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1. Let D∗ = {z| 0 < |z| 6 1} and Γ = {z| |z| = 1/2} as the subspaces of C.

(a) Show that D∗ deformation retracts to Γ.

(b) Let X denote the quotient space of D∗ obtained by identifying every point and its an-

tipodal point in the unit circle S1, with the quotient map q. ProveX cannot retract to q(Γ).

(a) F (z, t) = (1− t)z + tz/(2|z|) gives a deformation retraction.

(b) Let H([z], t) = [(1 − t)z + tz/|z|]. It is not hard to verify H a well defined de-

formation retraction from X to q(S1) ∼= S1, hence π1(X) ∼= Z and X
H1−→ q(S1) is

homotopy equivalence.

The homeomorphisms S1 f−→ q(S1), eiθ 7→ [eiθ/2] and S1 g−→ q(Γ), eiθ 7→ [eiθ/2] are

the generator of π1(q(S1)) and π1(q(Γ)) respectively. By comparing H ◦ g(eiθ) = [eiθ]

and f , the homomorphism Z ∼= π1(q(Γ)) → π1(q(S
1)) ∼= Z induced by H1 is to time 2.

And the homomorphism induced by inclusion q(Γ)
i−→ X is also to time 2 according to

the following commutative diagram

q(Γ)
H1 //

i

��

q(S1)

X
H1 // q(S1).

So the homomorphism of the fundamental groups induced by i has no left inverse. That

is contradictory to the existence of retraction X → q(Γ).
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2. Let K be m distinct points in Rn away from zero. Calculate π1(Rn − K,0) and

π1(Rn/K, [0]).

Without loss of generality, we assume that the points x1, ..., xk of K lie in a line in

order.

When n = 1, Rn−K is the union ofm+1 open intervals, whose fundamental group

is always trivial whenever the base point is. And Rn/K is homeomorphic to the wedge

sum of m−1 circles and a line, hence π1(Rn/K) is the free groups with m−1 generator.

When n > 1, Rn−K deformation retracts to
⋃
i si, where si is an n− 1-dim sphere

with the center xi and radius ri, ∀i, s.t. ri + ri+1 = |xi − xi+1|, ∀i < m. Therefore

π1(Rn −K) is the free group with m generators for n = 2 and trivial for n > 2.

We choose a deformation retraction of Rn to the segment L connecting x1 and xm,

which induces a deformation retraction of Rn/K to L/K. And L/K is homeomorphic to

the wedge sum ofm−1 circles, so π1(Rn/K) is still the free group withm−1 generators

for n > 1.
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3. Let X and Y are connected spaces with base points x0 and y0 respectively. The smash

product of X and Y is denfined as X ∧ Y := X × Y/(X × {y0} ∪ {x0} × Y ).

(a) Prove the quotient map X × Y → X ∧ Y inducing the trivial homomorphism of fun-

damental groups.

(b) Prove π1(X ∧ Y ) trivial when X and Y are finite CW-complexes and x0 and y0 are

their respective 0-cells.

(a) We show that [(p1γ, y0)][(x0, p2γ)] = [γ] for any loop γ inX×Y with γ(0) = (x0, y0),

where p1 and p2 are projections ontoX and Y respectively. Because [γ] 7→ (p1∗[γ], p2∗[γ])

is an isomorphism, it is sufficient to check pi∗[γ] = pi∗([(p1γ, y0)][(x0, p2γ)]), i = 1, 2,

which is easy. As a result, every [γ] ∈ π1(X × Y ) equals [(f, y0)][(x0, g)] for some loop

f in (X, x0) and g in (Y, y0).

According the above discussion, it is sufficient to show that X × Y → X ∧ Y sends

the loops with the form [(f, y0)] and [(x0, g)] to trivial loops in X ∧ Y . In fact they are

obviously constant loops.

(b) X ∨ Y := X × {y0} ∪ {x0} × Y is a CW-subcomplex of X × Y , so the CW-pair

(X × Y,X ∨ Y ) has homotopy extension property.

Let (Z,A) be a pair with the HEP, CA the cone over A, and Z ∪ CA the quotient

space from identifying (a, 0) ∈ CA and a ∈ Z, ∀a ∈ A. It is not difficult to check that

(Z ∪ CA,CA) also has HEP. Hence Z ∪ CA is homotopy equivalent to Z ∪ CA/CA =

Z/A. Consider the U = Z ∪ CA − {pt} and V = CA − A × {0} as the subspaces of

Z ∪ CA, where ‘pt’ denotes the top point of cone CA, then V is contractible, U ∩ V is

homeomorphic to A × I hence deformation retracts to A, and U retracts to Z similarly.

So Van Kampen’s theorem implies π1(Z ∪CA) is the cokernel of π1(A)→ π1(Z), where

the homomorphism is induced by inclusion A → Z. Applying this to (X × Y,X ∨ Y ),

we obtain π1(X ∧ Y ) is trivial since the homomorphism π1(X ∨ Y ) → π1(X × Y ) is

surjective.
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4. Recall that the covering spaces of S1 up to isomorphisms of covering spaces are given

by

{ϕ∞ : R→ S1, t 7→ eit} ∪ {ϕn : S1 → S1, z 7→ zn| n ∈ N+},

where S1 is considered as {z ∈ C| |z| = 1}. Now classify the covering spaces of S1×S1

up to isomorphisms of covering spaces in a similar form.

The covering spaces of T 2 1-1 correspond to the conjugacy classes of subgroups

of π1(T 2, x0) ∼= Z2. But π1(T 2) is abelian, the covering spaces 1-1 correspond to the

subgroups of π1(T 2, x0) in fact. We treat T 2 as R2/Z2, then for a subgroup G of Z2,

the covering space corresponding to it is R2/G, and the covering projection is quotient

homomorphism R2/G → (R2/G)/(Z2/G) ∼= T 2, i.e. the map s.t. every point has the

same representation as its image.

To describe the projection more visually, we consider the covering spaces as standard

cylinder S1×R or standard torus S1×S1 via a automorphism of R2 and homeomorphism

R/Z→ S1, θ 7→ e2πiθ.

For a subgroup with rank 2 generated by {x, y}, a unique automorphism (θ, ϕ)T 7→
xθ + yϕ is determined, so the covering space corresponding to this subgroup is

px,y = T 2 → T 2, (e2πiθ, e2πiϕ) 7→ (e2πi(x1θ+y1ϕ), e2πi(x2θ+y2ϕ)).

But {x, y} and {x′, y′} generate the same subgroup if (x, y)A = (x′, y′) for some invert-

ible 2 × 2 matrix A over Z, therefore the equivalence classes of covering spaces corre-

sponding to rank-2 subgroups are {p[x,y]| [x, y] ∈ M2/GL(2,Z)}, where M2 denotes all

the 2× 2 matrices over Z with rank 2, and p[x,y] denotes the class in which px,y is.

For the subgroup generated by x 6= 0, we need to choose a automorphism of R2

s.t. (1, 0)T 7→ x. We fix the automorphism (θ, r)T 7→ xθ + (0, 1)T r for x1 6= 0, and

(θ, r)T 7→ xθ+(1, 0)T r for x1 = 0, then the covering space corresponding to the subgroup

Zx is

px : S1 × R→ T 2, (e2πiθ, r) 7→ (e2πix1θ, e2πi(x2θ+r))

when x1 6= 0 and

(e2πiθ, r) 7→ (e2πi(x1θ+r), e2πix2θ)

when x1 = 0. Therefore the equivalence classes of covering spaces corresponding to

rank-1 subgroups are {p[x]| [x] ∈M1/{±1}}, where M1 denotes Z2 − {0}.
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The two remaining equivalence classes of covering spaces are represented by a

homeomorphism T 2 → T 2 and the universal covering R2 → T 2.
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5. LetX be a connected, locally path-connected and semilocally simply-connected space,

and p : X̃ → X be a connected covering space.

(a) Prove that X̃ is noncompact when |p−1(x)| is infinite for a point x ∈ X .

(b) Prove that |p−1(x)| is constant with respect to x, which is denoted by deg p.

(c) Prove that |G| 6 deg p, where G denotes the group of deck transformations of the

covering space p : X̃ → X .

(d) Assume that deg p <∞. Prove that |G| = deg p if and only if p : X̃ → X is a normal

covering space.

(a) We assume that X̃ is compact and p−1(x) is infinite. Let y ∈ X̃ is a point s.t. its every

neighbourhood contains infinitely many points of p−1(x), U is a neighbourhood of y s.t.

p : U → p(U) is homeomorphism. There must be two distinct point x1, x2 ∈ p−1(x)∩U .

Hence there is a contradiction that p is injective in U but p(x1) = p(x2) = x.

Because the cardinality of the set p−1(x) is locally constant over X and X is con-

nected, this cardinality is constant as x ranges over all of X .

(b) It is sufficient to show that the action of G on p−1(x) is free, i.e. f = g if fx0 = gx0

for a given x0 ∈ p−1(x), or equivalently, g = 1X̃ if gx0 = x0. A deck transformation g

can be seen as a lifting of the map p to the covering space X̃ , and the lifting is unique if it

keeps the base points, so g = 1X̃ is the only lifting s.t. gx0 = x0.

(c) Let π := π1(X, x), H =: p∗(π1(X̃, x0)) and N(H) denotes the normalizer of H

in π. The order |N(H)| = |G||H| since N(H)/H ∼= G. In addition, |π| = deg p|H|
since deg p = [π : H]. So |N(H)| = |π| iff |G| = deg p. And the former is equivalent to

N(H) = π, i.e. H is a normal subgroup of π.

1 5� ,� 5�


