USTC, School of Mathematical Sciences
Algebraic topology by Prof. Mao Sheng
MA04311 Tutor: Lihao Huang, Han Wu

Winter semester 2018/19
Hint to exercise sheet 7 Posted by Dr. Muxi Li

Hint 1. Let the exact sequence be $A \xrightarrow{d_{1}} B \xrightarrow{d_{2}} C \xrightarrow{d_{3}} D \xrightarrow{d_{4}} E$.
$\Rightarrow B y$ exactness, $\operatorname{ker} d_{2}=\operatorname{im} d_{1}=B$, $\operatorname{ker} d_{4}=\operatorname{im} d_{3}=0$ so d_{1} is surjective and d_{4} is injective.
$\Leftarrow B y$ exactness and surjection of d_{1}, have $\operatorname{im} d_{1}=\operatorname{ker} d_{2}=B$, which implies $d_{2}=0$. By exactness and injection of d_{4}, have $\operatorname{im} d_{3}=\operatorname{ker} d_{4}=0$, which implies $d_{3}=0$. So $0=\operatorname{im} d_{2}=\operatorname{ker} d_{3}=C$.
The long exact sequence $\cdots \rightarrow H_{n+1}(X, A) \rightarrow H_{n}(A) \xrightarrow{d_{n}} H_{n}(X) \rightarrow H_{n}(X, A) \rightarrow$ \cdots implies that all d_{n} are isomorphisms (injection and surjection) iff $H_{n}(X, A)=$ $0, \forall n$.

Hint 2. (a)By exactness of $H_{0}(A) \xrightarrow{i} H_{0}(X) \rightarrow H_{0}(X, A) \rightarrow 0$, the $H_{0}(X, A)=$ 0 iff i is surjective. $H_{0}(-)$ is free \mathbb{Z}-module generated by path-component of the given space. Thus, the surjection of i means that A meets each pathcomponent of X.
(b) By exactness of $H_{1}(A) \rightarrow H_{1}(X) \rightarrow H_{1}(X, A) \xrightarrow{\partial} H_{0}(A) \xrightarrow{i} H_{0}(X)$ and exercise 1 above, $H_{1}(X, A)=0$ iff $H_{1}(A) \rightarrow H_{1}(X)$ is surjective and i is injective. The same analyses as (a), the injective of i means that each path-component of X contains at most one path-component of A.

Hint 3. (a) Let the number of points of A be m, then

$$
H_{n}(A)=\left\{\begin{array}{lll}
\mathbb{Z}^{\oplus m} & \text { if } & n=0 \\
0 & \text { if } & n>0
\end{array}\right.
$$

It is easy to calculate that
$H_{n}\left(S^{2}\right)=\left\{\begin{array}{ll}\mathbb{Z} & \text { if } n=0 \text { or } n=2 \\ 0 & \text { otherwise }\end{array} \quad H_{n}\left(S^{1} \times S^{1}\right)= \begin{cases}\mathbb{Z} & \text { if } n=0 \text { or } n=2 \\ \mathbb{Z}^{\oplus 2} & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}\right.$
By the exact sequence $H_{2}(A)(=0) \rightarrow H_{2}(X) \stackrel{\approx}{\rightarrow} H_{2}(X, A) \rightarrow H_{1}(A)(=0) \rightarrow$ $H_{1}(X) \rightarrow H_{1}(X, A) \rightarrow H_{0}(A)\left(=\mathbb{Z}^{\oplus m}\right) \rightarrow H_{0}(X)(=\mathbb{Z}) \rightarrow H_{0}(X, A)(=$ $0) \rightarrow 0$, we have

$$
H_{n}\left(S^{2}, A\right)=\left\{\begin{array}{ll}
\mathbb{Z}^{\oplus m-1} & \text { if } n=1 \\
\mathbb{Z} & \text { if } n=2 \\
0 & \text { otherwise }
\end{array} \quad H_{n}\left(S^{1} \times S^{1}\right)= \begin{cases}\mathbb{Z}^{\oplus m+1} & \text { if } n=1 \\
\mathbb{Z} & \text { if } n=2 \\
0 & \text { otherwise }\end{cases}\right.
$$

(b) Method 1, using the \triangle complex structure of X pictured in textbook P102 second picture, having one vertex, four edges, six 2-simplices, we can
calculate the simplicial homology group of X

$$
H_{n}(X)=H_{n}^{\triangle}(X)= \begin{cases}\mathbb{Z} & \text { if } n=0 \text { or } n=2 \\ \mathbb{Z}^{\oplus 4} & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

And from example 2,2 in textbook P106,

$$
H_{n}\left(S^{1}\right)=H_{n}^{\triangle}\left(S^{1}\right)= \begin{cases}\mathbb{Z} & \text { if } n=0 \text { or } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

We have a long exact sequence $\cdots \rightarrow H_{2}\left(S^{1}\right)(=0) \rightarrow H_{2}(X)(=\mathbb{Z}) \hookrightarrow$ $H_{2}\left(X, S^{1}\right) \xrightarrow{\partial} H_{1}\left(S^{1}\right)(=\mathbb{Z}) \xrightarrow{d} H_{1}(X)\left(=\mathbb{Z}^{\oplus 4}\right) \rightarrow H_{1}\left(X, S^{1}\right) \xrightarrow{0} H_{0}\left(S^{1}\right)(=$ $\mathbb{Z}) \stackrel{\approx}{\rightarrow} H_{0}(X)(=\mathbb{Z}) \rightarrow H_{0}\left(X, S^{1}\right)(=0) \rightarrow 0$.
For $S^{1}=A$ as in the picture, the image of the generator of $H_{1}(A)$ in $H_{1}(X)$ is 0 because this is the boundary of three adjunctive 2-simplices. So we have

$$
H_{n}(X, A)= \begin{cases}\mathbb{Z}^{\oplus 4} & \text { if } \quad n=1 \\ \mathbb{Z}^{\oplus 2} & \text { if } n=2 \\ 0 & \text { otherwise }\end{cases}
$$

For B as in the picture, the image of the generator of $H_{1}(A)$ in $H_{1}(X)$ is one generator of $H_{1}(X)$, So d is an injection and $\partial=0$.

$$
H_{n}(X, B)= \begin{cases}\mathbb{Z}^{\oplus 3} & \text { if } n=1 \\ \mathbb{Z} & \text { if } n=2 \\ 0 & \text { otherwise }\end{cases}
$$

Method 2, using the fact that $H_{n}\left(X, S^{1}\right)=\tilde{H}_{n}\left(X / S^{1}\right)$. For $S^{1}=A$ as in the picture, $X / A=T^{1} \vee T^{1}$. By Mayer-Vietoris sequences or Corollary 2.25 in textbook P126, we have

$$
H_{n}(X, A)=\tilde{H}_{n}(X / A)= \begin{cases}\mathbb{Z}^{\oplus 4} & \text { if } n=1 \\ \mathbb{Z}^{\oplus 2} & \text { if } n=2 \\ 0 & \text { otherwise }\end{cases}
$$

For B as in the picture, X / B is homotopy to $T^{1} \vee S^{1}$. Similarly, we have

$$
H_{n}(X, B)=\tilde{H}_{n}(X / B)= \begin{cases}\mathbb{Z}^{\oplus 3} & \text { if } n=1 \\ \mathbb{Z} & \text { if } n=2 \\ 0 & \text { otherwise }\end{cases}
$$

Hint 4. By the exact sequence $H_{1}(\mathbb{R})(=0) \rightarrow H_{1}(\mathbb{R}, \mathbb{Q}) \xrightarrow{\partial} H_{0}(\mathbb{Q})\left(=\bigoplus_{\mathbb{Q}} \mathbb{Z}\right) \stackrel{i}{\rightarrow}$ $H_{0}(\mathbb{R})(=\mathbb{Z})$, we have $H_{1}(\mathbb{R}, \mathbb{Q})=\bigoplus_{\mathbb{Q}^{*}} \mathbb{Z}$.

Hint 5. Let this space be X, and let $A=I \times[0,2 / 3] \cap X, B=I \times[1 / 3,1] \cap X$. Using Mayer-Vietoris sequences, we have $\cdots \rightarrow H_{n}(A \cap B) \rightarrow H_{n}(A) \oplus$ ${\underset{\tilde{H}}{n}}^{H_{n}}(B) \rightarrow H_{n}(X) \rightarrow \cdots$. For A, B are contractible, we have $\tilde{H}_{n}(A)=$ $\tilde{H}_{n}(B)=0$. And $A \cap B$ is homotopy to $\mathbb{Q} \cap I$. So we have

$$
H_{n}(X)= \begin{cases}\mathbb{Z} & \text { if } n=0 \\ \bigoplus_{\mathbb{Q}^{*} \cap I} \mathbb{Z} & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Hint 6. For the first part, consider $X \hookrightarrow C X \rightarrow C X / X \cong S X$. There is a long exact sequence $\cdots \rightarrow \tilde{H}_{n+1}(S X) \xrightarrow{\partial_{n+1}} \tilde{H}_{n}(X) \rightarrow \tilde{H}_{n}(C X) \rightarrow$ $\tilde{H}_{n}(S X) \xrightarrow{\partial_{n}} \cdots$. For $\tilde{H}_{n}(C X)=0 \quad \forall n$, we have $\tilde{H}_{n}(X)=\tilde{H}_{n+1}(S X) \quad \forall n$. For the second part, let $S^{r} X$ be the union of $r+1$ cones $C X$ with their basis identified. For $r \geq 2$, consider $S^{r-1} X \stackrel{i}{\hookrightarrow} S^{r} X \rightarrow S^{r} X / S^{r-1} X \cong S X$. There is a long exact sequence $\cdots \rightarrow \tilde{H}_{n+1}(S X) \xrightarrow{\partial_{n+1}} \tilde{H}_{n}\left(S^{r-1} X\right) \rightarrow \tilde{H}_{n}\left(S^{r} X\right) \rightarrow$ $\tilde{H}_{n}(S X) \xrightarrow{\partial_{n}} \cdots$. There exists a section of i, which means every $\partial_{n}=0$ and $\tilde{H}_{n}\left(S^{r} X\right)=\tilde{H}_{n}\left(S^{r-1} X\right) \oplus \tilde{H}_{n}(S X)$. Inductively, we have

$$
\tilde{H}_{n}\left(S^{r} X\right)= \begin{cases}\tilde{H}_{n}(S X)^{\oplus r}=\tilde{H}_{n-1}(X)^{\oplus r} & \text { ifr }>0 \\ 0 & \text { if } \quad r=0\end{cases}
$$

Hint 7. Let $\sigma: \Delta^{n} \rightarrow X$. It induces $\tilde{s}: C \Delta^{n} \rightarrow C X$. Let linear map $\Delta^{n+1} \cong C \Delta^{n}$ given by mapping the last vertex of Δ^{n+1} to the vertex of the cone. Define $s(\sigma): \Delta^{n+1} \cong C \Delta^{n} \xrightarrow{\tilde{s}} C X \rightarrow C X / X=S X$. It is easy to check that $\partial \circ s=s \circ \partial$. This chain map induces an isomorphisms $\tilde{H}_{n}(X)=\tilde{H}_{n+1}(S X)$, which is the same as that in exercise 6 .

