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In this paper we show an Arakelov inequality for semi-stable
families of algebraic curves of genus g � 1 over characteristic p
with nontrivial Kodaira–Spencer maps. We apply this inequality to
obtain an upper bound of the number of algebraic curves of p-rank
zero in a semi-stable family over characteristic p with nontrivial
Kodaira–Spencer map in terms of the genus of a general closed
fiber, the genus of the base curve and the number of singular
fibres. The parallel results for smooth families of Abelian varieties
over k with W2-lifting assumption are also obtained.
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1. Introduction

Let f : X → C be a non-isotrivial semi-stable family of algebraic curves of genus g � 1 over smooth
projective curve C over the complex numbers. Let S ⊂ C be the singular locus over which the fibration
f degenerates. The classical Arakelov inequality (cf. [4]) states that the following inequality holds

deg f∗ωX/C � g

2
degΩ1

C (S).

This is one of key ingredients in the proof by Arakelov on the Shararevich conjecture that the isomor-
phism classes of genus g curves over a given functional field with fixed degeneracy are finite. There
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are new developments since then on the Arakelov inequalities and their applications to certain geo-
metric problems on moduli spaces of polarized algebraic manifolds. (For more information, refer to
the recent survey articles [21,25] and references therein.) In a series of papers [9,22,24], the following
generalized form of Arakelov inequality was obtained:

Theorem 1.1. (See [21, Theorem 1.1]; [25, Theorem 4.4], n = 1 case.) Let f : X → C be a semi-stable family of
curves as above. Let E be a coherent subsheaf of f∗ων

X/C , ν � 1. Then the following inequality holds:

deg E
rank E

� ν

2
degΩ1

C (S).

In this paper we give a characteristic p analogue of the Arakelov inequality in the above gener-
alized form. Let k be the algebraic closure of the finite field Fp with p an odd prime. Now we let
f : X → C be a semi-stable family of algebraic curves of genus g � 1 with nontrivial Kodaira–Spencer
map over the projective curve C , which is defined over k. The nontriviality of Kodaira–Spencer map
means that it is nonzero at one closed point in the smooth locus of the base curve and this assump-
tion is equivalent to saying that the family is non-isotrivial and it is not equal to the semi-stable
reduction of the base change of another family f̃ : X̃ → C under the Frobenius map FC : C → C .

Theorem 1.2. (See Theorem 2.1.) Let f : X → C be a semi-stable family of algebraic curves of genus g � 1 over
k with nontrivial Kodaira–Spencer map. Let E be a coherent subsheaf of f∗ων

X/C , ν � 1. Then the following
strict inequality holds:

deg E
rank E

< 2νg degΩ1
C (S).

One cannot deduce the above Arakelov inequality in characteristic p directly from the Arakelov in-
equality in characteristic zero as given in Theorem 1.1. This is because there exists non-liftable family
of algebraic curves in characteristic p, and even if the family f in characteristic p comes from the
reduction at a prime over p of a semi-stable family in characteristic zero, there exists possibly non-
liftable coherent subsheaf in f∗ων

X/C . Furthermore one does not expect the same Arakelov inequality
holds for families of Abelian varieties over k. Actually Moret-Bailly [10] constructed a semi-stable fam-
ily of genus 2 curves over P

1 defined over k, whose associated Jacobian fibration is a smooth family
of supersingular Abelian surfaces. It was shown furthermore that f∗ωX/C = OP1 (p) ⊕ OP1 (−1) (see
[10, 3.2]). So the Arakelov inequality as given in the above theorem does not hold for the family of
Abelian surfaces. It is known that this family is non-liftable to characteristic zero. However, when a
smooth family of Abelian varieties is assumed to be W2-liftable, one does has an Arakelov inequality.
Precisely, let f : X → C be a smooth family of Abelian varieties of dimension g � 2 over k. We as-
sume that f has nontrivial Kodaira–Spencer map and is W2-liftable (see Assumption 5.1). We obtain
the following Arakelov inequality:

Theorem 1.3. (See Theorem 5.3.) Let f : X → C be a smooth family of Abelian varieties which is W2-liftable
and has nontrivial Kodaira–Spencer map. Assume furthermore that p � 4g2 − 6g + 4. Then for any coherent
subsheaf F of E1,0 one has inequality

deg F
rank F

� 1

2
degΩ1

C .

Besides giving a characteristic p analogue of the classical Arakelov inequality, we are also mo-
tivated by its potential applications to certain geometric problems of the moduli spaces of curves
defined over k. The articles by F. Oort [15,16] and G. van der Geer [20] are referred to for a general
introduction to the moduli spaces of curves and Abelian varieties in characteristic p. Particularly we
shall use the same notations as them and shall not repeat the definitions if they have already been
Please cite this article in press as: J. Lu et al., An Arakelov inequality in characteristic p and upper bound of p-rank zero
locus, J. Number Theory (2009), doi:10.1016/j.jnt.2009.05.015
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defined there. We start our discussions with a very classical example, the Legendre family of elliptic
curves over k. It is given by the affine equation

y2 = x(x − 1)(x − t)

with parameter t . As well known, the family has three singular fibers and p−1
2 (smooth) supersin-

gular fibers. One needs to do semi-stable reduction to the Legendre family in order to fit into our
considerations. A possible base change is given by the double cover of the base curve P

1 branching
at 0 and ∞. The obtained semi-stable model of the Legendre family has then four singular fibers and
p − 1 supersingular fibers. The base curve is actually modulo p reduction of the modular curve with
level structure Γ (2) ∩ Γ1(4) ⊂ SL(2,Z). This is one of six examples of semi-stable families of elliptic
curves over P

1 due to A. Beauville [1]. From these information plus that of automorphisms of elliptic
curves one can deduce the classical Deuring mass formula on the number of supersingular elliptic
curves in the coarse moduli space over k. It is remarkable that T. Ekedahl and G. van der Geer have
generalized the formula to the Ekedahl–Oort strata in the coarse moduli space of principally polarized
Abelian varieties over k (see the article by G. van der Geer [20] and references therein). One can ask
as next step for formulas or equalities for Ekedahl–Oort strata in the Torelli locus. Unfortunately, such
questions remain difficult in general (see the article by F. Oort [16]). In this paper we want to use the
above Arakelov inequality to present certain inequality about p-rank zero locus. To motivate it, it can
be shown that for example p − 1 is the maximal number of supersingular elliptic curves in a semi-
stable family of elliptic curves over P

1 with four singular fibers over k, whose Kodaira–Spencer map
is nontrivial (see discussions after Proposition 4.1). For a semi-stable family of higher genus curves,
the situation is different. The example of Moret-Bailly mentioned above shows that there are possibly
infinitely many closed fibers in a semi-stable family of g � 2 curves with nontrivial Kodaira–Spencer
map, whose p-ranks are zero. However the following theorem shows that, if one assumes that the
generic fiber of the family is not of p-rank zero, then the number of p-rank zero closed fibers in the
family cannot be arbitrarily large and is actually bounded by the basic invariants of the family itself
and the characteristic of the ground field k.

Theorem 1.4. (See Theorem 4.3.) Let f : X → C be a semi-stable family of algebraic curves of genus g � 1 over
smooth projective algebraic curves C over k with nontrivial Kodaira–Spencer map. If the p-rank of the generic
fiber of f is nonzero, then the number of p-rank zero closed fibers of f is strictly bounded from above by

2pg g3(2b − 2 + s),

where b is the genus of base curve C and s is the number of singular fibers of f .

Remark 1.5. The upper bound in the above theorem does not follow from the result of Ekedahl and
van der Geer on the cycle class of p-rank zero locus V 0. By Theorem 9.2 of [20], the cycle class [V 0]
of V 0 is equal to (p − 1)(p2 − 1) · · · (pg − 1)λg where λg is the top Chern class of the first Hodge
bundle over Ã g . For a curve C in Ã g , the cardinality of p-rank zero locus in C however cannot
be expressed by the intersection of Chern classes of C and V 0. This is because the cup product of

elements in H2 dim(Ã g )−2(Ã g ,Z) and H2g(Ã g,Z) has degree greater than 2 dim Ã g when g � 2, and
hence is equal to zero.

For the upper bound of p-rank zero locus of smooth family of Abelian varieties with W2-lifting
and nontrivial Kodaira–Spencer map, we have the following:

Theorem 1.6. (See Theorem 5.6.) Let f : X → C be a smooth family of Abelian varieties of dimension g � 2
over k which is W2-liftable and has nontrivial Kodaira–Spencer map. Assume that p � 4g2 − 6g + 4. If the
Please cite this article in press as: J. Lu et al., An Arakelov inequality in characteristic p and upper bound of p-rank zero
locus, J. Number Theory (2009), doi:10.1016/j.jnt.2009.05.015
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generic fiber of f is not of p-rank zero, then the number of p-rank zero closed fibers |V 0( f )| in f is bounded
from above by

[
pg g + 2(g − 1)2 pg − 1

p − 1

]
(b − 1),

where b is the genus of C .

The contents of the paper are organized as follows. In Section 2 we prove the Arakelov inequality
in characteristic p. In Section 3 we discuss the relative Frobenius morphism of f : X → C and show
an inequality for the slopes of coherent subsheaves in (F ∗

C )n R1 f∗O X , n � 1. This section serves as
preparation for Section 4, but is separated from Section 4 for its own interests. In Section 4 we prove
the claimed upper bound of p-rank zero locus. In Section 5 we prove the Arakelov inequality and give
upper bound of p-rank zero locus for smooth families of Abelian varieties satisfying W2-liftability
assumption.

Notations and conventions. In the following sections the notation f : X → C means a semi-stable
family of algebraic curves of genus g � 1 or of Abelian varieties of dimension g � 2 over k, where
the base curve C is smooth and projective. The set S ⊂ C is the singular locus of f . We denote
by E1,0 = f∗Ω1

X/C and E0,1 = R1 f∗O X . They are called the first and respectively the second Hodge

bundle of the family f . When f is a family of curves, we write Ω1
X/C as ωX/C . The slope of a coherent

sheaf F over C is defined to be μ(F ) = deg F
rank F . The p-rank of a smooth projective algebraic curve of

genus g � 1 is defined to be the p-rank of its Jacobian (see F. Oort [16], or Section 4 in [11] for the
definition of p-rank). For an algebraic variety X defined over k, the map F X : X → X is denoted to be
the absolute Frobenius morphism defined by power p map on the structure sheaf of rings O X (see [3,
Section 9]). In Section 3 we shall use occasionally the notion of F -crystal and crystalline cohomology.
The basic reference for F -crystals is the article by N. Katz [7] and for crystalline cohomology it is the
book [2]. For the remaining notions on algebraic varieties in the article refer to [6].

2. Arakelov inequality of semi-stable families of algebraic curves in characteristic p

Let f : X → C be a semi-stable family of algebraic curves of genus g � 1 with nontrivial Kodaira–
Spencer map. In this section we shall prove an Arakelov inequality for the family f . Our proof is based
on certain techniques in the theory of algebraic surfaces, for which one can consult for example the
book by G. Xiao [19], and the results of L. Szpiro in [18]. We are going to prove the following

Theorem 2.1. Let f : X → C be a semi-stable family of algebraic curves of genus � 1 over k with nontrivial
Kodaira–Spencer map. For a coherent subsheaf E in f∗ων

X/C , ν � 1 one has the following upper bound on the
slope of E :

μ(E ) < 2νg degΩ1
C (S).

Proof. We proceed it by considering g = 1 and g � 2 separately. First we study g = 1 case. By cup
product with first Hodge bundle E1,0 and then contraction on coefficients, the Kodaira–Spencer map
of f induces a nontrivial morphism

θ : E1,0 → E0,1 ⊗ Ω1
C (S).

Since they are invertible sheaves, θ induces an embedding

(
E1,0)⊗2 → Ω1

C (S).
Please cite this article in press as: J. Lu et al., An Arakelov inequality in characteristic p and upper bound of p-rank zero
locus, J. Number Theory (2009), doi:10.1016/j.jnt.2009.05.015
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This implies that

deg E1,0 � 1

2
degΩ1

C (S).

Because f is a semi-stable elliptic fibration, one has isomorphism

f∗ων
X/C 	 ( f∗ωX/C )ν .

Then for any coherent subsheaf E of f∗ων
X/C , which is invertible in this case, one has the following

inequality:

μ(E ) = deg E � ν deg E1,0 � ν

2
degΩ1

C (S) < 2ν degΩ1
C (S).

Now we consider g � 2 case. Let

f∗ων
X/C = Em ⊇ Em−1 ⊇ · · · ⊇ E1 ⊇ E0 = 0

be the Harder–Narasimhan filtration of f∗ων
X/C . Obviously, it suffices to show our inequality for E1,

which has maximal slope among all coherent subsheaves in f∗ων
X/C . One notes that the image sheaf

of the natural morphism α : f ∗E1 → ω⊗ν
X/C can be expressed by I Z (νK X/C − D), where I Z is the ideal

sheaf of a zero-dimensional subscheme Z , K X/C a relative canonical divisor and D is an effective
divisor. Now let H be an ample divisor of X . Since ωX/C is big and nef by L. Szpiro (see Theorem 1
and Proposition 3 in [18]), mνK X/C + H is ample for m � 0 by Nakai’s criterion (see Theorem 1 in [8]).
By Bertini’s theorem, one can find a smooth curve

Γ ∈ ∣∣n(mνK X/C + H)
∣∣

for n large enough such that Γ intersects transversally with a fixed smooth closed fiber F of f , and
Γ is not contained in the support the kernel of α. We put π = f |Γ . By construction, π is a separable
finite morphism and the restriction of α to Γ

α|Γ : π∗E1 → OΓ (νK X/C − D)

is nontrivial. Because E1 is semi-stable and π is separable, π∗E1 is still semi-stable by Lemma 3.1
of [17]. Hence we have

μ
(
π∗(E1)

)
� deg OΓ (νK X/C − D) = (νK X/C − D)Γ.

We put N = νK X/C − D − μ(E1)F . Then the intersection number

NΓ = (νK X/C − D)Γ − μ(E1)FΓ

= (νK X/C − D)Γ − μ
(
π∗(E1)

)
� 0.

It implies that N(mνK X/C + H) � 0. Since m can be arbitrarily large, we must have N K X/C � 0. There-
fore, we see that
Please cite this article in press as: J. Lu et al., An Arakelov inequality in characteristic p and upper bound of p-rank zero
locus, J. Number Theory (2009), doi:10.1016/j.jnt.2009.05.015
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νK 2
X/C = (

N + D + μ(E1)F
)

K X/C

� μ(E1)F K X/C

= (2g − 2)μ(E1).

Now we recall the Szpiro’s inequality (see Proposition 4.2 in [18])

K 2
X/C < (4g − 4)g degΩ1

C (S).

By combining the last two inequalities, we obtain therefore

μ(E1) < 2νg degΩ1
C (S). �

3. Relative Frobenius morphism and upper bound for the slopes of coherent subsheaves in the
pull-back of second Hodge bundle under iterated Frobenius morphism

For the family f : X → C over k one has the following commutative diagram induced by the
absolute Frobenius morphisms of the base C and the total space X :

X

f

Frel

X ′

f ′

Pr
X

f

C
FC

C

where f ′ : X ′ → C is the base change of f under FC and Frel : X → X ′ is the so-called relative Frobe-
nius morphism. The C-morphism Frel is the main interest of the first half of this section. The following
simple lemma is well known. For the convenience of the reader we include it here with a proof.

Lemma 3.1. The relative Frobenius morphism Frel induces a natural morphism of OC -modules

F ∗
rel : F ∗

C E0,1 → E0,1.

Proof. The relative Frobenius morphism Frel gives the O X ′ -morphism of sheaves

O X ′ → Frel∗O X .

It induces the morphism on the direct images

R1 f ′∗O X ′ → R1 f ′∗(Frel∗O X ).

The spectral sequence of composed maps gives the natural morphism

R1 f ′∗(Frel∗O X ) → R1( f ′ ◦ Frel)∗O X .

Composition of the above two morphisms yields the morphism

R1 f ′∗O X ′ → R1 f∗O X .

Finally, by the flat base change theorem (cf. [6, Proposition 9.3]) the R1 f ′∗O X ′ is isomorphic to
F ∗

C R1 f∗O X . The lemma follows. �

Please cite this article in press as: J. Lu et al., An Arakelov inequality in characteristic p and upper bound of p-rank zero
locus, J. Number Theory (2009), doi:10.1016/j.jnt.2009.05.015
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In the following text we denote for brevity the n-th iterated Frobenius morphism (F ∗
C )n by F ∗

n .
Following Lemma 3.1 one can then consider a sequence of morphisms

Φn : F ∗
n E0,1 → E0,1, n � 1,

which is the composition of the following morphisms:

F ∗
n E0,1 F ∗

n−1 F ∗
rel−−−−−→ F ∗

n−1 E0,1 F ∗
n−2 F ∗

rel−−−−−→ · · · → F ∗
1 E0,1 F ∗

rel−−→ E0,1.

The following result describes some relations between the morphism Φn and the p-rank of the fibers.

Proposition 3.2. Let f : X → C be a semi-stable family of algebraic curves or Abelian varieties. Let t be a
closed point of C and the closed fiber Xt of f over t be smooth. Then the following statements hold:

(i) The morphism Φn is isomorphism at t for one n (or for all n) if and only if Xt is ordinary.
(ii) The morphism Φg is zero at t if and only if Xt is of p-rank zero.

(iii) The morphism Φ1 is zero at t only if Xt is supersingular.

These statements should be more or less well known. For completeness we present a proof here,
although we are aware of the possibility that it is worse than the original one. We remark that the
if-part of (iii) above is not true.

Firstly we recall some basic known facts about the crystalline cohomolgy of Abelian variety. Let A
be a principally polarized Abelian variety of dimension g over k and let H1

crys(A/W (k)) be the first
crystalline cohomology. It is torsion free W (k)-module of rank 2g . More importantly, it has a semi-
linear endomorphism F on H1

crys(A/W (k)) which makes the pair (H1
crys(A/W (k)), F ) the structure

of F -crystal. By a well-known comparison theorem, the reduction modulo p of the F -crystal is iso-
morphic to the Frobenius morphism on the de-Rham cohomology H1

dR(A/k). By using the Dieudonne
theory, the p-rank of A is equal to the multiplicity of the slope zero part of the F -crystal. The basic
(semi-)linear algebra of F -crystals is established in [7]. We shall also use a result due to N. Nygaard
[12].

Proof of Proposition 3.2. These are point-wise statements. Let t be a k-point of C and Xt be the
closed fiber over t . When Xt is an algebraic curve, it is equivalent to prove the corresponding state-
ments for its Jacobian Jac(Xt). Actually, by a fundamental result of Weil Jac(Xt) has the same field
of definition as Xt , and moreover one has a k-morphism i : Xt → Jac(Xt). Since i induces an iso-
morphism of k-vector spaces i∗ : H1(Jac(Xt), OJac(Xt )) → H1(Xt , O Xt ), the action F ∗

Xt
on H1(Xt , O Xt )

induced by the absolute Frobenius is identified with the action F ∗
Jac(Xt )

on H1(Jac(Xt), OJac(Xt )) via the
isomorphism.

Now we let A = Jac(Xt) be the Jacobian of Xt when f is a family of curves, and A = Xt when f is
a family of Abelian varieties. It is equivalent to prove the corresponding statements for

(
F ∗

A

)n : H1(A, O A) → H1(A, O A).

We look at the F -crystal of A. By the Hodge–Newton decomposition (cf. [7, Theorem 1.6.1]), there is
a unique decomposition of F -crystals

(
H1

crys

(
A/W (k)

)
, F

) = (M0 ⊕ M>0, F )

where (M0, F |M0 ) is the unit-root subcrystal of (H1
crys(A/W (k)), F ) and M>0 is the complement of

M0 whose Newton slopes are all positive. So the proofs of (i) and (ii) are reduced to the following:
Please cite this article in press as: J. Lu et al., An Arakelov inequality in characteristic p and upper bound of p-rank zero
locus, J. Number Theory (2009), doi:10.1016/j.jnt.2009.05.015
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Claim 3.3. Let A be a g-dimensional Abelian variety defined over k. The Newton slopes of A are all positive if
and only if the morphism

(
F ∗

A

)g : H1(A, O A) → H1(A, O A)

is zero map.

Proof. It is known that the k-vector space H1(A, O A) is a natural quotient of H1
cris(A, W (k)) mod-

ulo p, and the map F modulo p induces a natural morphism on H1(A, O A), which is identical
to F ∗

A . By N. Katz [7, 1.3.3], all Newton slopes are positive if and only if F 2g(H1
cris(A, W (k))) ⊂

pH1
cris(A, W (k)), which implies in particular

(
F ∗

A

)2g : H1(A, O A) → H1(A, O A)

is zero map. But since dimk H1(A, O A) = g , the g times iterate (F ∗
A)g is already zero. Conversely, if

(F ∗
A)g is a zero morphism, then

(
F ∗

A

)g+1 : H1
dR(A/k) → H1

dR(A/k)

is zero. Since 2g � g + 1, it implies that

F 2g(H1
cris

(
A, W (k)

)) ⊂ pH1
cris

(
A, W (k)

)
.

Then still by N. Katz’s remark, the Newton slopes of H1
cris(A, W (k)) are all positive. The claims is

proved. �
To the part (iii) we invoke a result of N. Nygaard.

Theorem 3.4. (See Nygaard [12, Theorem 1.2].) Let A and (H1
crys(A/W (k)), F ) be as above. Then A is super-

singular if and only if

(a) F g2−g+2 is divisible by p
g2+1

2 −(g−1) if g is odd;

(b) F g2−2g+3 is divisible by p
g2+1

2 − 3
2 (g−1) if g is even.

So the assumption of (iii) says that the map F ∗
A : H1(A, O A) → H1(A, O A) is zero. It implies that

F 2 : H1
crys(A/W (k)) → H1

crys(A/W (k)) is divisible by p. An elementary calculation shows that the di-
visibility condition in above theorem is satisfied and (iii) follows therefore from Theorem 3.4. �

In the remainder of this section we shall prove the following theorem about various upper bounds
of the slopes of coherent subsheaves contained in F ∗

n E0,1, n � 1.

Theorem 3.5. Let f : X → C be a semi-stable family of algebraic curves. Let F be a coherent subsheaf of
F ∗

n E0,1 for certain n � 1. Then we have the following upper bound of the slope of F :

(i) If f has an ordinary closed fiber, then μ(F ) � 0.
(ii) If n = 0, then μ(F ) < 2g(g − 1)deg Ω1

C (S).
(iii) In any case one has

μ(F ) < 2g(g − 1)(2b − 2 + s)pn + 2(g − 1)(b − 1)
pn − 1

p − 1
,

where b is the genus of C and s the number of singular fibers of f .
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Proof of (i) and (ii). We prove the first statement by contradiction. By assumption that f has an
ordinary closed fiber, the generic fiber of f is then ordinary. By Proposition 3.2(i), the morphism Φ1
is generically isomorphism. Now if there was a coherent subsheaf F of F ∗

n E0,1 with positive slope,
one deduces a contradiction as follows. One can assume from the first that F is of maximal slope in
F ∗

n E0,1. We consider the morphism

F ∗
n Φ1 : F ∗

n+1 E0,1 → F ∗
n E0,1

and we claim that the subsheaf F ∗
n Φ1(F ∗

1 F ) of F ∗
n E0,1 has larger slope than F . Actually the rank of

F ∗
n Φ1(F ∗

1 F ) is equal to that of F because Φ1 is generically isomorphism and so is F ∗
n Φ1. Secondly

one has

deg F ∗
n Φ1

(
F ∗

1 F
)
� deg F ∗

1 F = p deg F .

Since deg F > 0, it is clear that deg F ∗
n Φ1(F ∗

1 F ) > deg F . A contradiction.
Now we let F be a rank r coherent subsheaf of E0,1. By the relative Serre duality, E0,1 and E1,0 are

dual to each other. So the dual of the quotient sheaf E0,1/F is a coherent subsheaf of E1,0. Further-
more, because the family f has nontrivial Kodaira–Spencer map, one has deg E1,0 > 0 by Proposition 3
of [18]. Applying the Arakelov inequality (Theorem 2.1) in ν = 1 case, we have

deg(F ) = −deg E1,0 + deg
(

E0,1/F
)∗

< deg
(

E0,1/F
)∗

< 2g(g − r)degΩ1
C (S).

Therefore

μ(F ) < 2g

(
g − r

r

)
degΩ1

C (S) � 2g(g − 1)degΩ1
C (S).

The second statement is proved. �
Before proving the upper bound in the general case, we shall discuss the instability of vector

bundles under Frobenius pull-back. Our discussion follows that in [17]. For a coherent sheaf E the
notation μmax(E ) (resp. μmin(E )) means the maximal (resp. minimal) slope of coherent subsheaves in
E . In [17] X. Sun has shown the following celebrated inequality:

Theorem 3.6. (See Sun [17, Theorem 3.1].) Let C be a smooth projective curve of genus b � 1 over k. Let E be
a semi-stable vector bundle of rank r over C . One has the following inequality:

μmax
(

F ∗
C E

) − μmin
(

F ∗
C E

)
� 2(r − 1)(b − 1).

Based on the above result, we shall show the following:

Theorem 3.7. Let C be curve as above. The morphism Fn : C → C, n � 1 denotes the n-th iterated Frobenius
morphism. Let E be a vector bundle of rank r over C . The following inequality holds:

μmax
(

F ∗
n E

) − μmin
(

F ∗
n E

)
� pn(μmax(E ) − μmin(E )

) + 4(r − 1)(b − 1)
pn − 1

p − 1
.

The generalized inequality follows from the following:
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Proposition 3.8. Let C and E be as above. The following inequality holds:

μmax
(

F ∗
n E

)
� pnμmax(E ) + 2(r − 1)(b − 1)

pn − 1

p − 1
.

We shall use only Proposition 3.8 rather than Theorem 3.7 in our paper. It is stated for its inde-
pendent interest as certain generalization of Sun’s inequality. We deduce first Theorem 3.7 from the
above proposition.

Proof of Theorem 3.7. Let

E = Em ⊇ Em−1 ⊇ · · · ⊇ E1 ⊇ E0 = 0

be the Harder–Narasimhan filtration of E . It is characterized by two properties, namely the semi-
stability of each grading Ei+1

Ei
and the strict increase of slopes of gradings

μ(E1) > μ

(
E2

E1

)
> · · · > μ

(
Em

Em−1

)
.

Let E ∨ be the dual vector bundle of E . It is clear that the following filtration

E ∨ =
(

Em

E0

)∨
⊇

(
Em

E1

)∨
⊇ · · · ⊇

(
Em

Em−1

)∨
⊇

(
Em

Em

)∨
= 0

is the Harder–Narasimhan filtration of E ∨ by the characterization. In particular it follows that

−μmin(E ) = −μ

(
Em

Em−1

)
= μ

((
Em

Em−1

)∨)
= μmax

(
E ∨)

.

Thus we apply Proposition 3.8 to the vector bundles E and its dual E ∨ . Hence

μmax
(

F ∗
n E

) − μmin
(

F ∗
n E

) = μmax
(

F ∗
n E

) + μmax
(

F ∗
n E ∨)

� pnμmax(E ) + pnμmax
(

E ∨) + 4(r − 1)(b − 1)
pn − 1

p − 1

= pn(μmax(E ) − μmin(E )
) + 4(r − 1)(b − 1)

pn − 1

p − 1
. �

So it is left to show Proposition 3.8.

Proof of Proposition 3.8. We prove it by induction on n.

n = 1 case. It is to show

μmax
(

F ∗
C E

)
� pμmax(E ) + (r − 1)(2b − 2).

We let F ⊂ F ∗
C E be the subsheaf with maximal slope. As above, we let

E = Em ⊇ Em−1 ⊇ · · · ⊇ E1 ⊇ E0 = 0
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be the Harder–Narasimhan filtration of E . It pulls back to a filtration of F ∗
C E :

F ∗
C E = F ∗

C Em ⊇ F ∗
C Em−1 ⊇ · · · ⊇ F ∗

C E1 ⊇ 0.

We consider the natural map α1 : F → F ∗
C Em

F ∗
C Em−1

which is the composition of the morphisms

F ↪→ F ∗
C Em → F ∗

C Em

F ∗
C Em−1

.

The kernel of α1 is denoted by F1. So we have a subsheaf F
F1

of
F ∗

C Em

F ∗
C Em−1

. Since the grading Em
Em−1

is

semi-stable, one has after Theorem 3.6:

μmax

(
F ∗

C

(
Em

Em−1

))
− μmin

(
F ∗

C

(
Em

Em−1

))
� 2(r − 1)(b − 1).

Since furthermore

μ

(
F

F1

)
� μmax

(
F ∗

C Em

F ∗
C Em−1

)
= μmax

(
F ∗

C

(
Em

Em−1

))

and

μmin

(
F ∗

C

(
Em

Em−1

))
� μ

(
F ∗

C

(
Em

Em−1

))
= pμ

(
Em

Em−1

)

hold, we get

μ

(
F

F1

)
� 2(r − 1)(b − 1) + pμ

(
Em

Em−1

)

� 2(r − 1)(b − 1) + pμmax(E ).

One notes that F1 is a coherent subsheaf of F ∗
C Em−1. In case that F1 is not zero sheaf one considers

further the morphism α2 : F1 → F ∗
C Em−1

F ∗
C Em−2

with kernel F2. By keeping on doing this, one obtains a

filtration

F = F0 ⊃ F1 ⊃ · · · ⊃ Fl ⊃ Fl+1 = 0

such that each grading Fi
Fi+1

is subsheaf of F ∗
C (

Em−i
Em−i−1

). One applies then Theorem 3.6 for each grading
Em−i

Em−i−1
and notes that the inequality

μ

(
Ei

Ei−1

)
� μmax(E )

holds for all 1 � i � m. By the same argument as above, one has

μ

(
Fi

Fi+1

)
� 2(r − 1)(b − 1) + pμmax(E ), 0 � i � l.
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Therefore it follows that

deg F =
l∑

i=0

deg
Fi

Fi+1

�
l∑

i=0

[
2(r − 1)(b − 1) + pμmax(E )

]
rank

Fi

Fi+1

= [
2(r − 1)(b − 1) + pμmax(E )

]
rank(F ).

Induction step. We show the truth for n − 1 implies that for n. It is direct to show this. One suffices
to notice that the same argument in the above step applying to the sheaf F ∗

n−1 E yields the following
inequality

μmax
(

F ∗
n E

)
� 2(r − 1)(b − 1) + pμmax

(
F ∗

n−1 E
)
.

By the inductive assumption one has the inequality

μmax
(

F ∗
n−1 E

)
� pn−1μmax(E ) + 2(r − 1)(b − 1)

pn−1 − 1

p − 1
.

Combining the last two inequalities one gets the claimed inequality

μmax
(

F ∗
n E

)
� pnμmax(E ) + 2(r − 1)(b − 1)

pn − 1

p − 1
.

The proof is completed. �
Proof of (iii). It follows from Proposition 3.8 for E0,1 and (ii). �

In characteristic zero the system of Hodge bundles (E1,0 ⊕ E0,1, θ) is known to be Higgs semi-
stable of slope zero. Since the Higgs field on the second Hodge bundle is trivial, for any coherent
subsheaf F ⊂ E0,1 (F ,0) is a Higgs subsheaf and by the Higgs semi-stability the inequality μ(F ) �
μ(E1,0 ⊕ E0,1) = 0 holds, the same as in the case (i) of the above theorem. The violation of the Higgs
semi-stability in characteristic p was shown by the example of Moret-Bailly [10], in which there is
a positive degree sub line bundle in E0,1. However, thanks to the Vologodsky–Ogus Theorem (see
Theorem 5.2) the system of Hodge bundles for a smooth family of Abelian variety which is W2-
liftable, is again Higgs semi-stable of slope zero. It is interesting to ask the stability-type question
about the Hodge bundles over strata (for example p-rank zero stratum or Ekedahl–Oort strata in
general) in the moduli space of algebraic curves and the moduli space of Abelian varieties over k
where the relative Frobenius degenerates.

4. Upper bound of p-rank zero locus

In this section we shall discuss the problem as described in the introduction, namely the upper
bound of p-rank zero locus in a semi-stable family of algebraic curves f : X → C over k. Of course,
in order that our question makes sense we must assume that the generic fiber of f is not of p-rank
zero. This is the basic assumption in this section. We denote by V 0( f ) the proper subset of C which
supports the p-rank zero fibers in f . The notation |V 0( f )| means the cardinality of V 0( f ).

We treat first the simplest case, a family of elliptic curves.
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Proposition 4.1. Let f : X → C be a semi-stable family of elliptic curves with nontrivial Kodaira–Spencer map.
Then the number of supersingular elliptic curves in the family f is bounded from above by p−1

2 (2b − 2 + s)
where b is the base curve genus and s the number of singular fibers of f .

When the base curve is P
1, there are at least four singular fibers. It follows from the positivity of

direct images of relative differentials over a universal family of Abelian variety in the dimension one
case. So the maximal number of supersingular elliptic curves is p − 1, when the base curve is P

1 and
the family degenerates at four points. The six examples of A. Beauville of semi-stable elliptic curves
over P

1 have integral model and their good reductions at k have exactly p − 1 supersingular fibers. It
is interesting to ask the converse. Namely, one asks if the good reduction of Beauville’s six examples
at a prime p can be characterized by the minimal number of singular fibers and maximal number of
supersingular fibers.

Proof. We consider the morphism Φ1 : F ∗
1 E0,1 → E0,1. By Proposition 3.2(iii), the supersingular locus

V 0( f ) is the support of the effective divisor of E0,1 ⊗ F ∗
1(E0,1)−1 defined by Φ1. As shown in the

proof of the Arakelov inequality (Theorem 2.1), one has inequality

deg E1,0 � 1

2
degΩ1

C (S).

So it follows that

∣∣V 0( f )
∣∣ � deg

(
E0,1 ⊗ F ∗

1

(
E0,1)−1)

= deg
(

E0,1) − deg
(

F ∗
C

(
E0,1))

= (p − 1)deg
(

E1,0)

� p − 1

2
(2b − 2 + s). �

In the above proof the effective divisor of E0,1 ⊗ F ∗
1(E0,1)−1 = (E1,0)p−1 is classically known as

the Hasse locus. When the family is a modular family of elliptic curves over k, it was known that
the Hasse locus is reduced. (See the article [13] for the multiplicity problem of the Hasse locus of
CY family.) So the first inequality in the above calculation is indeed an equality for Beauville’s six
examples. On the other hand, for these families the second inequality is also an equality because over
C it is known that the Arakelov inequality reaches equality for them.

In the next step we want to bound the cardinality of the non-ordinary locus, which we denote
by H( f ), when the family f has an ordinary fiber. One can regard this as the first generalization of
elliptic curve case. Since the p-rank zero locus is contained in the non-ordinary locus, we also obtain
an upper bound for |V 0( f )|.

Theorem 4.2. Let f : X → C be a semi-stable family of algebraic curves over k as above. If there is an ordinary
closed fiber in f , then we have the following upper bound for the number of non-ordinary fibers |H( f )|:

∣∣H( f )
∣∣ � 2(p − 1)g2(2b − 2 + s).

Proof. By taking the wedge g power of Φ1, we obtain a morphism of invertible sheaves over C :

det(Φ1) :
g∧

F ∗
1

(
E0,1) →

g∧
E0,1.
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It is nontrivial because the family f contains an ordinary fiber and the morphism Φ1 is therefore
generically isomorphism by Proposition 3.2(i). It must be then injective and we have a short exact
sequence of coherent sheaves over C :

0 →
g∧(

F ∗
1

(
E0,1)) detΦ1−−−→

g∧(
E0,1) → Q → 0

where Q is a torsion sheaf. By Proposition 3.2(i) again, one has |H( f )| � deg Q . On the other hand,
by the Arakelov inequality deg(E1,0) < 2g2(2b − 2 + s) (cf. Theorem 2.1) it follows that

∣∣H( f )
∣∣ � deg(Q )

= deg
(

E0,1) − deg
(

F ∗
1

(
E0,1))

= (p − 1)deg
(

E1,0)
< 2(p − 1)g2(2b − 2 + s). �

Now we complete our discussions of this problem by considering the most general case. That is,
we are going to provide an upper bound for |V 0( f )| when the family f does not necessarily contain
an ordinary fiber.

Theorem 4.3. Let f : X → C be a semi-stable family of algebraic curves of genus g � 2 over k whose Kodaira–
Spencer map is nonzero. The notations is as above. If the generic fiber of f is not of p-rank zero, then the
number of p-rank zero closed fibers |V 0( f )| in f is strictly bounded from above by the numerical function

P (p, g,b, s) = 2pg g3(2b − 2 + s).

Proof. The proof is in the same line as above. Instead of considering Φ1 we need to study Φg in the
current case. Since by assumption the p-rank of the generic fiber of f is not zero, the morphism Φg

is nontrivial by Proposition 3.2(ii). Thus one obtains the factorization of Φg

(
F ∗

g

)
E0,1 → F φ→ E → E0,1

such that φ is an isomorphism at the generic point.
By taking the wedge product of φ one has the following short exact sequence of coherent sheaves

over C :

0 → det F detφ−−−→ det E → Q → 0

where Q is a torsion sheaf. Now one can estimate |V 0( f )| as in the last theorem:

∣∣V 0( f )
∣∣ � deg Q

= deg E − deg F

= deg E − deg
(

F ∗
g E0,1) + deg(ker Φ)

= pg deg
(

E1,0) + deg E + deg(kerΦ)

< 2pg g2 degΩ1
C (S) + 2g(g − 1)degΩ1

C (S) + 2pg g(g − 1)2 degΩ1
C (S)

+ 2(g − 1)2(b − 1)
pg − 1
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=
[

pg+1 − 1

p − 1
(g − 1)2 + 2pg g

(
g2 − g + 1

) + 2g(g − 1)

]
degΩ1

C (S) − s(g − 1)2 pg − 1

p − 1

�
[

pg+1 − 1

p − 1
(g − 1)2 + 2pg g

(
g2 − g + 1

) + 2g(g − 1)

]
(2b − 2 + s)

< 2pg g3(2b − 2 + s).

In the first strict inequality above we use the Arakelov inequality for E1,0 together with Theo-
rem 3.5(ii), (iii). The second strict inequality is elementary which makes the expression simpler. The
whole proof is completed. �
5. Arakelov inequality and upper bound of p-rank zero locus for smooth families of Abelian
varieties in characteristic p

In this section we discuss some extensions of previous results for families of algebraic curves to
smooth families of Abelian varieties. So we let f : X → C be a smooth family of Abelian varieties of
dimension g � 2 over k. Our basic assumption about f is as follows:

Assumption 5.1. We assume that f is W2-liftable. Namely, there is a smooth family f̃ : X̃ → C̃ over
W2(k) such that the reduction of f̃ at k is f . We assume furthermore that the Kodaira–Spencer map
of f is nonzero.

We recall first several recent remarkable results due to Ogus and Vologodsky [14].

Theorem 5.2. (See Ogus and Vologodsky [14, Theorem 4.14(3), Proposition 4.19] for smooth family of Abelian
varieties.) Let f : X → C be a smooth family of Abelian varieties over k which is W2-liftable. Then the first
relative de Rham cohomology R1 f DR∗ (O X ) of f is a Fontaine module over C . The Higgs bundle

(E, θ) = (
E1,0 ⊕ E0,1, θ1,0 ⊕ θ0,1),

over C , which is the grading of R1 f DR∗ (O X ) with respect to the Hodge filtration, is Higgs semi-stable of slope
zero when p � 4g2 − 6g + 4.

Theorem 5.3. Let f : X → C be a smooth family of Abelian varieties which satisfies Assumption 5.1. Assume
furthermore that p � 4g2 − 6g + 4. Then for any coherent subsheaf F of E1,0 one has inequality of the slope
of F :

μ(F ) � b − 1,

where b is genus of C . Furthermore, for E a coherent subsheaf F ∗
n E0,1 , n � 0, one has inequality

μ(E ) � 2(g − 1)(b − 1)
pn − 1

p − 1
.

Corollary 5.4. Let f : X → C be a family as in the above theorem. Then the genus of the base curve C is greater
than two.

Proof. From the proof of Theorem 5.3 (see below), we have the inequality μ(E1,0) � b − 1 as by the
assumption θ(E1,0) �= 0. On the other hand, it is known that det E1,0 is ample (see Theorem 2.3 in [5])
and hence deg(E1,0) > 0. It follows that b � 2. �
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Corollary 5.5. Let f : X → C be a smooth family of Abelian varieties of dimension g � 2 over k. Assume
that p � 4g2 − 6g + 4. If f has nontrivial Kodaira–Spencer map and C is P

1 or an elliptic curve, then f is
non-W2-liftable.

From this corollary one obtains the non-W2-liftability of the Moret-Bailly’s family of supersingular
Abelian surfaces over P

1 for p � 11.

Proof of Theorem 5.3. The idea of the proof is similar to that in the characteristic zero situation (cf.
[23, Proposition 1.2]). So let G ⊗Ω1

C be the image of F under θ1,0. Then F ⊕ G forms a Higgs subsheaf
of (E, θ). By the Higgs semi-stability in Theorem 5.2, it follows that deg F + deg G � deg E = 0. If
G = 0, then one has deg F � 0. We assume G �= 0 in the following. Hence

deg F � deg G + rank G · degΩC

� deg G + rank F · degΩC

� −deg F + rank F · degΩC .

It follows that μ(F ) � 1
2 deg ΩC = b − 1. So one has

μ(F ) � max{0,b − 1}.

Because it is shown above that b � 2, one has μ(F ) � b − 1.
Now let E be a coherent subsheaf of E0,1. One notes that the second component of the Higgs field

θ0,1 is simply zero map. Then (E ,0) forms a Higgs subsheaf of (E, θ) and by the Higgs semi-stability
Theorem 5.2 μ(E ) � 0. So the second inequality is proved for n = 0 case. For general n case one
applies the result for n = 0 case and the inequality in Proposition 3.8. �

The following statement is analogous to that in Theorem 4.3.

Theorem 5.6. Let f : X → C be a smooth family of Abelian varieties of dimension g � 2 over k with Assump-
tion 5.1. Assume furthermore that p � 4g2 − 6g + 4. If the generic fiber of f is not of p-rank zero, then the
number of p-rank zero closed fibers |V 0( f )| in f is bounded from above by the numerical function

Q (p, g,b) =
[

pg g + 2(g − 1)2 pg − 1

p − 1

]
(b − 1).

Proof. The proof is the same as that in Theorem 4.3, except that we replace the estimates of degrees
by those proved in this section. The result can be easily checked. �

Let f : X → C be a family of algebraic curves of genus � 2 over k with nontrivial Kodaira–Spencer
map with the W2-liftability assumption as that in Assumption 5.1. Then the above theorem provides
a better upper bound Q (p, g,b) than P (p, g,b,0).
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