a homotopy from f to a constant mapping. Therefore, what we want
to prove is that

∩
i Ui ̸= ∅. We assert that Ui is open and dense (in H),

∀i, then obtain that
∩

i Ui is dense, and of course nonempty, from the Baire
category theorem.

Now we should prove the above assertion. It is easy to verify that Ui

is open if Ui ̸= ∅. To prove the density of Ui, of course which implies Ui

nonempty, we should find an F s.t. ||F − F0|| < ε, for any given F0 ∈ H
and ε > 0. We assume the loop f does not go in the closed ball Bε/2(xi),
then choose a disk D′ ⊂ D2 with diameter r < 1, and also centered at the
origin, which contains F−1

0 (Bε/2(xi)). According to the Stone-Weierstrass
theorem, there exists an smooth mapping F1 : D2 → Rn (not in H) s.t.
||F1 − F0|| < ε/4. Choose a continuous function φ defined in [0, 1) with
compact support, φ|[0,r] = 1, and 0 6 φ 6 1, then we construct a mapping

F2(x) = (1− φ(|x|))F0(x) + φ(|x|)F1(x).

It is easy to find that F2 ∈ H, F̃ |D′ = F1|D′ , and

||F2 − F0|| < ε/4,

where the inequality implies F−1
2 (B) ⊂ D′, and B denote Bε/4(xi). Because

F2 is smooth in D′, the (Lebesgue) measure of F2(D
′) is 0. So B is not

contained in F2(D
2). Choose a point y ∈ B\F2(D

2), and we construct

F (x) =


the intersection of ∂B and

the half-line from y to F2(x), F2(x) ∈ B,

F2(x), F2(x) /∈ B.

Then F ∈ H,

||F − F0|| 6 ||F − F2||+ ||F2 − F0|| <
3

4
ε < ε,

and xi /∈ F (D2).
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