USTC, School of Mathematical Sciences Algebraic topology by Prof. Mao Sheng MA04311 Tutor: Lihao Huang, Han Wu Winter semester 2018/19 Hint to exercise sheet 5 Posted by Dr. Muxi Li

Ex 1. (2 pt) Let X be a path-connected space with base point x_0 . Let $\gamma : S^1 \to X$ be a loop and $f : (D^n, \partial D^n) \to (X, x_0)$ be a map. Define $\gamma f := (D^n, \partial D^n) \to (X, x_0)$ by

$$\gamma f = \begin{cases} f(2x) & if \quad 0 \le |x| < 1/2 \\ \gamma(2|x|-1) & if \quad 1/2 \le |x| \le 1 \end{cases}$$

Show that this induces a well-defined action of $\pi_1(X, x_0)$ on $\pi_n(X, x_0)$.

Hint. It is easy to see that If $f_1 \stackrel{F_t}{\simeq} f_2$ and $\gamma_1 \stackrel{G_t}{\simeq} \gamma_2$ then $\gamma_1 f_1 \stackrel{H}{\simeq} \gamma_2 f_2$, here

$$H = \begin{cases} G_t(2x) & if \quad 0 \le |x| < 1/2 \\ F_t(2|x|-1) & if \quad 1/2 \le |x| \le 1 \end{cases}$$

So $[\gamma f] = [\gamma][f]$ is well defined. In order to prove this is a right action, we need to prove that $(\gamma_1 \cdot \gamma_2) f \stackrel{H'_t}{\simeq} \gamma_2(\gamma_1 f)$. By definition,

$$(\gamma_1 \cdot \gamma_2)f = \begin{cases} f(2x) & if \quad 0 \le |x| < 1/2\\ \gamma_1(4|x|-2) & if \quad 1/2 \le |x| \le 3/4\\ \gamma_2(4|x|-3) & if \quad 3/4 \le |x| \le 1 \end{cases}$$

and

$$\gamma_2(\gamma_1 f) = \begin{cases} f(4x) & if \quad 0 \le |x| < 1/4\\ \gamma_1(4|x|-2) & if \quad 1/4 \le |x| \le 1/2\\ \gamma_2(4|x|-3) & if \quad 1/2 \le |x| \le 1 \end{cases}$$

Construct H'_t by

$$H'_{t} = \begin{cases} f(2(1+t)x) & if \quad 0 \le |x| < 1/[2(1+s)] \\ \gamma_{1}(4|x|-2/(1+t)) & if \quad 1/[2(1+s)] \le |x| \le 1/[2(1+s)] + 1/4 \\ \gamma_{2}(4(1+s)/(1+3s)|x|-(3+s)/(1+3s)) & if \quad 1/[2(1+s)] + 1/4 \le |x| \le 1 \end{cases}$$

Then it is the required homotopy.

Ex 2. (2 pt) Let (X, A) be a CW pair and let (Y, B) be any pair with $B \neq \emptyset$. For each n such that X - A has cells of dimension n, assume that $\pi_n(Y, B, y_0) = 0$ for all $y_0 \in B$. Then every map $f : (X, A) \to (Y, B)$ is homotopic rel A to a map $X \to B$.

Hint. Refer to the proof of compression lemma given in textbook P347.

Ex 3. (2 pt) Given the definition of complex and its exactness, then split a long exact sequence into short exact sequences.

Hint. Let \mathscr{A} be an abelian category. Let $A_i \in Object(\mathscr{A})$ and $d_{i+1} \in Hom(A_{i+1}, A_i)$ with $i \in \mathbb{Z}$. Then the sequence

$$\cdots \stackrel{d_{i+2}}{\to} A_{i+1} \stackrel{d_{i+1}}{\to} A_i \stackrel{d_i}{\to} A_{i-1} \stackrel{d_{i-1}}{\to} \cdots$$

with $d_{i+1} \circ d_i = 0 \forall i \in \mathbb{Z}$ is called a complex. If in addition, $\ker(d_i) = \lim_{i \to \infty} (d_{i+1}) \forall i \in \mathbb{Z}$, then it is called an exact complex. If it is exact, we can split it into short exact sequence

$$0 \to \ker(d_i) \to A_i \to \operatorname{im}(d_i) \to 0$$

Ex 4. (3 pt) Let X be connected space with base point x_0 . For any positive integer n, show that the following conditions are equivalent.

- (1) Every map $S^n \to X$ is homotopic to a constant map.
- (2) Every map $S^n \to X$ extends to a map $D^{n+1} \to X$.
- (3) $\pi_n(X, x_0) = 0.$

Hint. $(1) \Rightarrow (2)$

Let $f: S^n \to X$, then by (1) there exists $F(s,t): S^n \times I \to X$ with $F(s,0): S^n \to x_0 \to X$ and F(s,1) = f(s). Consider the quotient map $p: S^n \times I \to D^{n+1}$ given by $(s,t) \mapsto t \cdot s$. Then there exists an unique map such that the following diagram commutes

Here i(s) = (s, 1). View S^n as a subcomplex by $p \circ i$, then the map G is the required extension. (2) \Rightarrow (3)

Take $[f] \in \pi_n(X, x_0)$ then by (2) there exists an extension $G : D^{n+1} \to X$. Define a homotopy F by the composition of $S^n \times I \xrightarrow{p} D^{n+1} \xrightarrow{G} X$. Then [f] = 0. (3) \Rightarrow (1) trivial.

Ex 5. (2 pt) Given a CW pair (X, A) and a map $f : A \to Y$ with Y pathconnected, then f can be extended to a map $X \to Y$ if $\pi_{n-1}(Y) = 0$ for all n such that X - A has cells of dimension n.

Hint. Refer to the proof of extension lemma givne in textbook P348.

Ex 6. (2 pts) Let $f : X \to Y$ be a cellular map between CW complexes. Show that the mapping cylinder M(f) of f has a natural CW-structure such that X, Y are CW-subcomplexes of M(f). **Hint.** Let $X^n = X^{n-1} \sqcup_{\alpha} e^n_{\alpha}$ with attaching maps $\varphi_{\alpha} : S^{n-1} \to X^{n-1}$, $Y^n = Y^{n-1} \sqcup_{\beta} e^n_{\beta}$ with attaching maps $\varphi_{\beta} : S^{n-1} \to Y^{n-1}$ and $f(X^n) \subset Y^n \forall n$. The mapping cylinder $M(f) = X \times I \sqcup Y / \sim = X \sqcup X \times e^1 \sqcup Y$. So $M(f)^{n+1} = M(f)^n \sqcup_{\alpha} e^{n+1}_{\alpha} \sqcup_{\alpha} e^n_{\alpha} \times e^1 \sqcup_{\beta} e^{n+1}_{\beta}$. Attaching maps for e^{n+1}_{α} and e^{n+1}_{β} are induced by φ_{α} , φ_{β} naturally. For the boundary $\partial(D^{n+1}_{\alpha} \times I) = D^{n+1}_{\alpha} \times 0 \sqcup S^n \times e^1 \sqcup D^{n+1}_{\alpha} \times 1$, define the map $\partial(D^{n+1}_{\alpha} \times I) \to M(f)^n$ by the first two pieces induced by φ_{α} and the last piece given by the composition $f \circ \varphi_{\alpha}$, which is the attaching map of $e^n_{\alpha} \times e^1$.

Ex 7. (2 pts) Let (X, A) be a CW-pair and $x_0 \in A$. Show that the sequence $\pi_1(A, x_0) \rightarrow \pi_1(X, x_0) \xrightarrow{\partial_3} \pi_1(X, A, x_0) \xrightarrow{\partial_2} \pi_0(A, x_0) \xrightarrow{\partial_1} \pi_0(X, x_0)$ is exact.

Hint. Exactness at $\pi_1(X, x_0)$ refer to theorem 4.3 given in textbook P344. It is easy to see $\partial_2 \circ \partial_3 = 0$ and $\partial_1 \circ \partial_2 = 0$. Let $f : (I, \partial I, 0) \to (X, A, x_0)$. If $f(1), x_0$ are in the same path-connected component of A, then choose a path $\gamma : I \to A$ such that $\gamma(0) = f(1), \gamma(1) = x_0$. Then $[f \cdot \gamma] \in \pi_1(X, x_0)$ and $[f \cdot \gamma] = [f]$ in $\pi_1(X, A, x_0)$, which means the exactness at $\pi_1(X, A, x_0)$. It is easy to see the exactness at $\pi_0(A, x_0)$.