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l.Let D* = {z] 0 < |z|] < 1} and " = {z] |z| = 1/2} as the subspaces of C.
(a) Show that D* deformation retracts to I
(b) Let X denote the quotient space of D* obtained by identifying every point and its an-

tipodal point in the unit circle S*, with the quotient map ¢. Prove X cannot retract to ¢(T").
(@) F(z,t) = (1 —t)z +tz/(2|2]) gives a deformation retraction.

(b) Let H([z],t) = [(1 — t)z + tz/|z|]. It is not hard to verify H a well defined de-
formation retraction from X to ¢(S!) = S!, hence m;(X) = Z and X % ¢(SY) is
homotopy equivalence.

The homeomorphisms S' % ¢(S1), € s [¢/2] and S* & ¢(T), € s [¢/2] are
the generator of 71 (¢(S*)) and 7 (q(T")) respectively. By comparing H o g(el) = [¢’]
and f, the homomorphism Z = 7,(¢q(T")) — m1(¢(S')) = Z induced by H, is to time 2.
And the homomorphism induced by inclusion ¢(I") % X is also to time 2 according to

the following commutative diagram

q(I') —
- H
X——=q(S

So the homomorphism of the fundamental groups induced by ¢ has no left inverse. That

is contradictory to the existence of retraction X — ¢(T).
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2. Let K be m distinct points in R™ away from zero. Calculate m;(R" — K,0) and
™ (R"/ K [0]).

Without loss of generality, we assume that the points x4, ..., z; of K lie in a line in
order.

When n = 1, R" — K is the union of m+ 1 open intervals, whose fundamental group
is always trivial whenever the base point is. And R"/K is homeomorphic to the wedge
sum of m — 1 circles and a line, hence 7 (R™/K) is the free groups with m — 1 generator.

When n > 1, R" — K deformation retracts to | J ; Si» where s; is an n — 1-dim sphere
with the center z; and radius r;, Vi, s.t. 7; + i1 = |z, — xi41|, Vi < m. Therefore
m (R™ — K)) is the free group with m generators for n = 2 and trivial for n > 2.

We choose a deformation retraction of R” to the segment L connecting x; and x,,,
which induces a deformation retraction of R" /K to L/K. And L/K is homeomorphic to
the wedge sum of m — 1 circles, so 71 (R"/ K) is still the free group with m — 1 generators
forn > 1.
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3. Let X and Y are connected spaces with base points xy and y, respectively. The smash
product of X and Y is denfinedas X A Y := X x Y/(X x{yo} U{zo} x Y).

(a) Prove the quotient map X x Y — X A 'Y inducing the trivial homomorphism of fun-
damental groups.

(b) Prove m1(X AY) trivial when X and Y are finite CW-complexes and x( and vy, are

their respective 0-cells.

(a) We show that [(p1, yo)][(z0, p277)] = [7] for any loop v in X x Y with v(0) = (20, ¥o),
where p; and p, are projections onto X and Y respectively. Because [y] — (p1.[7], pa«[7])
is an isomorphism, it is sufficient to check p;.[v] = pi([(P17, v0)][(z0, p27)]), © = 1,2,
which is easy. As a result, every [y] € m (X x Y') equals [(f, v0)][(x0, g)] for some loop
fin (X, 20) and g in (Y, yo).

According the above discussion, it is sufficient to show that X x Y — X A'Y sends
the loops with the form [(f,yo)] and [(z¢, ¢)] to trivial loops in X A Y. In fact they are

obviously constant loops.

b) X VY = X x {yo} U{zo} x Y is a CW-subcomplex of X x Y, so the CW-pair
(X x Y, X VYY) has homotopy extension property.

Let (Z, A) be a pair with the HEP, C'A the cone over A, and Z U C'A the quotient
space from identifying (a,0) € CAand a € Z, Va € A. It is not difficult to check that
(ZUCA,CA) also has HEP. Hence Z U C'A is homotopy equivalent to Z U CA/CA =
Z/A. Consider the U = ZUCA — {pt} and V = CA — A x {0} as the subspaces of
Z UCA, where ‘pt’ denotes the top point of cone C'A, then V' is contractible, U N V' is
homeomorphic to A x I hence deformation retracts to A, and U retracts to Z similarly.
So Van Kampen’s theorem implies 7 (Z U C'A) is the cokernel of 7, (A) — m1(Z), where
the homomorphism is induced by inclusion A — Z. Applying thisto (X x Y, X VY),
we obtain m1(X A Y) is trivial since the homomorphism 7, (X VYY) — m (X x Y) is

surjective.
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4. Recall that the covering spaces of S! up to isomorphisms of covering spaces are given
by
{poo : R =St = ey U{p,: S = S 2 2" ne N},

where S! is considered as {z € C| |z| = 1}. Now classify the covering spaces of S' x S!

up to isomorphisms of covering spaces in a similar form.

The covering spaces of T2 1-1 correspond to the conjugacy classes of subgroups
of (T2, x¢) = Z2. But 7 (T?) is abelian, the covering spaces 1-1 correspond to the
subgroups of (T2, x¢) in fact. We treat T? as R?/Z?, then for a subgroup G of Z?,
the covering space corresponding to it is R?/G, and the covering projection is quotient
homomorphism R?/G — (R?*/G)/(Z*/G) = T?, i.e. the map s.t. every point has the
same representation as its image.

To describe the projection more visually, we consider the covering spaces as standard
cylinder S' x R or standard torus S* x S* via a automorphism of R? and homeomorphism
R/Z — S, 0 +— ™9,

For a subgroup with rank 2 generated by {z, 3}, a unique automorphism (6, ©)7

x0 + y is determined, so the covering space corresponding to this subgroup is
Doy = T2 N T2, (627ri0’ 627rig0) — (627ri(1’19+y1<p)7 627ri(:v26+y2g0))‘

But {z,y} and {2, 3’} generate the same subgroup if (z,y)A = (z/,y’) for some invert-
ible 2 x 2 matrix A over Z, therefore the equivalence classes of covering spaces corre-
sponding to rank-2 subgroups are {p, | [z,y] € My/GL(2,Z)}, where M, denotes all
the 2 x 2 matrices over Z with rank 2, and py, ,) denotes the class in which p, , is.

For the subgroup generated by x # 0, we need to choose a automorphism of R?
s.t. (1,0)T — . We fix the automorphism (0,7)7 — 20 + (0,1)Tr for z; # 0, and
(0,7)T +— 20+(1,0)Tr for z; = 0, then the covering space corresponding to the subgroup
Lz is

Dy Sl xR — TQ, (e%ie,r) — (627riz10’€27ri(x26+r))

when z; # 0 and

(627r107 7‘) — (627ri(m19+7") 627ri120)

Y

when x; = 0. Therefore the equivalence classes of covering spaces corresponding to
rank-1 subgroups are {p,| [z] € M;/{+1}}, where M; denotes Z? — {0}.
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The two remaining equivalence classes of covering spaces are represented by a

homeomorphism 7% — T and the universal covering R? — T2,

B hAE (20 53)

5. Let X be a connected, locally path-connected and semilocally simply-connected space,
and p : X — X be a connected covering space.

(a) Prove that X is noncompact when |p~!(z)] is infinite for a point z € X.

(b) Prove that [p~!(z)| is constant with respect to , which is denoted by deg p.

(c) Prove that |G| < deg p, where GG denotes the group of deck transformations of the
covering space p : X - X.

(d) Assume that deg p < co. Prove that |G| = deg p if and only if p : X — X is a normal

covering space.

(a) We assume that X is compact and p~! () is infinite. Let y € Xisa point s.t. its every
neighbourhood contains infinitely many points of p~1(x), U is a neighbourhood of y s.t.
p: U — p(U) is homeomorphism. There must be two distinct point 21, x5 € p~!(x) N U.
Hence there is a contradiction that p is injective in U but p(z,) = p(z2) = =.

Because the cardinality of the set p~!(x) is locally constant over X and X is con-

nected, this cardinality is constant as x ranges over all of X.

(b) It is sufficient to show that the action of G on p~!(x) is free, i.e. f = gif fxg = gz
for a given zy € p~'(x), or equivalently, g = 15 if gzg = xo. A deck transformation g
can be seen as a lifting of the map p to the covering space X, and the lifting is unique if it

keeps the base points, so g = 15 is the only lifting s.t. gzg = .

() Let 7 := m(X,z), H = p.(m(X,x0)) and N(H) denotes the normalizer of H
in 7. The order |[N(H)| = |G||H| since N(H)/H = G. In addition, || = degp|H|
since degp = [7 : H|. So |N(H)| = |n| iff |G| = degp. And the former is equivalent to

N(H) = m,i.e. H is a normal subgroup of 7.
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