USTC, School of Mathematical Sciences
Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu

Winter semester 2018/19
Hint to exercise sheet 5 Posted by Dr. Muxi Li

Ex 1. (2 pt) Let $X$ be a path-connected space with base point $x_{0}$. Let $\gamma$ : $S^{1} \rightarrow X$ be a loop and $f:\left(D^{n}, \partial D^{n}\right) \rightarrow\left(X, x_{0}\right)$ be a map. Define $\gamma f:=$ $\left(D^{n}, \partial D^{n}\right) \rightarrow\left(X, x_{0}\right)$ by

$$
\gamma f=\left\{\begin{array}{lll}
f(2 x) & \text { if } & 0 \leq|x|<1 / 2 \\
\gamma(2|x|-1) & \text { if } & 1 / 2 \leq|x| \leq 1
\end{array}\right.
$$

Show that this induces a well-defined action of $\pi_{1}\left(X, x_{0}\right)$ on $\pi_{n}\left(X, x_{0}\right)$.
Hint. It is easy to see that If $f_{1} \stackrel{F_{t}}{\sim} f_{2}$ and $\gamma_{1} \stackrel{G_{t}}{\sim} \gamma_{2}$ then $\gamma_{1} f_{1} \stackrel{H}{\sim} \gamma_{2} f_{2}$, here

$$
H=\left\{\begin{array}{lll}
G_{t}(2 x) & \text { if } & 0 \leq|x|<1 / 2 \\
F_{t}(2|x|-1) & \text { if } & 1 / 2 \leq|x| \leq 1
\end{array}\right.
$$

So $[\gamma f]=[\gamma][f]$ is well defined. In order to prove this is a right action, we need to prove that $\left(\gamma_{1} \cdot \gamma_{2}\right) f \stackrel{H_{t}^{\prime}}{\simeq} \gamma_{2}\left(\gamma_{1} f\right)$. By definition,

$$
\left(\gamma_{1} \cdot \gamma_{2}\right) f=\left\{\begin{array}{lll}
f(2 x) & \text { if } & 0 \leq|x|<1 / 2 \\
\gamma_{1}(4|x|-2) & \text { if } & 1 / 2 \leq|x| \leq 3 / 4 \\
\gamma_{2}(4|x|-3) & \text { if } & 3 / 4 \leq|x| \leq 1
\end{array}\right.
$$

and

$$
\gamma_{2}\left(\gamma_{1} f\right)=\left\{\begin{array}{lll}
f(4 x) & \text { if } & 0 \leq|x|<1 / 4 \\
\gamma_{1}(4|x|-2) & \text { if } & 1 / 4 \leq|x| \leq 1 / 2 \\
\gamma_{2}(4|x|-3) & \text { if } & 1 / 2 \leq|x| \leq 1
\end{array}\right.
$$

Construct $H_{t}^{\prime}$ by

$$
H_{t}^{\prime}=\left\{\begin{array}{lll}
f(2(1+t) x) & \text { if } 0 \leq|x|<1 /[2(1+s)] \\
\gamma_{1}(4|x|-2 /(1+t)) & \text { if } \quad 1 /[2(1+s)] \leq|x| \leq 1 /[2(1+s)]+1 / 4 \\
\gamma_{2}(4(1+s) /(1+3 s)|x|-(3+s) /(1+3 s)) & \text { if } 1 /[2(1+s)]+1 / 4 \leq|x| \leq 1
\end{array}\right.
$$

Then it is the required homotopy.
Ex 2. (2 pt) Let $(X, A)$ be a $C W$ pair and let $(Y, B)$ be any pair with $B \neq \emptyset$. For each $n$ such that $X-A$ has cells of dimension $n$, assume that $\pi_{n}\left(Y, B, y_{0}\right)=0$ for all $y_{0} \in B$. Then every map $f:(X, A) \rightarrow(Y, B)$ is homotopic rel $A$ to a map $X \rightarrow B$.

Hint. Refer to the proof of compression lemma given in textbook P347.

Ex 3. (2 pt) Given the definition of complex and its exactness, then split a long exact sequence into short exact sequences.

Hint. Let $\mathscr{A}$ be an abelian category. Let $A_{i} \in \operatorname{Object}(\mathscr{A})$ and $d_{i+1} \in$ $\operatorname{Hom}\left(A_{i+1}, A_{i}\right)$ with $i \in \mathbb{Z}$. Then the sequence

$$
\ldots \xrightarrow{d_{i+2}} A_{i+1} \xrightarrow{d_{i+1}} A_{i} \xrightarrow{d_{i}} A_{i-1} \xrightarrow{d_{i-1}} \cdots
$$

with $d_{i+1} \circ d_{i}=0 \forall i \in \mathbb{Z}$ is called a complex. If in addition, $\operatorname{ker}\left(d_{i}\right)=$ $\operatorname{im}\left(d_{i+1}\right) \forall i \in \mathbb{Z}$, then it is called an exact complex. If it is exact, we can split it into short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(d_{i}\right) \rightarrow A_{i} \rightarrow \operatorname{im}\left(d_{i}\right) \rightarrow 0
$$

Ex 4. (3 pt) Let $X$ be connected space with base point $x_{0}$. For any positive integer $n$, show that the following conditions are equivalent.
(1) Every map $S^{n} \rightarrow X$ is homotopic to a constant map.
(2) Every map $S^{n} \rightarrow X$ extends to a map $D^{n+1} \rightarrow X$.
(3) $\pi_{n}\left(X, x_{0}\right)=0$.

Hint. $(1) \Rightarrow(2)$
Let $f: S^{n} \rightarrow X$, then by (1) there exists $F(s, t): S^{n} \times I \rightarrow X$ with $F(s, 0)$ : $S^{n} \rightarrow x_{0} \rightarrow X$ and $F(s, 1)=f(s)$. Consider the quotient map $p: S^{n} \times I \rightarrow$ $D^{n+1}$ given by $(s, t) \mapsto t \cdot s$. Then there exists an unique map such that the following diagram commutes


Here $i(s)=(s, 1)$. View $S^{n}$ as a subcomplex by $p \circ i$, then the map $G$ is the required extension. $(2) \Rightarrow(3)$
Take $[f] \in \pi_{n}\left(X, x_{0}\right)$ then by (2) there exists an extension $G: D^{n+1} \rightarrow X$. Define a homotopy $F$ by the composition of $S^{n} \times I \xrightarrow{p} D^{n+1} \xrightarrow{G} X$. Then $[f]=0$.
$(3) \Rightarrow(1)$ trivial.
Ex 5. (2 pt) Given a $C W$ pair $(X, A)$ and a map $f: A \rightarrow Y$ with $Y$ pathconnected, then $f$ can be extended to a map $X \rightarrow Y$ if $\pi_{n-1}(Y)=0$ for all $n$ such that $X-A$ has cells of dimension $n$.

Hint. Refer to the proof of extension lemma givne in textbook P348.
Ex 6. (2 pts) Let $f: X \rightarrow Y$ be a cellular map between $C W$ complexes. Show that the mapping cylinder $M(f)$ of $f$ has a natural $C W$-structure such that $X, Y$ are $C W$-subcomplexes of $M(f)$.

Hint. Let $X^{n}=X^{n-1} \sqcup_{\alpha} e_{\alpha}^{n}$ with attaching maps $\varphi_{\alpha}: S^{n-1} \rightarrow X^{n-1}$, $Y^{n}=Y^{n-1} \sqcup_{\beta} e_{\beta}^{n}$ with attaching maps $\varphi_{\beta}: S^{n-1} \rightarrow Y^{n-1}$ and $f\left(X^{n}\right) \subset$ $Y^{n} \forall n$. The mapping cylinder $M(f)=X \times I \sqcup Y / \sim=X \sqcup X \times e^{1} \sqcup Y$. So $M(f)^{n+1}=M(f)^{n} \sqcup_{\alpha} e_{\alpha}^{n+1} \sqcup_{\alpha} e_{\alpha}^{n} \times e^{1} \sqcup_{\beta} e_{\beta}^{n+1}$. Attaching maps for $e_{\alpha}^{n+1}$ and $e_{\beta}^{n+1}$ are induced by $\varphi_{\alpha}, \varphi_{\beta}$ naturally. For the boundary $\partial\left(D_{\alpha}^{n+1} \times I\right)=$ $D_{\alpha}^{n+1} \times 0 \sqcup S^{n} \times e^{1} \sqcup D_{\alpha}^{n+1} \times 1$, define the map $\partial\left(D_{\alpha}^{n+1} \times I\right) \rightarrow M(f)^{n}$ by the first two pieces induced by $\varphi_{\alpha}$ and the last piece given by the composition $f \circ \varphi_{\alpha}$, which is the attaching map of $e_{\alpha}^{n} \times e^{1}$.

Ex 7. (2 pts) Let $(X, A)$ be a $C W$-pair and $x_{0} \in A$. Show that the sequence $\pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right) \xrightarrow{\partial_{3}} \pi_{1}\left(X, A, x_{0}\right) \xrightarrow{\partial_{2}} \pi_{0}\left(A, x_{0}\right) \xrightarrow{\partial_{7}} \pi_{0}\left(X, x_{0}\right)$ is exact.

Hint. Exactness at $\pi_{1}\left(X, x_{0}\right)$ refer to theorem 4.3 given in textbook P344. It is easy to see $\partial_{2} \circ \partial_{3}=0$ and $\partial_{1} \circ \partial_{2}=0$. Let $f:(I, \partial I, 0) \rightarrow\left(X, A, x_{0}\right)$. If $f(1), x_{0}$ are in the same path-connected component of $A$, then choose a path $\gamma: I \rightarrow A$ such that $\gamma(0)=f(1), \gamma(1)=x_{0}$. Then $[f \cdot \gamma] \in \pi_{1}\left(X, x_{0}\right)$ and $[f \cdot \gamma]=[f]$ in $\pi_{1}\left(X, A, x_{0}\right)$, which means the exactness at $\pi_{1}\left(X, A, x_{0}\right)$. It is easy to see the exactness at $\pi_{0}\left(A, x_{0}\right)$.

