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0. Introduction

This paper grows out of our efforts to understand the spectacular work of Ogus–
Vologodsky [13] (see [14] for the logarithmic analogue) on the nonabelian Hodge
theory in characteristic p. Let k be an algebraically closed field of positive charac-
teristic p, and X a smooth variety over k which admits a W2(k)-lifting. The authors
loc. cit. establish a correspondence between a category of vector bundles with inte-
grable connections and a category of Higgs bundles over X , the objects of which are
subject to certain nilpotent conditions (see [13, Theorem 2.8]). The whole theory
is analogous to the one over complex numbers (see [17]). Their construction relies
either on the theory of Azumaya algebra or on a certain universal algebra A associ-
ated to a W2-lifting of X on which both an integrable connection and a Higgs field
act (see [13, Sec. 2]). The correspondence is generally complicated. However, there
are two cases where the correspondence is known to be classical: the zero Higgs
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field and the geometric case. In the former case this correspondence is reduced to
a classical result of Cartier (see [13, Remark 2.2; 8, Theorem 5.1]), while in the lat-
ter case the Higgs bundle corresponding to the Gauß-Manin system of a geometric
family is obtained by taking gradings of the de Rham bundle with respect to either
the Hodge filtration or the conjugate filtration by the Katz’s p-curvature formula
(see [13, Remark 3.19; 9, Theorem 3.2]). Unlike the zero Higgs field case, an explicit
construction of the converse direction in the geometric case is still unknown. In the
complex case this amounts to solving the Hermitian–Yang–Mills equation (see [16]
for the compact case), which is transcendental in nature.

The main finding of this paper is that one can profit from using the relative
Frobenius of a geometric family, which behaves like the Hodge metric of the associ-
ated variation of Hodge structures over C in a certain sense. Indeed, we show that
one can use them to construct a de Rham subbundle from a Higgs subbundle in the
geometric case. Throughout this note p is an odd prime and n is an integer which
is greater than or equal to p− 2. Our main results read as follows.

Theorem 0.1. Let X be a smooth scheme over W = W (k) and f : Y → X a
proper smooth morphism as given in Example 1.1. Let (H,∇) (respectively, (E, θ))
be the associated de Rham bundle (respectively, Higgs bundle) of degree n to f .
Then to any Higgs subbundle (G, θ) ⊂ (E, θ)0 in characteristic p one can associate
naturally a de Rham subbundle (H(G,θ),∇) of (H,∇)0. For a subsystem of Hodge
bundles in (E, θ)0 the Cartier–Katz descent of the associated de Rham subbundle
(H(G,θ),∇) to (G, θ) is (G, θ) itself.

In the above theorem, H is the nth hypercohomology of the relative de Rham
complex associated to f , equipped with the Gauß-Manin connection ∇ and the
Hodge filtration Fil·; The associated Higgs bundle (E, θ) to a de Rham bundle is
obtained by taking grading of (H,∇) with respect to Fil·, which is, more precisely,

E =
⊕

i

Ei,n−i, θ =
⊕

i

θi,n−i,

with

Ei,n−i =
FiliH

Fili+1H
, θi,n−i = ∇̄ : Ei,n−i → Ei−1,n−i+1 ⊗ ΩX/W .

Our construction is independent of that of Ogus–Vologodsky. It is interesting to
compare it with the inverse Cartier transform of Ogus–Vologodsky loc. cit. in the
situation of the above theorem. The construction works as well when the base
scheme is equipped with a certain logarithmic structure or defined over Wn+1 =
Wn+1(k). For a Higgs subsheaf of (E, θ)0, by which we mean a θ-stable coherent
subsheaf in E0, the above construction yields a de Rham subsheaf of (H,∇)0. In the
most general form, the construction works for a Higgs subsheaf of a Higgs bundle
coming from the modulo p reduction of GrFil(H,∇), where (H,Fil·,∇,Φ) is an
object of the Faltings category MF∇

[0,n](X) (see Sec. 1). We obtain two applications
of the construction.
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Proposition 0.2. Assume that X is projective over Wn+1.

(1) For a subsystem of Hodge bundles or a Higgs subbundle with zero Higgs field
(G, θ) ⊂ (E, θ)0, one has the slope inequality µ(G) ≤ 0, where µ(G) is the
µ-slope of G with respect to the restriction of an ample divisor of X to X0.

(2) The following statements are true:

(i) Let g0 : C0 → X0 be a morphism of a smooth projective curve C0 to X0

over k which is liftable to a morphism g : C → X over Wn+1. Then for any
Higgs subbundle (G, θ) ⊂ (E, θ)0, one has deg(g∗0G) ≤ 0.

(ii) Let C be a smooth projective curve in X over Wn+1. Then the Higgs bundle
(E, θ)0 is Higgs semistable with respect to the µC0-slope.

Let F be a real quadratic field such that p is inert in F . Let m ≥ 3 be an integer
coprime to p. Let M be the smooth scheme overW which represents the fine moduli
functor which associates a W -algebra R a principally polarized abelian surface over
R with a real multiplication OF and a full symplectic level m-structure (see e.g.
[6]). Let Sh ⊂ M0 be the Hasse locus which is known to be a P1-configuration in
characteristic p (see [1, Theorem 5.1]).

Proposition 0.3. Let D be an irreducible component in Sh. Let C =
∑
Ci (may

be empty) be a simple normal crossing divisor in M0 such that D + C is again of
simple normal crossing. If the intersection number D · C is less than or equal to
p− 1, then the curve D + C is W2-unliftable inside the ambient space M1.

As a convention, we denote the reduction modulo pi+1, i ≥ 0 of an object by
attaching the subscript i. However for a connection or a Higgs field this rule will
not be strictly followed for simplicity of notation.

1. The Category MF∇
[0,n](X)

In his study of p-adic comparison over a geometric base, Faltings has introduced the
category MF∇

[0,n](X) in various settings. Its objects are the strong divisible filtered
Frobenius crystals over X , which could be considered as the p-adic analogue of a
variation of Z-Hodge structures over a complex algebraic manifold. One shall be
also aware of the fact that Ogus has developed systematically the category of F−T -
crystals in the book [12], which is closely related to the category MF∇

[0,n](X) (see
particularly [12, Sec. 5.3]).

1.1. Smooth case

Let X be a smooth W -scheme. A small affine subset U of X is an open affine
subscheme U ⊂ X over W which is étale over Ad

W .a As X is smooth over W there

aA small affine open subset in the sense of Faltings in the p-adic comparison in the p-adic Hodge
theory is required to be étale over Gd

m. Since nowhere in this paper the p-adic comparison is used,
it suffices to take the above notion for a small affine subset.
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exists an open covering consisting of small affine subsets of X . Let U ⊂ X be a
small affine subset. For it one could choose a Frobenius lifting FÛ on Û , the p-
adic completion of U . An object in MF∇

[0,n](Û) (see [2, Chap. II], [4, Sec. 3]) is a
quadruple (H,Fil·,∇,ΦFÛ

), where:

(i) (H,Fil·) is a filtered free OÛ -module with a basis ei of Fili, 0 ≤ i ≤ n.
(ii) ∇ is an integrable connection on H satisfying the Griffiths transversality:

∇(Fili) ⊂ Fili−1 ⊗ Ω1
Û
.

(iii) The relative Frobenius is an OÛ -linear morphism ΦFÛ
: F ∗

Û
H → H with the

strong p-divisible property: ΦFÛ
(F ∗

Û
Fili) ⊂ piH and

n∑
i=0

ΦFÛ
(F ∗

Û
Fili)

pi
= H.

(iv) The relative Frobenius ΦFÛ
is horizontal with respect to the connection F ∗

Û
∇

on F ∗
Û
H and ∇ on H .

The filtered-freeness in (i) means that the filtration Fil· on H has a splitting such
that each Fili is a direct sum of several copies of OÛ . The pull-back connection
F ∗

Û
∇ on F ∗

Û
H is the composite

F ∗
Û
H = F−1

Û
H ⊗F−1

Û
OÛ

OÛ

F−1
Û

∇⊗id−−−−−−→ (F−1

Û
H ⊗ F−1

Û
Ω1

Û
) ⊗F−1

Û
OÛ

OÛ

= F ∗
Û
H ⊗ F ∗

Û
Ω1

Û

id⊗dFÛ−−−−−→ F ∗
Û
H ⊗ Ω1

Û
.

The horizontal condition (iv) is expressed by the commutativity of the diagram

F ∗
Û
H

F∗
Û
∇

��

ΦF
Û �� H

∇
��

F ∗
Û
H ⊗ Ω1

Û

ΦF
Û
⊗id

�� H ⊗ Ω1
Û
.

As there is no canonical Frobenius liftings on Û , one must know how the rel-
ative Frobenius changes under another Frobenius lifting. This is expressed by a
Taylor formula. Let Û = Spf R and F : R → R a Frobenius lifting. Choose
a system of étale local coordinates {t1, . . . , td} of U (namely fix an étale map
U → Spec(W [t1, . . . , td])). Let R′ be any p-adically complete, p-torsion free W -
algebra, equipped with a Frobenius lifting F ′ : R′ → R′ and a morphism of W -
algebras ι : R → R′. Then the relative Frobenius ΦF ′ : F ′∗(ι∗H) → ι∗H is the
composite

F ′∗ι∗H
α∼= ι∗F ∗H ι∗ΦF−−−→ ι∗H,
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where the isomorphism α is given by the formula:

α(e⊗ 1) =
∑

i

∇i
∂(e) ⊗ zi

i!
.

Here i = (i1, . . . , id) is a multi-index, and zi = zi1
1 · · · zid

d with zi = F ′ ◦ ι(ti) − ι ◦
F (ti), 1 ≤ i ≤ d, and ∇j

∂ = ∇i1
∂t1

· · · ∇id

∂td
.

One defines then the category MF∇
[0,n](X) (see [2, Theorem 2.3]). Its object will

be denoted again by a quadruple (H,Fil·,∇,Φ). Here (H,Fil·,∇) is a locally filtered
free OX -module with an integrable connection satisfying the Griffiths transversality.
For each small affine U ⊂ X and each choice FÛ of Frobenius liftings on Û , Φ defines
ΦFÛ

: F ∗
Û
H |Û → H |Û such that it, together with the restriction of (H,Fil·,∇) to

Û , defines an object in MF∇
[0,n](Û).

Example 1.1. Let f : Y → X be a proper smooth morphism of relative dimension
n ≤ p−2 between smoothW -schemes. Assume that the relative Hodge cohomologies
Rif∗Ω

j
Y , i+ j = n has no torsion. By [2, Theorem 6.2],b the crystalline direct image

Rnf∗(OY , d) is an object in MF∇
[0,n](X).

1.2. Logarithmic case

The category MF∇
[0,n](X) has a logarithmic variant (see [2, IV(c); 3, Sec. 4(f); 4,

Sec. 3]). A generalization of the Faltings category to a syntomic fine logarithmic
scheme overW can be found in [18, Sec. 2]. We shall focus only on two special cases:
the case of “having a divisor at infinity” and the semistable case. In the first case,
X is assumed to be a smooth scheme over W , and D ⊂ X a divisor with simple
normal crossings relative toW , i.e.D =

⋃
i Di is the union of smoothW -schemesDi

meeting transversally. In the second case, X is assumed to be a regular scheme over
W such that Zariski locally there is an étale morphism to the affine space Ad

W or
Spec(W [t1, . . . , td+1]/(t1 · · · td+1−p)) over W . We call an open affine subset U ⊂ X

small if there is an étale morphism U → Ad
W mapping U∩D to a union of coordinate

hyperplanes (may be empty) in the first case, and if U satisfies one of the two
conditions in the second case. In each case one associates a natural fine logarithmic
structure to the scheme X such that the structural morphism X → SpecW is
log smooth (in the former case one equips SpecW with the trivial log structure
and in the latter case with the log structure determined by the closed point of
SpecW ). See [7, (1.5)(1) and Examples (3.7)(2)]. Note also that the assumptions
made above use the Zariski topology on X instead of the étale topology as in [7].
The logarithmic crystalline site is then defined for X → SpecW with the above
logarithmic structure (see [7, Sec. 5]).

Let X → SpecW be as above. Compared with the definition of MF∇
[0,n](X)

for the smooth case, we shall take the following modifications for the logarithmic

bFaltings loc. cit considered only the p-torsion objects. One obtains this by passing to the p-adic
limit or applying another result of Faltings (see [4, Remark, p. 124]).

1550011-5



2nd Reading

February 12, 2015 10:22 WSPC/S0129-167X 133-IJM 1550011

M. Sheng, H. Xin & K. Zuo

analogue. In the first case, for a small affine open subset U ⊂ X a Frobenius lifting
on Û shall respect the divisor Û ∩D ⊂ Û (called a logarithmic Frobenius lifting by
Faltings), and ∇ is an logarithmic integrable connection

∇(Fili) ⊂ Fili−1 ⊗ Ω1
Û
(log Û ∩D).

In the second case, for an affine open subset U ⊂ X which meets the singularities of
X0 it is necessary to consider a closed W -embedding i : U ↪→ Z in the category of
logarithmic schemes together with a logarithmic Frobenius lifting on Z, by which
we mean a Frobenius lifting respecting the logarithmic structure. In the current
special case Z can be chosen to be smooth over W . Write J for the PD-ideal of i and
Dlog

U (Z) the logarithmic PD-envelope of U in Z (see [7, Proposition 5.3]). Denote

by ̂
Dlog

U (Z) the p-adic completion of Dlog
U (Z). Then H is a free O ̂

Dlog
U (Z)

-module

and the decreasing filtration Fil· on H is compatible with the PD-filtration J [·] on
O ̂

Dlog
U (Z)

and is filtered free (see [4, P. 119]). For the formal logarithmic scheme

̂
Dlog

U (Z) let Ω1
̂

Dlog
U (Z)

be the sheaf of the formal relative logarithmic differentials

on ̂
Dlog

U (Z) (see [7, (1.7)]). For a choice of a logarithmic Frobenius lifting FZ on

Z let F ̂
Dlog

U (Z)
be the induced morphism on ̂

Dlog
U (Z). Then by replacing Û in the

definition of MF∇
[0,n](Û) in Sec. 1 with ̂

Dlog
U (Z) we get the description of the local

category MF∇
[0,n](

̂
Dlog

U (Z)). Taking a small affine covering U = {U} of X and a
family of closed embeddings i : U → Z in the second case, one defines the global
category MF∇

[0,n](X) (see [3, Sec. 4(f); 18, Sec. 2]).
One basic example of objects in the category MF∇

[0,n](X) is provided by the
result of Faltings ([2, Theorem 6.2; 4, Remark, Sec. 3, p. 124]): For a W -morphism
f : Y → X which is proper, log-smooth and generically smooth at infinity, if the
relative Hodge cohomology Rif∗Ω

j
Y,log, i + j = n has no torsion, then the direct

image Rnf∗(OY , d) of the constant filtered Frobenius logarithmic crystal of Y is an
object in the category MF∇

[0,n](X).
One needs also a logarithmic version of the Taylor formula for the same purpose

as in the smooth case. For that we refer the reader to [7, Formula (6.7.1)]. In
the semistable case we make it more explicitly as follows. For U = SpecR étale
over SpecW [t1, . . . , td+1]/(

∏
1≤i≤d+1 ti − p), choose a surjection R′ � R of W -

algebras with R′ log smooth over W and a logarithmic Frobenius lifting F ′ on the
p-adic completion R̂′. Assume {d log x1, . . . , d log xr} forms a basis for Ω1

log(R
′). For

another choice R′′ � R with the following commutative diagram

R′

ι

��

�� R

R′′

����������

,

1550011-6



2nd Reading

February 12, 2015 10:22 WSPC/S0129-167X 133-IJM 1550011

Characteristic p nonabelian Hodge theory in the geometric case

and F ′′ : R̂′′ → R̂′′ a logarithmic Frobenius lifting, we let

ui = F ′′ ◦ ι(xi)/ι ◦ F ′(xi), 1 ≤ i ≤ r

and ∇log
∂xi

be the differential operator defined in [7, Theorem 6.2(iii)]. Then α :
F ′′∗(ι∗H) → ι∗F ′∗H given by the Taylor formula

α(e⊗ 1) =
∑

i=(i1,...,il,...,ir)∈Nr


 ∏

1≤i≤r,0≤j≤il

(∇log
∂xi

− j)(e)


⊗


 ∏

1≤i≤r

(ui − 1)il

il!




is an isomorphism.

Remark 1.2. The analogue of the category MF∇
[0,n](X) exists when X is smooth

over a truncated Witt ring. In this case H is of p-torsion. So the formulation of
strong divisibility as stated in (iii) has to be modified. See [2, Sec. 2(c)(d)]. In the
logarithmic case one finds in [18, Sec. 2.3] the corresponding modification. Other
conditions of the category can be obtained by taking reduction directly. In the
following we shall abuse the notions of MF∇

[0,n](X) in the case of (log) smooth X
over W for the corresponding category in the case of (log) smooth over a truncated
Witt ring.

2. The Construction

Let X be a smooth scheme overW and (H,Fil·,∇,Φ) an object in MF∇
[0,n](X). Let

(E, θ) = GrFil(H,∇) be the associated Higgs bundle and (G, θ) ⊂ (E, θ)0 a Higgs
subbundle. We start with a description of a construction of the de Rham subbundle
(H(G,θ),∇) ⊂ (H,∇)0. We first notice that there is a natural isomorphism of OX0 -
modules:

1
[pi]

: piH/pi+1H → H0.

This follows from the snake lemma applied to the commutative diagram of OXi -
modules:

0 �� pH/pi+1H �� H/pi+1H
pi

�� piH/pi+1H �� 0

0 �� pH/pi+1H �� H/pi+1H �� H/pH

pi

��

�� 0

2.1. Local construction

Take U ∈ U and a Frobenius lifting FÛ : Û → Û . So we get an object
(HU ,Fil·U ,∇U ,ΦFÛ

) ∈ MF∇
[0,n](Û) by the restriction. For simplicity of notation,

we omit the appearance of U in this paragraph. Consider the composite

ΦFÛ

[pi]
: F ∗

Û
FiliH

ΦF
Û−→ piH � piH/pi+1H

1
[pi]−→ H0.

1550011-7



2nd Reading

February 12, 2015 10:22 WSPC/S0129-167X 133-IJM 1550011

M. Sheng, H. Xin & K. Zuo

By the property that ΦFÛ
(F ∗

Û
Fili+1) ⊂ pi+1H the above map factors through the

quotient

F ∗
Û

FiliH � F ∗
Û

FiliH/F ∗
Û

(Fili+1H + pFiliH).

By the filtered-freeness in (i) one has Fili+1H ∩ pFiliH = pFili+1H . So one obtains
an isomorphism

FiliH/Fili+1H + pFiliH ∼= Ei,n−i/pEi,n−i,

hence an OU0 -morphism

ΦFÛ

[pi]
: F ∗

U0
(Ei,n−i)0 → H0.

It follows from the strong p-divisibility (see Sec. 1(iii)) that the map

Φ̃FÛ
:=

n∑
i=0

ΦFÛ

[pi]
: F ∗

U0
E0 → H0

is an isomorphism. For another choice of Frobenius lifting F ′
Û

over Û , write zi :=
FÛ (ti) − F ′

Û
(ti). We have the following.

Lemma 2.1. For a multi-index j = (j1, . . . , jd), write |j| =
∑d

l=1 jl and θ
j

∂ =
θj1

∂t1
· · · θjd

∂td
. Then for a local section e ∈ (Ei,n−i)0(U0), one has the formula

ΦFÛ

[pi]
(e⊗ 1) −

ΦF ′
Û

[pi]
(e⊗ 1) =

i∑
|j|=1

ΦF ′
Û

[pi−|j|]
(θ

j

∂(e) ⊗ 1) ⊗ zj

p|j|j!
.

Proof. First of all, as each zj, 1 ≤ j ≤ d is divisible by p and i ≤ n ≤ p− 2, zj

p|j|j!

in the above formula is a well-defined element in OU0 . Let ẽ ∈ FiliH be a lifting
of e. Applying the Taylor formula over OÛ in the situation that R′ = R and ι = id,
we get

ΦFÛ
(ẽ⊗ 1) =

∞∑
|j|=0

ΦF ′
Û
(∇j

∂(ẽ) ⊗ 1) ⊗ zj

j!
.

We observe ordp(p|j|
j! ) ≥ p − 1 for |j| ≥ p and ordp(p|j|

j! ) = |j| for |j| ≤ p − 1. The
above formula can written as

ΦFÛ
(ẽ⊗ 1) − ΦF ′

Û
(ẽ⊗ 1) =

i∑
|j|=1

ΦF ′
Û
(∇j

∂(ẽ) ⊗ 1) ⊗ zj

j!

+
∑

|j|≥i+1

ΦF ′
Û
(∇j

∂(ẽ) ⊗ 1) ⊗ zj

j!
.

As i+1 ≤ p−1, the above estimation on the p-adic valuation implies that the second
term in the right-hand side is an element in pi+1H . By the Griffiths transversality,

1550011-8
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∇j

∂(ẽ) ∈ Fili−|j|H . Write ẽ0 = ẽ mod p. Thus we have the following formula which
takes value in H0(U0):

ΦFÛ

[pi]
(e⊗ 1) −

ΦF ′
Û

[pi]
(e⊗ 1) =

i∑
|j|=1

ΦF ′
Û

[pi−|j|]
(∇j

∂(ẽ0) ⊗ 1) ⊗ zj

p|j|j!
.

Regarding
ΦF ′

Û

[pi−|j|]
as a morphism between sheaves of abelian groups

F−1
U0

(Fili−|j|H)0 → H0,

one has the following commutative diagram:

F−1
U0

(FiliH)0
F−1

U0
∇j

∂ ��

pr

��

F−1
U0

(Fili−|j|H)0

pr

��

Φ
F ′

Û

[pi−|j|] �� H0

F−1
U0

(Ei,n−i)0
F−1

U0
θ

j

∂

�� F−1
U0

(Ei−|j|,n−i+|j|)0

Φ
F ′

Û

[pi−|j|]

�������������������

It implies that in the previous formula the connection can be replaced by the Higgs
field. Hence the lemma follows.

Proposition 2.2. Notation as above. For a local section e of E0(U0), one has the
following formula:

Φ̃FÛ
(e⊗ 1) − Φ̃F ′

Û
(e⊗ 1) =

n∑
|j|=1

Φ̃F ′
Û
(θ

j

∂(e) ⊗ 1) ⊗ zj

p|j|j!
.

Proof. Write e =
∑n

i=0 ei with ei ∈ (Ei,n−i)0. Lemma 2.1 implies

Φ̃FÛ
(e⊗ 1) − Φ̃F ′

Û
(e⊗ 1) =

n∑
i=0

i∑
|j|=1

ΦF ′
Û

[pi−|j|]
(θ

j

∂(ei) ⊗ 1) ⊗ zj

p|j|j!
.

As θ
j

∂(e) =
∑n

i=0 θ
j

∂(ei) and θ
j

∂(ei) = 0 for |j| ≥ i+1, the above summation is equal
to

n∑
|j|=1


 n∑

i=|j|

ΦF ′
Û

[pi−|j|]
(θ

j

∂(ei) ⊗ 1)


 ⊗ zj

p|j|j!
=

n∑
|j|=1

Φ̃F ′
Û
(θ

j

∂(e) ⊗ 1) ⊗ zj

p|j|j!
.

The above proposition justifies the following

Definition 2.3. For the Higgs subbundle (G, θ) ⊂ (E, θ)0, the locally associated
subbundle SU0(G) ⊂ H0 over U0 ⊂ X0 is defined to be Φ̃FÛ

(F ∗
U0
GU0), where U is

a small affine subset of X with the closed fiber U0 and FÛ is a Frobenius lifting
over Û .
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2.2. Gluing

Take U, V ∈ U , and Frobenius liftings FÛ , FV , FÛ∩V
on Û , V̂ , Û ∩ U respectively.

We are going to show the following equality of subbundles in H0|U0∩V0 :

SU0(G)|U0∩V0 = SU0∩V0(G) = SV0(G)|U0∩V0 .

The following lemma is a variant of Lemma 2.1.

Lemma 2.4. Write zi = FÛ ◦ ι(ti) − ι ◦ F
Û∩V

(ti), where ι : Û ∩ V ↪→ Û is the
natural inclusion. Then for a local section e ∈ (Ei,n−i)0(U0), one has the formula

ι∗0

[
ΦFÛ

[pi]
(e⊗ 1)

]
− ΦF

Û∩V

[pi]
[ι∗0(e) ⊗ 1] =

i∑
|j|=1

ΦF
Û∩V

[pi−|j|]
(ι∗0[θ

j

∂(e)] ⊗ 1) ⊗ zj

p|j|j!
.

Proof. The proof is the same as in Lemma 2.1 except that we shall apply the Taylor
formula in the situation that R′ is the one with Spf(R′) = Û ∩ V , F ′ = F

Û∩V
and

ι : R → R′ is the one induced by the natural inclusion.

A formula similar to that of Proposition 2.2 shows that SU0(G)|U0∩V0 =
SU0∩V0(G). By symmetry we have also the second half equality. The open covering
U of X gives rise to an open covering U0 of X0 by reduction modulo p. Thus we
glue the locally associated bundles {SU0(G)}U0∈U0 into a subbundle H(G,θ) ⊂ H0,
which we call the associated subbundle to (G, θ). We remark that the construction
is independent of the choice of a small affine open covering U of X as we can always
refine such a covering and Lemma 2.4 shows the invariance of the construction
under a refinement.

2.3. Horizontal property

We ought to show the associated subbundle H(G,θ) ⊂ H is actually ∇-invariant.
Let FÛ : Û → Û be a Frobenius lifting over Û . Then one can write ∂FÛ

∂tj
= pfj for

fj ∈ OÛ .

Lemma 2.5. For a local section e ∈ (Ei,n−i)0(U0), one has the formula

∇∂tj

[
ΦFÛ

[pi]
(e⊗ 1)

]
=

ΦFÛ

[pi−1]
[θ∂tj

(e) ⊗ fj,0].

Proof. Let ẽ ∈ FiliHU be a lifting of e. The horizontal property (iv) yields the
following commutation formula

∇∂tj
[ΦFÛ

(ẽ⊗ 1)] = ΦFÛ
[∇∂tj

(ẽ) ⊗ 1] ⊗ ∂FÛ

∂tj
.

Thus we have a formula in characteristic p:

∇∂tj

[
ΦFÛ

[pi]
(e⊗ 1)

]
=

ΦFÛ

[pi−1]
[∇∂tj

(e) ⊗ 1] ⊗ fj,0.
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Finally by the same reason as given in the proof of Lemma 2.1 we could replace
the connection in the right-hand side by the Higgs field, and hence obtain the
lemma.

Proposition 2.6. The associated subbundle H(G,θ) to the Higgs subbundle (G, θ) ⊂
(E, θ)0 is a de Rham subbundle of (H,∇)0.

Proof. As the question is local, it suffices to show the invariance property of the
locally associated subbundle SU0(G) ⊂ H0|U0 . Lemma 2.5 implies that for a local
section e ∈ G(U0),

∇∂tj
[Φ̃FÛ

(e⊗ 1)] = Φ̃FÛ
[θ∂tj

(e) ⊗ fj,0],

which is again an element of SU0(G) by the θ-invariance of G. As {∂tj}1≤j≤d spans
Derk(OU0 ,OU0), we have shown that ∇(SU0(G)) ⊂ SU0(G) ⊗ Ω1

U0
as claimed.

2.4. Variants

By examining the above construction, one finds immediately that it works as well
for a smooth scheme X over Wn+1. Also it is immediate to see that the same con-
struction applies for a coherent subobject in (E, θ)0. Namely, for a Higgs subsheaf of
(E, θ)0, we obtain a de Rham subsheaf of (H,∇)0 from the construction. A similar
construction also works in the logarithmic case. In the case of having a divisor at
infinity, one simply replaces the Frobenius liftings and the integrable connection in
the above construction with the logarithmic Frobenius liftings and the logarithmic
integrable connection. In the semistable case, for a closed embedding U ↪→ Z as in
Sec. 1.2, we replace the local operators

ΦF
Û

[pi] in the smooth case with the reduction

of the operator
ΦF

̂
D

log
U

(Z)

[pi] modulo the PD-ideal J , and use the Taylor formula of
Sec. 1.2 in the proofs. The resulting construction yields a logarithmic de Rham
subsheaf of (H,∇)0 for any logarithmic Higgs subsheaf of (E, θ)0.

2.5. Basic properties

Let X be a smooth (respectively, log smooth) scheme over W (respectively, Wn+1)
as above, and (H,Fil·,∇,Φ) ∈ MF∇

[0,n](X). Let (E, θ) = GrFil(H,∇) be the asso-
ciated Higgs bundle, and for a Higgs subbundle (G, θ) ⊂ (E, θ)0, (H(G,θ),∇) ⊂
(H,∇)0 the associated de Rham subbundle by the previous construction. It is not
difficult to check the following properties.

Proposition 2.7. The following statements hold :

(i) The construction is compatible with pull-backs. Namely, for f a morphism
between smooth (respectively, log smooth) schemes over W (respectively, Wn+1),
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one has

(Hf∗(G,θ),∇) = f∗(H(G,θ),∇).

(ii) The construction is compatible with direct sum and tensor product.

One can make our construction into a functor. First of all, one makes a category
as follows: An object in this category is a Higgs subbundle of an (E, θ)0, which is
the modulo p reduction of GrFil(H,∇) where (H,Fil·,∇) comes from an object in
MF∇

[0,n](X) for an n ≥ p−2. The set of morphisms are required to be inclusions of
Higgs subbundles in the same Higgs bundle (E, θ)0. One defines the parallel cate-
gory on the de Rham side. These categories have direct sums and tensor products.
Proposition 2.7(ii) says that the functor respects direct sum and tensor product.
Summarizing the above discussions, we have the following.

Theorem 2.8. Let X be as above and (H,Fil·,∇,Φ) an object in MF∇
[0,n](X). Let

(E, θ) = GrFil(H,∇) be the associated Higgs bundle. Then one associates naturally
a Higgs subbundle of (E, θ)0 to a de Rham subbundle of (H,∇)0.

In the following let X be a smooth scheme over W or Wn+1. The next result
relates our construction in the zero Higgs field case with the Cartier descent (see [8,
Theorem 5.1]).

Proposition 2.9. If (G, 0) ⊂ (E, θ)0 is a Higgs subbundle with zero Higgs field,
then one has an isomorphism of vector bundles with integrable connection

Φ̃ : (F ∗
X0
G,∇can)

∼=−→ (H(G,0),∇|H(G,0) ),

where ∇can is the canonical connection associated to a Frobenius pull-back vector
bundle.

Proof. This is a direct consequence of the construction of the subbundle H(G,0)

and the formula in Proposition 2.2 in the case of θ = 0. Note also that {Φ̃(ei ⊗ 1)},
where {ei} runs through a local basis of G, makes an integrable basis of SU0(G),
which follows directly from the formula in Lemma 2.5 in the case of θ = 0.

2.6. Cartier–Katz descent

Let (H,Fil·,∇,Φ) be a geometric one, namely it comes from Example 1.1. Then
H0 is equipped with the conjugate filtration 0 = Fn+1

con ⊂ Fn
con ⊂ · · · ⊂ F 0

con = H0,
which is horizontal with respect to the Gauß-Manin connection (see [8, Sec. 3]). For
a subbundle W ⊂ H0 we put GrFcon(W ) =

⊕n
q=0

W∩F q
con

W∩F q+1
con

. The p-curvature ψ∇ of
∇ defines the F -Higgs bundle

ψ∇ : GrFcon(H0) → GrFcon(H0) ⊗ F ∗
X0

ΩX0 .

As a reminder to the reader, we recall the definition of F -Higgs bundle: an F -
Higgs bundle over a base C, which is defined over k, is a pair (E′, θ′) where E′ is
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a vector bundle over C, and θ′ is a bundle morphism E′ → E′ ⊗ F ∗
CΩC with the

integral property θ′∧θ′ = 0. The following lemma is a simple consequence of Katz’s
p-curvature formula (see [9, Theorem 3.2]).

Lemma 2.10 ([15, Lemma 7.2]c). Let (W,∇) be a de Rham subbundle of
(H,∇)0. Then the F -Higgs subbundle (GrFcon(W ), ψ∇|GrFcon (W )) defines a Higgs
subbundle of (E, θ)0 by the Cartier descent.

We call the above Higgs subbundle the Cartier–Katz descent of (W,∇). Back
to the discussion on the associated de Rham subbundle (H(G,θ),∇) ⊂ (H,∇)0 with
(G, θ) ⊂ (E, θ)0. After a terminology of Simpson (see [16]) we shall call a Higgs
subbundle (G, θ) with the property G =

⊕n
i=0(G∩ (Ei,n−i)0) a subsystem of Hodge

bundles. We have the following.

Proposition 2.11. Let (G, θ) ⊂ (E, θ)0 be a subsystem of Hodge bundles. Then
the Cartier–Katz descent of (H(G,θ),∇) is equal to (G, θ).

Proof. First we recall that the relative Cartier isomorphism defines an isomor-
phism

C : GrFconH0

∼=−→ F ∗
X0
E0.

We need to show that it induces an isomorphism

GrFcon(H(G,θ)) ∼= F ∗
X0
G.

Write Gi,n−i = G ∩ (Ei,n−i)0. Then G =
⊕n

i=1G
i,n−i. Now that over U0 the

composite

F ∗
U0
Ei,n−i

0 |U0

ΦF
Û

[pi]−→ Fn−i
con H0|U0 � Grn−i

Fcon
H0|U0

is the inverse relative Cartier isomorphism C−1|U0 over U0, it follows from the local
construction of H(G,θ) that

C−1|U0(F
∗
U0
Gi,n−i|U0)

∼=−→ Grn−i
Fcon

H(G,θ)|U0 .

This implies the result.

The above proof implies also the equalities

H(G≤i,θ) = H(G,θ) ∩ Fn−i
con , 0 ≤ i ≤ n,

where G≤i is the Higgs subbundle
⊕

q≤i G
q,n−q of G.

Remark 2.12. The grading of (H(G,θ),∇) with respect to the Hodge filtration
defines a Higgs subbundle of (E, θ)0 which is in general not (G, θ). In the case that
they are equal and X is proper over W , (G, θ) defines a p-torsion subrepresentation
of πarith

1 (X0), the étale fundamental group of the generic fiber X0 of X , implied

cThe quoted lemma deals only with the weight one situation, but the proof works for an arbitrary
weight.

1550011-13



2nd Reading

February 12, 2015 10:22 WSPC/S0129-167X 133-IJM 1550011

M. Sheng, H. Xin & K. Zuo

by a result of Faltings (see [2, Theorem 2.6*]). A similar remark has appeared in
[13, Sec. 4.6].

3. Applications

3.1. Higgs semistability

In this paragraph X is assumed to be smooth and projective over Wn+1 with
connected closed fiber X0 over k. Fix an ample divisor D on X . Recall that the
µ-slope of a torsion free coherent sheaf Z on X0 is defined to be

µ(Z) =
c1(Z) ·Dd−1

0

rankZ
.

Proposition 3.1. Let (E, θ) be the associated Higgs bundle in the geometric case,
i.e. Example 1.1. Then the following statements hold :

(i) For any subsystem of Hodge bundle (G, θ) ⊂ (E, θ)0, one has µ(G) ≤ 0.
(ii) For any Higgs subbundle G ⊂ E0 with zero Higgs field, it holds that µ(G) ≤ 0.

Proof. Assume that there exists a subsystem of Hodge bundles (G, θ) with positive
µ-slope in (E, θ)0. Take such one with the largest slope. By the proof of Proposi-
tion 2.11, one has an isomorphism GrFconH(G,θ)

∼= F ∗
X0
G, and consequently the

equalities µ(H(G,θ)) = µ(F ∗
X0
G) = pµ(G). Then the observation in Remark 2.12

says that GrFil(H(G,θ),∇) gives a subsystem of Hodge bundles of (E, θ)0 of slope
pµ(G) > µ(G), a contradiction. Hence (i) follows. Now assume the existence of a
Higgs subbundle (G, 0) with positive µ-slope. By Corollary 2.9, the associated de
Rham subbundle H(G,0) ⊂ H0 is isomorphic to F ∗

X0
G, whose µ-slope is equal to

pµ(G) > 0. Then GrFil(H(G,0),∇) gives rise to a subsystem of Hodge bundles with
positive µ-slope, which contradicts (i).

Let C ⊂ X be a smooth projective curve over Wn+1. For a coherent sheaf Z
over X0, the µC0-slope of Z is defined to be deg(Z|C0 )

rankZ . Recall that a Higgs bundle
(E, θ) over X0 is said to be Higgs semistable with respect to the µC0 -slope if for
any Higgs subbundle (F, θ) ⊂ (E, θ) the inequality µC0(F ) ≤ µC0(E) holds.

Lemma 3.2. For any Higgs subbundle (G, θ) ⊂ (E, θ)0, it holds that

det C−1
0 (G, θ) ∼= (F ∗

X det G,∇can).

Proof. The functor C−1
0 has been further studied in the paper [10]. It follows from

Proposition 5 loc. cit. that C−1
0 (G, θ) is isomorphic to the exponential twisting

of F ∗
XG. Precisely, it is obtained by gluing the local flat bundles (F ∗

UG|U ,∇can +
dFÛ

p F ∗
Uθ|U ) via the gluing functions exp[hUV (F ∗

U∩V θ)]F
∗
U∩V MU∩V . Here U, V are

two open subsets of X , MU∩V is the transition function of two local bases of G over
U ∩V , hUV is the derivation measuring the difference of two Frobenius liftings. Due
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to the fact that θ is nilpotent, the determinant of the exponential twisting is simply
the identity. Therefore det C−1

0 (G, θ) is isomorphic to (F ∗
X det G,∇can).

Proposition 3.3. Let (E, θ) be the associated Higgs bundle to an object in
MF∇

[0,n](X). Then the following statements hold :

(i) Let g0 : C0 → X0 be a morphism from a smooth projective curve C0 to X0 over
k which is liftable to a morphism g : C → X over Wn+1. Then for any Higgs
subbundle (G, θ) ⊂ (E, θ)0, one has deg(g∗0G) ≤ 0.

(ii) Let C be a smooth projective curve in X over Wn+1. The Higgs bundle (E, θ)0
is Higgs semistable with respect to the µC0-slope.

Proof. Let (E, θ)|C be the Higgs bundle pulled back via g. We use similar
notions for the pull-backs via g0. The pull-back of H via g gives an object in
MF∇

[0,n](C). Assume the existence of a Higgs subbundle (G, θ) ⊂ (E, θ)0 satisfying
deg(G|C0) > 0. By Lemma 3.2, it holds that

deg GrFilC
−1
0 (G, θ)|C0 = degC−1

0 (G, θ)|C0 = degFC∗
0
G|C0 = p degG|C0 .

Iterating this process, one obtains Higgs subbundles in E0|C0 with arbitrary large
degrees, which is impossible. Hence the result (i) follows. The proof of (ii) is similar
by replacing the degree in the previous argument with the µC0-slope.

Remark 3.4. In the above result (i), it is natural to make the liftability assumption
on C0. The example of Moret-Bailly (see [11]) shows that over a W2-unliftable
curve in the moduli space of principal polarized abelian surfaces in characteristic
p the Higgs bundle of the restricted universal family contains a Higgs line bundle
with positive degree. In the case X being a curve, the assumption on p made
in [13, Proposition 4.19] reads n(rankE − 1)max{2g− 2, 1} ≤ p− 2 where g is the
genus of X0. The above result (ii) removes the dependence of p on the genus as well
as the rank.

3.2. W2-unliftability

Let F be a real quadratic field with the ring of integers OF . Assume p is inert in F .
Fix an integer m ≥ 3, coprime to p. Let M be the moduli scheme over W , and Sh

the Hasse locus of M0 as described in Sec. 0. Let Z0 ⊂ Sh be a curve with simple
normal crossing. It is said to be W2-liftable inside M1 if there exists a semistable
curve Z1 ⊂ M1 over W2 such that its closed fiber is Z0. In the following the
W2-liftability means always the W2-liftability inside M1. It is interesting to know
whether the components in Sh are liftable to W2. The W2-liftability on the whole
or part of the P1-configuration Sh is in fact a subtle problem. On the one hand,
it shall be more or less well known that each component of Sh is W2-unliftable.
On the other hand, a result of Goren (see [5, Theorem 2.1]) implies that the whole
configuration is W2-liftable if the zeta value ζF (2 − p) is a non-p-adic integer. Our
partial result on this question is the following.
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Proposition 3.5. Let D be a component in Sh. Let C =
∑
Ci (may be empty) be

a simple normal crossing divisor in M0 such that D + C is again a simple normal
crossing divisor. If D · C ≤ p− 1, then the curve D + C is W2-unliftable.

Before giving the proof, we introduce several notations. Let f : X → M be the
universal abelian scheme. Let (E = E1,0 ⊕E0,1, θ) be the Higgs bundle of f , where
E1,0 = f∗Ω1

X|M and E0,1 = R1f∗OX . It is known that (E, θ) has a decomposition
under the OF ⊗W -action in the form

(E, θ) = (E1, θ1) ⊕ (E2, θ2),

where E1,0
i = Li and E0,1

i = L−1
i for i = 1, 2. It is also known that either L1|D 


OP1(−1),L2|D 
 OP1(p) or L1|D 
 OP1(p), L2|D 
 OP1(−1) holds for any compo-
nent D in Sh. One has a description of the Higgs field of the Higgs bundle associated
to the restricted universal family to D: In the former case, θ2 : L2|D → L−1

2 |D⊗Ω1
D

is zero for the reason of degree, and θ1 : L1|D → L−1
1 |D ⊗ Ω1

D can be shown to be
an isomorphism (we shall not use this fact in the following argument). The prop-
erties of θ1 and θ2 are exactly exchanged in the latter case. Put the log structure
on Z0 = D + C by its components and the trivial log structure on Spec k. Let
Ω1

log(Z0/k) be the sheaf of log differentials (see [7, (1.7)]). It is locally free OZ0 -
module of rank one. The family f0 restricts to a family f0 : Y0 → Z0. With the
pull-back logarithmic structure on Y0, f0 is log smooth. So one forms the logarith-
mic de Rham bundle (H,∇) of f0, which is by definition the first hypercohomology
of the relative logarithmic de Rham complex. The relative Hodge filtration on the
complex degenerates at E1, thus one forms the logarithmic Higgs bundle over Z0:

η : F → F ⊗ Ω1
log(Z0/k),

where F = F 1,0 ⊕ F 0,1 with F 1,0 = L1|Z0 ⊕ L2|Z0 and F 0,1 = L−1
1 |Z0 ⊕ L−1

2 |Z0 .

Proof of Proposition 3.5. Now we assume Z0 lifts a semistable curve Z ⊂ M1

over W2. We equip Z with the log structure determined by the divisor Z0 and
SpecW2 with the one by Spec k. We can assume that

L1|D 
 OP1(−1), L2|D 
 OP1(p).

Over the open subset D−D∩C, η|D coincides with the Higgs bundle coming from
the restricted universal family to D. So by the above discussion, η|D(L2|D) = 0.
Consider the following coherent subsheaf in F : Take the subsheaf

L2|D ⊗OD(−D ∩ C) ⊂ L2|D
over D and take the zero sheaf over C, considered as the subsheaf of L2|C . They
glue into a subsheaf L of L2|Z0 ⊂ F over Z0 since over a small open neighborhood
of any point P ∈ D ∩ C, L2|D ⊗ OD(−D ∩ C) has a local basis vanishing at P .
Note that L is a Higgs subsheaf of F . In fact the Higgs field η acts on L trivially
by construction. Then the construction of Sec. 2 in the semistable case applies. So
(L, 0) ⊂ (F, η) gives rise to a de Rham subsheafH(L,0) ⊂ (H,∇). Note thatH(L,0)|D
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is isomorphic to F ∗
D(L2|D ⊗OD(−D ∩C)) and hence has degree p(p−D ∩C). We

have a short exact sequence from the Hodge filtration:

0 → L1|D ⊕ L2|D → H |D → L−1
1 |D ⊕ L−1

2 |D → 0.

Then we first consider the composite

H(L,0)|D ⊂ H |D � L−1
1 |D ⊕ L−1

2 |D.
As deg L−1

1 |D = 1 and deg L−1
2 |D = −p are both smaller than deg H(L,0)|D, one

has the factorization

H(L,0)|D ⊂ L1|D ⊕ L2|D ⊂ H |D.
Case 1: D ∩ C ≤ p− 2. Again for the reason of degree, the above nontrivial map
is impossible.
Case 2: D ∩ C = p− 1. In this case, one obtains the equality

H(L,0)|D = L2|D.
This is also impossible because of the semilinearity of the relative Frobenius. For a
small affine U ⊂ Z whose modulo p reduction is U0 ⊂ D −D ∩C and a Frobenius
lifting FÛ , the local operator

ΦF
Û

[p] maps a local section in L2|D(U0) to a local
section in L1|D(U0). As L2|D ⊗ OD(−D ∩ C) ⊂ L2|D, it is impossible to have
H(L,0)(U0) ⊂ L2|D(U0) by the construction of H(L,0).
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