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DEURING’S MASS FORMULA OF A MUMFORD FAMILY

MAO SHENG AND KANG ZUO

Abstract. We study the Newton polygon jumping locus of a Mumford family
in char p. Our main result says that, under a mild assumption on p, the

jumping locus consists of only supersingular points and its cardinality is equal
to (pr − 1)(g− 1), where r is the degree of the defining field of the base curve
of a Mumford family in char p and g is the genus of the curve. The underlying
technique is the p-adic Hodge theory.

1. Introduction

Let k be a finite field of char p and k̄ an algebraic closure of k. A basic result
of M. Deuring [8] says that elliptic curves over k̄ can be divided into two classes:
ordinary and supersingular, and there are finitely many supersingular elliptic curves
up to isomorphisms. The mass formula is a formula on the number of isomorphism
classes of supersingular elliptic curves. For an odd prime p, it can be deduced from
the fact that there are exactly p−1

2 supersingular elliptic curves in the Legendre
family

y2 = x(x− 1)(x− t), t �= 0, 1.

The purpose of this paper is to give analogous results for a Mumford family. In [19],
D. Mumford gave the first example of families of Hodge type, which is characterized
by the Hodge group (called also the special Mumford-Tate group in the literature)
but not by the endomorphism algebra. We briefly recall the construction as follows.
Let F be a totally real cubic field with three real places τ1, τ2, τ3, andD a quaternion
division algebra over F such that D splits at one real place of F and its corestriction
to Q splits, i.e.,

CorF |QD := (D(1) ⊗D(2) ⊗D(3))Gal(Q̄|Q) ∼= M8(Q),

where D(i) := D ⊗F,τi Q̄. It gives rise to families of abelian four-folds over smooth
projective arithmetic quotients of the upper half plane, whose general fiber has
only Z as its endomorphism ring. For some purposes, his construction has been
generalized (and also characterized) in the work of Viehweg and the second named
author (see [29], particularly Theorem 0.5).

Now let F be a totally real field of degree d ≥ 3, whose ring of algebraic integers is
denoted by O, andD a quaternion division algebra over F , which is split only at one
real place of F . The corestriction CorF |QD is a central simple Q-algebra. Following
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the construction of Mumford [19], one is able to associate CorF |QD with a Shimura
curve of Hodge type (see §2 for details). The universal family of abelian varieties
over such a Shimura curve with a suitable level structure is called a Mumford family
in this paper. In order to do reduction modulo p, we also need a natural integral
model of a Mumford family. For that, we make the following

Assumption 1.1. Assume p ≥ 3 and does not divide the discriminants of F and
D.

After the work of M. Kisin [15], one is able to define the integral canonical model
of the Shimura curve over any prime p of F over p together with a universal abelian
scheme over the integral model, which is defined over O(p). Fix such a universal
abelian scheme and denote its completion at p by f : X → M , whose modulo p

reduction is denoted by f0 : X0 → M0. By the theorem of Grothendieck-Katz, the
Newton polygon jumping locus S ⊂ M0(k̄) consists of finitely many points. Our
main result is stated as follows:

Theorem 1.2 (Theorem 3.17, Corollary 5.17). The Newton jumping locus S con-
sists only of supersingular points. Assume additionally that p ≥ 5. Then one has a
mass formula for the cardinality of S:

|S| = (pr − 1)(g − 1),

where r = [Fp : Qp] and g is the genus of M0.

As M0 may not be geometrically connected, the genus is defined to be one plus
the half of the summation of the degree of the canonical class of each component
in M0 ⊗ k̄.

Remark 1.3. The generic Newton polygon inM0(k̄) is also determined (see Theorem
3.17). For the original example of Mumford, i.e., d = 3 and CorF |Q(D) split,
R. Noot [20]-[21] (see particularly Proposition 3.6 [20] and Proposition 2.2 [21])
classified the possible Newton polygons for the mod p reduction of an abelian variety
defined over a number field and appearing as a closed fiber of a Mumford family.
Compared with his method, the new point here is a natural decomposition of the
p-adic Galois representation into a tensor product of two dimensional potentially
crystalline Qpr -representations after tensorizing with Qpr , r ≤ 3, and this is true
for a general Mumford family. In our approach, the classification result becomes
a simple consequence of the admissibility of a filtered φ-module associated with a
crystalline representation.

The above result settles Conjecture 1.3 in [26] for Mumford families. In our
previous work [26], we have studied a certain Shimura curve of PEL type: Deligne-
Shimura’s modèle étrange [6]. However, the old technique does not suffice for the
current situation (see §1-§5 [26]). One main reason is that a Mumford family is
characterized by extra Hodge cycles in the generic fiber which are not yet known
to be algebraic in general. It makes impossible a direct proof of an expected direct-
tensor decomposition of the universal filtered Dieudonné module into rank two
filtered crystals over the global base with predicted relative Frobenius actions on
factors. Instead, we have to work with both the category of étale local systems and
the category of families of filtered Frobenius crystals and use various comparison
results in the p-adic Hodge theory. What we have achieved is the following result.
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Theorem 1.4 (Theorem 4.12). Let x0 be a closed point of M and M̂x0
the com-

pletion of M at x0. Then one has a direct-tensor decomposition in the category
MF∇

[0,1](M̂x0
) of the restriction to M̂x0

of the universal filtered Dieudonné module
attached to f :

(H1
dR, Fhod,∇GM , φ)|M̂x0

∼= {[
r−1⊗
i=0

(Ni, F il1Ni
,∇Ni

), φten]⊗ (MA2
, F il1A2

, d, φA2
)}⊕2ε(D)

,

where {(Ni, F il1Ni
,∇Ni

)}0≤i≤r−1 are eigen-components of the universal filtered
Dieudonné module of a versal deformation of a Drinfel’d Op-divisible module, φten

is the tensor product of the φi’s on eigen-components, and (MA2
, F il1A2

, d, φA2
) is

a constant unit crystal.

Here ε(D) is equal to 0 or 1 which depends on D only (see §2). The above result
shows an intimate relation between the associated p-divisible groups to a Mumford
family and Drinfel’d Op-divisible modules, which we intend to understand in more
depth in the future.

The paper is structured as follows. In §2 we review briefly the construction of a
Shimura curve of Hodge type arising from the corestriction of a quaternion division
algebra and deduce an integral model of a Mumford family from the work of Kisin
[15]. In §3 we first show a natural direct-tensor decomposition of the étale Zpd -
local system attached to a Mumford family into rank two factors, and then show
that over each closed point each factor is potentially crystalline, from which the
classification of the Newton polygons inM0(k̄) follows. Section 4 is a bridge between
the classification and the mass formula, in which we study the universal abelian
scheme over the formal neighborhood a k-rational point of the base curve by using
the deformation theory of a p-divisible group with Tate cycles due to G. Faltings, §7
[11] (see also §4 [18] and §1.5 [15]), and prove the direct-tensor decomposition result,
Theorem 1.4. In the final section we prove the mass formula for the supersingular
locus in M0(k̄). For a technical reason, we consider instead a second tensor power
of the universal filtered Dieudonné crystal and construct from a direct factor in the
corresponding decomposition a nonzero morphism F̃rel : F ∗r

M0
P0 → P0 in char p

whose reduced zero divisor coincides with the supersingular locus, where P0 is a
line bundle of negative degree over M0. With the aid of Theorem 1.4, we apply the
theory of display to compute that the multiplicity of the zero divisor is everywhere
two and hence obtain the mass formula.

2. Corestriction of a quaternion division algebra

and an integral model of a Mumford family

Let F be a totally real field of degree d ≥ 3 and D a quaternion division algebra
over F , which is split only at one real place of F . We denote the set of real
embeddings of F by Ψ := {τ = τ1, ..., τd}, and assume that D is split over τ . Let
Q̄ be the algebraic closure of Q in C and GalQ the absolute Galois group of Q.
Recall (see §4 [19]) that the corestriction CorF |QD is defined as the subalgebra of

GalQ-invariant elements of
⊗d

i=1 D ⊗F,τi Q̄. For it one has the following result.
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Lemma 2.1 (Lemma 5.7 (a) [29]). Let F and D be as above. It holds that either

(i) CorF |Q(D) ∼= M2d(Q) and d is an odd number ≥ 3 or
(ii) CorF |Q(D) � M2d(Q). Then

CorF |Q(D)⊗Q Q(
√
b) ∼= M2d(Q(

√
b)),

where Q(
√
b) is a quadratic field extension of Q.

Both cases can be written uniformly into CorF |Q(D) ⊗Q Q(
√
b) ∼= M2d(Q(

√
b))

for a square free rational number b ∈ Q, and such an isomorphism will be fixed in
the following. We define a number ε(D) to be 0 in case (i) and 1 in case (ii). So we
can fix an embedding CorF |Q(D) ↪→ M2d+ε(D)(Q) of Q-algebras. Note that the case
d = 3 and ε(D) = 0 is the original example considered by Mumford [19]. Recall
also that one comes along with a natural morphism of Q-groups:

Nm : D∗ → CorF |Q(D)∗, d �→ (d⊗ 1)⊗ · · · ⊗ (d⊗ 1).

So one obtains a linear representation Nm : D∗ → GL2d+ε(D),Q of the Q-group
D∗. It gives rise to a Shimura curve of Hodge type, which is not PEL type (see

Construction 5.8, pages 269-273 [29] and §1.1 [21]). Put G̃′
Q := {x ∈ D| Norm(x) =

1} and G̃Q := Gm,Q × G̃′
Q, and write GLQ for GL2d+ε(D),Q. The Q-group GQ is

defined to be the image of the morphism G̃Q → GLQ, which is the product of the
natural morphism Gm,Q → GLQ and Nm|G̃′

Q
. It is connected and reductive. The

natural morphism N : G̃Q → GQ is a central isogeny. Let G′
Q be the image of G̃′

Q

in GQ. The natural embedding GQ ↪→ GLQ factors through GSpQ ⊂ GLQ, which

can be seen as follows: let HQ := Q(
√
b)2

d

be a Q-vector space with the CorF |Q(D)
action by the left multiplication and Gm,Q action by scalar multiplication. This

induces a GQ-action on HQ. It is easy to verify that there exists a Q(
√
b)-valued

symplectic form ω on HQ, unique up to scalar, which is invariant under the G′
Q-

action. Then GQ = Gm,Q · G̃′
Q ⊂ GLQ acts on the Q-valued symplectic form

ψ := tr
Q(

√
b)|Qω by similitude. Let S1 be the real group {z ∈ C| zz̄ = 1}. One

defines

u0 : S1 → G̃′
R(R) ∼= SL2(R)× SU(2)×d−1, eiθ �→

(
cos θ sin θ
− sin θ cos θ

)
× id×d−1.

The morphism h̃0 = id×u0 : R∗×S1 → G̃R descends to a morphism of real groups:

h0 : S = ResC|RGm → GR.

Let X be the G(R)-conjugacy class of h0 and (GSp(HQ, ψ), X(ψ)) the Siegel space
defined by (HQ, ψ). One verifies that (GQ, X) ↪→ (GSp(HQ, ψ), X(ψ)) is a mor-
phism of Shimura datum and therefore defines a Shimura curve of Hodge type.
Now let K ⊂ G(Af ) be a compact open subgroup, and one defines the Shimura
curve as the double coset

ShK(G,X) := G(Q)\X ×G(Af )/K,

where

q(x, a)b = (qx, qab), q ∈ G(Q), x ∈ X, a ∈ G(Af ), b ∈ K.

By the theory of canonical model, MK := ShK(G,X) is naturally defined over the
reflex field of (G,X), that is, τ (F ) ⊂ C in this current case. It is not difficult to
show that MK is proper over F .
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Now let p be a rational prime satisfying Assumption 1.1 and let pO =
∏n

i=1 pi

be the prime decomposition of p in F . By choosing an embedding ι : Q̄ ↪→ Q̄p

(which is fixed once and for all), one gets an identification of Ψ with

HomQ(F, Q̄p) =
n∐

i=1

HomQp
(Fpi

, Q̄p).

Write Fi for Fpi
and put ri := [Fi : Qp]. We assume that τ ∈ HomQp

(F1, Q̄p). Set
p = p1 and r = r1. The condition on p implies that GQp

is quasi-split and split
over an unramified extension of Qp. Hence hyperspecial subgroups exist in G(Qp)

(see 1.10 [27]). Recall that we have a central isogeny G̃Q → GQ ⊂ GLQ over Q with

G̃Q = Gm,Q×G̃′
Q, where G̃

′
Q = ker (Norm :D∗ → F ∗). The assumption on p implies

thatD∗(Qp) ∼=
∏n

i=1 GL2(Fi). It is clear that Norm⊗QQp becomes a product of the

determinants under the isomorphism. So this implies that G̃′(Qp) ∼=
∏n

i=1 SL2(Fi),

and hence G̃(Qp) ∼= Q∗
p ×

∏n
i=1 SL2(Fi). Thus a hyperspecial subgroup of G(Qp) is

conjugate to the image of Z∗
p×

∏n
i=1 SL2(OFi

) ⊂ G̃(Qp) under the isogeny G̃(Qp) →
G(Qp). In what follows the p-component Kp ⊂ G(Qp) of the level structure
K(= KpK

p ⊂ G(Qp)G(Ap
f)) is always taken to be hyperspecial. The main re-

sult of Kisin [15] asserts then that, for our chosen prime p|p, the integral canonical
model MK of MK exists, which is a smooth O(p)-scheme for Kp sufficiently small.
The construction of MK (see §2.3 [15]) provides a universal abelian scheme over
MK as well, once the coprime to p-component Kp is chosen small enough: take a
suitable maximal order OD of the F -algebra D and consider

CorF |QOD := (

d⊗
i=1

OD ⊗OF ,τi Z̄)
GalQ ⊂ CorF |QD.

There exists a lattice HZ ⊂ HQ, which is stabilized by CorF |QOD ⊗Z O
Q(

√
b), such

that there is a closed embedding GZp
↪→ GL(HZp

) (where GZp
is the reductive

group scheme over Zp associated with Kp) whose generic fiber is the base change
to Qp of GQ ↪→ GLQ. Let K

′
p ⊂ GSp(Qp) be the stabilizer of HZp

. One can choose

a K ′p ⊂ GSp(Ap
f ) such that for K ′ = K ′

pK
′p one has an embedding of Shimura

varieties MK ↪→ ShK′(GSp(ψ), X(ψ)) and ShK′(GSp(ψ), X(ψ)) has an integral
model SK′ := SK′(GSp(ψ), X(ψ)) over Z(p) (which is not necessarily smooth) rep-
resenting a moduli functor over Z(p) (see §2.3.3 [15]). As Kp is required to be small
enough, one may further assume that K ′p is taken so small that there exists an
abelian scheme AK′ → SK′ over SK′ . Recall (see Theorem 2.3.8 [15]) that MK is
defined as the normalization of the closure of the composite

MK ↪→ ShK′(GSp(ψ), X(ψ)) ↪→ SK′ ×Z(p)
O(p).

Now we define our abelian scheme fK : XK → MK to be the morphism sitting in
the Cartesian diagram:

XK

fK

��

�� AK′ ×Z(p)
O(p)

��

MK
�� SK′ ×Z(p)

O(p).

For the sake of convenience, we shall change our foregoing notation as follows: let
M (resp. f : X → M) be the completion of the integral canonical model MK
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(resp. fK : XK → MK) at p. The schemes X and M are defined over the discrete
valuation ring Op, the completion of O(p) at the maximal ideal, and f is an Op-
morphism. The superscript (resp. subscript) zero on an object means the base
change of the object to the generic (resp. closed) fiber of Op.

To the universal abelian scheme f : X → M we attach the étale Zp-local
system H := R1f0

∗ (Zp)X̄0
et

over M0 and the universal filtered Dieudonné module

(H,F,∇, φ) := (H1
dR, Fhod,∇GM , φ), which is an object in the categoryMF∇

[0,1](M)

introduced by Faltings (see Ch. II [10] and §3 [11]). To distinguish the notation,

the p-torsion analogue of the previous category will be denoted by MF∇
[0,a](M)tor.

In [10] Faltings constructed a fully faithful functor D from MF∇
[0,p−2](M) (resp.

MF∇
[0,p−2](M)tor) to the category of étale Zp (resp. p-torsion) local systems over

M0. By the Remark after Theorem 2.6* in [10], one has D(OX/pn, d) = Z/pn for
each n ∈ N. Applying Theorem 6.2 and the Remark after the theorem [10] on the
compatibility of the direct image with the functor D, one gets D(H/pn, F,∇, φ) =
H∨/pn. By taking the inverse limit, one obtains then D(H,F,∇, φ) = H∨. One
notices that the information on the Newton jumping locus of f0 : X0 → M0 is
encoded in the attached universal filtered Dieudonné module, while the defining
information of a Mumford family is basically contained in the étale local system
over M0.

3. Two dimensional potentially crystalline Qpr -representations

and classification of the Newton polygons

For a k-rational point x0 of M0, the closed fiber of f0 at x0 is denoted by Ax0
.

The Newton polygon of Ax0
is defined to be the Newton polygon of its associated

p-divisible group. The aim of this section is to determine the possible Newton
polygons of Ax0

when x0 varies in M0(k̄).

3.1. Tensor decomposition of the Galois representation. Let x0 be as above.
Because M is smooth over Op, there exists an OW (k)-valued point x of M which
lifts x0. Let Ax be the corresponding abelian scheme over OW (k) whose reduction
is equal to Ax0

. The aim of this subsection is to show a certain direct-tensor
decomposition of the p-adic Galois representation associated with the generic fiber
Ax0 of Ax.

Lemma 3.1. One has a natural isomorphism of Qp-algebras:

CorF |Q(D)⊗Q Qp
∼=

n⊗
i=1

CorFi|Qp
(D ⊗F Fi).

Proof. Put Di = D ⊗F,τi Q̄, 1 ≤ i ≤ d. For an element a⊗ λ ∈ Di and g ∈ GalQ,

g(a⊗τi λ) = a⊗g(τi) g(λ).

By the definition of the corestriction, one has a natural isomorphism of GalQ-
modules:

CorF |Q(D)⊗Q Q̄ ∼=
d⊗

i=1

Di.

Let Dι be the decomposition group of ι in GalQ, which is isomorphic to the local
Galois group GalQp

. Now we consider the Dι-invariants of two sides of the above
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isomorphism after tensorizing with Q̄p via ι. Obviously one obtains CorF |Q(D)⊗Q

Qp from the left side. Let

O1 := {τ1 = τ, · · · , τr1 = τr}, · · · , On = {τr1+···+rd−1+1, · · · , τr1+···+rd−1+rd = τn}

be the n-orbits of Dι-action on Ψ. Note that there is a natural isomorphism

(
⊗
τj∈Oi

Dj ⊗Q̄,ι Q̄p)
Dι ∼= CorFi|Qp

(D ⊗F Fi).

As the tensor product
⊗n

i=1(
⊗

τj∈Oi
Dj ⊗Q̄,ι Q̄p)

Dι over Qp is clearly a subspace

of the Dι-invariants on the right side, it must be the whole invariant space for the
dimension reason. So the lemma follows. �

Consider the base change to Qp of the Q-morphism Nm : D∗ → CorF |Q(D)∗.
The following statement is clear from the proof of the last lemma.

Lemma 3.2. The morphism NmQp
: D∗(Qp) → CorF |Q(D)∗(Qp) factors through

the natural morphism

n∏
i=1

CorFi|Qp
(D ⊗F Fi)

∗ → CorF |Q(D)∗(Qp).

Moreover, under the natural decomposition D∗(Qp) =
∏n

i=1(D ⊗F Fi)
∗, NmQp

is

written as a product
∏n

i=1 Nmi where for each i the morphism

Nmi : (D ⊗F Fi)
∗ → CorFi|Qp

(D ⊗F Fi)
∗

is the natural diagonal morphism for the corestriction.

As a consequence, the representation of D∗(Qp) on HQp
admits a natural tensor

decomposition: by Schur’s lemma the representation decomposes as a tensor prod-
uct. In the current situation, this can be seen in a direct way: by Assumption 1.1,
D ⊗F Fi splits for each i, and so does CorFi|Qp

(D ⊗F Fi), which is isomorphic to
M2ri (Qp). In the case ε(D) = 0, the morphism

n∏
i=1

CorFi|Qp
(D ⊗F Fi)

∗ → CorF |Q(D)∗(Qp) = GL(HQp
)

is isomorphic to the tensor product morphism

n∏
i=1

GL2ri (Qp) −→ GL2d(Qp), (g1, · · · , gn) �→ g1 ⊗ · · · ⊗ gn.

In the case ε(D) = 1, CorF |Q(D) is nonsplit, and it splits after tensorizing with

Q(
√
b). Consider the composite

n∏
i=1

CorFi|Qp
(D ⊗F Fi)

∗ → CorF |Q(D)∗(Qp) ⊂ (CorF |Q(D)⊗Q Q(
√
b))∗(Qp)

= GL
Q(

√
b)(HQ)(Qp) ⊂ GL(HQ)(Qp).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

176 MAO SHENG AND KANG ZUO

The above inclusion CorF |Q(D)∗ ⊂ (CorF |Q(D)⊗Q Q(
√
b))∗ is given by a �→ a⊗ 1.

One has the following commutative diagram:

CorF |Q(D)∗(Qp)×Q(
√
b)∗(Qp)

∩
��

�� GL
Q(

√
b)(HQ)(Qp)

∩
��

CorF |Q(D)∗(Qp)×GL2(Qp) �� GL(HQ)(Qp).

The image of
∏n

i=1 CorFi|Qp
(D⊗F Fi)

∗ in the left-up element of the above diagram
is contained in CorF |Q(D)∗(Qp)× {1}. Thus the morphism

n∏
i=1

CorFi|Qp
(D ⊗F Fi)

∗ → GL(HQp
)

is isomorphic to the composite of the obvious morphisms

n∏
i=1

GL2ri (Qp) ↪→
n∏

i=1

GL2ri (Qp)×GL2(Qp)
⊗−→ GL2d+1(Qp).

For s ∈ N, one denotes by σ ∈ Gal(Qps |Qp) the Frobenius automorphism. For
a topological group P with a continuous Zps linear representation W , the σi-
conjugate Wσi of W for 0 ≤ i ≤ s − 1 is defined to be the tensor product
W ⊗Zps ,σi Zps , where P acts on Zps trivially. Similarly define the σ·-conjugations
of a Qps -representation. The symbol ⊗σi signifies the equalities of two tensors:

λ(x⊗ μ) = x⊗ λμ, λx⊗ μ = x⊗ λσi

μ, for λ, μ ∈ Zps , x ∈ W.

Consider the morphism

Nm1 : (D ⊗F F1)
∗ −→ CorF1|Qp

(D ⊗F F1)
∗, a �→ (a⊗F1,τ1 1)⊗ · · · ⊗ (a⊗F1,τr 1).

Note that for 1 ≤ i ≤ r, τi(F1) = Qpr , the unique unramified extension of Qp of
degree r in Q̄p. Then one has a natural isomorphism

CorF1|Qp
(D ⊗F F1)⊗Qp

F1
∼=

r−1⊗
i=0

(D ⊗F F1 ⊗F1,σi F1).

This implies that the natural morphism (D ⊗F F1)
∗ −→ CorF1|Qp

(D ⊗F F1)
∗(F1)

is isomorphic to the composite of

GL2(Qpr) ↪→
r−1∏
i=0

GL2(Qpr), g �→ (g, · · · , σi(g), · · · , σr−1(g))

with the tensor product morphism
∏r−1

i=0 GL2(Qpr ) −→ GL2r (Qpr). Summarizing
the above discussions, we derive the following:

Lemma 3.3. The representation of D∗(Qp) on HQp
admits a natural tensor de-

composition

HQp
= (VQp

⊗ U1,Qp
⊗ · · · ⊗ Un−1,Qp

)⊕2ε(D)

.

Moreover, the representation VQp
⊗Qp

Qpr decomposes further into a tensor product
V1⊗Qpr

V1,σ ⊗Qpr
· · ·⊗Qpr

V1,σr−1 with dimQpr
V1 = 2. For 1 ≤ i ≤ n−1, Ui,Qp

⊗Qp

Qpri+1 decomposes into a tensor product in a similar manner.
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Lemma 3.4. Let P be a topological group together with a continuous linear repre-
sentation on a finite dimensional Qps-vector space W . Assume the following two
conditions hold:

(i) The representation factors as

P → GL(W1)× SL(W2)
⊗−→ GL(W ),

where Wi, i = 1, 2, are two Qps-vector spaces.
(ii) There is a Zps-lattice WZps

in W which is stable under the P -action and
admits a lattice tensor decomposition

WZps
= W1,Zps

⊗Zps
W2,Zps

,

where Wi,Zps
is a Zps-lattice of Wi for i = 1, 2.

Then in the factorization of (i), the lattice Wi,Zps
for i = 1, 2 is stable under the

P -action on Wi.

Proof. Consider the following commutative diagram:

GL(W1,Zps
)× SL(W2,Zps

)
⊗

��

∩
��

GL(WZps
)

∩
��

P ���� GL(W1)× SL(W2)
⊗

�� GL(W ).

It suffices to show that the representation P → GL(WZps
) ⊂ GL(W ) factors

through

GL(W1,Zps
)× SL(W2,Zps

) → GL(WZps
).

Note that GL(WZps
) is a compact subgroup of GL(W ). As the morphism ⊗ has a

finite kernel,

T := ⊗−1(GL(WZps
) ∩ ⊗(GL(W1)× SL(W2)))

is a compact subgroup of GL(W1) × SL(W2). Since T contains GL(W1,Zps
) ×

SL(W2,Zps
), which is maximal compact, it holds that T = GL(W1,Zps

)×SL(W2,Zps
).

Since the image of P in GL(W1) × SL(W2) is contained in T by assumption, the
morphism P → GL(WZps

) factors through GL(W1,Zps
)×SL(W2,Zps

) → GL(WZps
).

This proves the lemma. �

Proposition 3.5. The Kp-representation HZp
admits a natural direct-tensor de-

composition

HZp
= (V ⊗ U)⊕2ε(D)

,

where U decomposes into U = U1⊗· · ·⊗Un−1. The tensor factor V after tensorizing
with Zpr decomposes further into

V ⊗Zp
Zpr = V1 ⊗Zpr

V1,σ ⊗Zpr
· · · ⊗Zpr

V1,σr−1 .

Similarly for other tensor factors Ui, 1 ≤ i ≤ n− 1, after tensorizing with Zpri+1 .

Proof. Recall that Kp is conjugate to the image of

K̃p := (Z∗
p × SL2(OFp

))×
n∏

i=2

SL2(OFi
) ⊂ G̃(Qp)

under the map NQp
: G̃(Qp) → G(Qp). The direct-tensor decomposition of HQp

as
D∗(Qp)-representation in Lemma 3.3 induces a direct-tensor decomposition of HQp
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as K̃p-representation. Since the K̃p-action on HQp
factors through the Kp-action

on HQp
by definition, one obtains the direct-tensor decomposition of HQp

for the
Kp-action as well. By the definition of the lattice HZ, it is easy to see that HZp

decomposes into a direct-tensor product of Zp-lattices. Then it is also a direct-
tensor decomposition as Kp-representation by Lemma 3.4. The proofs of the tensor
decompositions for the factors V and U are analogous. �

By Proposition 2.2.4 [15], each geometrically connected component of M0 is
defined over an unramified extension of Fp. Since there is a finite number of them,
we can fix a finite extension L of Fp inside the maximal unramified extension Qur

p

such that each component defines and admits an L-rational point.

Corollary 3.6. One has a direct-tensor decomposition of étale local systems over
M0 ×Fp

L:

H = (V⊗ U)⊕2ε(D)

,U = U1 ⊗ · · · ⊗ Un−1

and
V⊗Zp

Zpr ∼= V1 ⊗Zpr
V1,σ ⊗Zpr

· · · ⊗Zpr
V1,σr−1 ,

where for 0 ≤ i ≤ r − 1, V1,σi is the σi-conjugate of V1. Similarly for Ui, 1 ≤ i ≤
n− 1, one has

Ui ⊗Zp
Zpri+1

∼= Ui,1 ⊗Z
p
ri+1

Ui,σ ⊗Z
p
ri+1

· · · ⊗Z
p
ri+1

U1,σri+1−1 .

Proof. Let M0 ×Fp
L =

⊔
i M

0
i be the disjoint union of its geometrically connected

components, and let M0
1 be the component which is represented by the double

coset [1] ∈ G(Q)+\G(Af )/K. It suffices to show the tensor decomposition of the
restriction H toM0

1 . Consider the short exact sequence of étale fundamental groups:

1 → πgeo
1 (M0

1 ) → πarith
1 (M0

1 ) → Gal(Q̄p|L) → 1.

An L-rational point of M0 induces a splitting of the exact sequence, and one writes

πarith
1 (M0

1 ) = πgeo
1 (M0

1 ) ·Gal(Q̄p|L).
To show the tensor decomposition of H|M0

1
, it suffices to show the factorization of

πgeo
1 (M0

1 ) → Kp and Gal(Q̄p|L) → Kp. The latter follows from the proof of Lemma

2.2.1 [15]. The former goes as follows: it is known that πtop
1 (M0

1 (C)) is equal to
K ∩G(Q)+, and the representation πgeo

1 (M0
1 ) → GL(HZp

) is the composite of

πgeo
1 (M0

1 )
∼= π̂top

1 (M0
1 )

̂→ GL(H
Ẑ
) � GL(HZp

).

Obviously the representation πtop
1 (M0

1 ) = K ∩ G(Q)+ → GL(HZ) factors through
K ⊂ GL(HZ). Hence the result follows from Proposition 3.5. �

Specializing the above tensor decompositions of étale local systems into a closed
point, one obtains the following.

Corollary 3.7. Let E be a finite extension of L and x0 an E-rational point of
M0. Let HZp

= H1
et(Āx0 ,Zp) and ρ : GalE → GL(HZp

) be the associated Galois
representation. Then one has a direct-tensor decomposition of GalE-modules,

HZp
= (VZp

⊗ UZp
)⊕2ε(D)

,

and a further tensor decomposition of VZp
after tensorizing with Zpr ,

VZp
⊗Zp

Zpr = V1 ⊗Zpr
V1,σ ⊗Zpr

· · · ⊗Zpr
V1,σr−1 .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MASS FORMULA 179

3.2. Each tensor factor is potentially crystalline. It is standard that HQp

is a polarizable crystalline representation of Hodge-Tate weights {0, 1}. In the
following we will show that each factor appearing in the direct-tensor decomposition
of Corollary 3.7 is potentially crystalline.

Proposition 3.8. UQp
is a potentially unramified representation. As a conse-

quence, both VQp
and UQp

are potentially crystalline.

Proof. Let IE ⊂ GalE be the inertia group. We claim that the image of IE in
GL(UQp

) is finite. Assuming the claim, one sees that UQp
is potentially unramified

and hence potentially crystalline. Clearly VQp
⊗ UQp

, as a direct factor of HQp
, is

crystalline. Therefore VQp
, that is, a subrepresentation of VQp

⊗ UQp
⊗ U∨

Qp
, is also

potentially crystalline. To show the claim, we introduce the Hodge-Tate cocharacter
μHT : Gm(Cp) → G(Cp) ⊂ GL(HCp

) induced by the Hodge-Tate decomposition of
HQp

and the Hodge-de Rham cocharacter μHdR : Gm(C) → G(C) ⊂ GL(HC)

induced by the Hodge decomposition of H1
B(A(C),Q). Let CHdR (resp. CHT )

be the G(C) (resp. G(Cp))-conjugacy class of μHdR (resp. μHT ). Then CHdR is
defined over the reflex field τ (F ) ⊂ C of (G,X). It follows from a result of Blasius
and Wintenberger (see Theorem 0.3 [2] and Proposition 7 [30]; see also Theorem
4.2 [24]) that

CHT = CHdR ⊗F,τ Cp,

where τ : F → Cp is the composite F
τ→ Q̄ ↪→ Q̄p ⊂ ˆ̄Qp = Cp. Since G̃ → G is a

central isogeny, there is a natural number a such that the a-th power μHdR
a (resp.

μHT
a) lifts to a cocharacter into G̃(C) (resp. G̃(Cp)). Consider the projection of

μHdR
a to an SL2-factor in the decomposition G̃(C) = C∗ × SL2(C)× · · · × SL2(C),

where the order of SL2-factors is arranged according to Ψ. By the definition of
h̃0 in §2, one sees that only the projection to the first SL2-factor (corresponding
to τ ) is nontrivial. By the above identification, the same situation holds for the
projections of μHT

a to SL2-factors in the decomposition

G̃(Cp) = C∗
p × SL2(Cp)× · · · × SL2(Cp),

where the order of SL2-factors is arranged according to HomQ(F, Q̄p), which has
been identified with Ψ. By the construction of the U -factor, the projection of μHT

a

to the factor GL(UCp
) is trivial. So the projection of μHT to GL(UCp

) is finite. By
S. Sen’s theorem (see [25]), the Zariski closure of ρ(IE) ⊂ G(Qp) is equal to the
Qp-Zariski closure of μHT . So the image of IE in GL(UQp

) is finite. �

For a finite extension E of Qp let E0 ⊂ E be the maximal unramified subexten-
sion. Recall that

Definition 3.9. A Qpr -representation of GalE is a finite dimensional Qpr -vector
space V equipped with a continuous action GalE × V → V satisfying

g(v1 + v2) = g(v1) + g(v2), g(λv) = g(λ)g(v)

for g ∈ GalE , λ ∈ Qpr and v, v1, v2 ∈ V . It is called a Hodge-Tate (resp. de-Rham,
crystalline) Qpr -representation if it is the case considered as a Qp-representation.

The following result is known among experts. A variant of it was communicated
by L. Berger to the first named author during the p-adic Hodge theory workshop at
ICTP, 2009. The first official proof should appear in the PhD thesis of G. Di Matteo
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(see the recent preprint [17]). Another proof has been communicated to us by
L. Xiao (see [28]).

Theorem 3.10. Let V and W be two Qpr -representations of GalE . If V ⊗Qpr
W

is de Rham and one of the tensor factors is Hodge-Tate, then each tensor factor is
de Rham.

Applying Theorem 3.10 to the tensor factor VQp
in Proposition 3.8, one obtains

the following.

Proposition 3.11. Making an additional finite field extension E′ ⊂ E′′ if neces-
sary, one has a further decomposition of GalE′′-representations:

VQp
⊗Qpr ∼= V1 ⊗Qpr

· · · ⊗Qpr
V1,σr−1 ,

where GalE′′ acts on Qpr trivially and V1,σi is the σi-conjugate of V1. Then V1 is
potentially crystalline.

Each σ-conjugate V1,σi is isomorphic to V1 as a Qp-representation. Thus each
tensor factor in the above decomposition is potentially crystalline as well.

Proof. Assume r = 2 for simplicity. The above tensor decomposition implies the
tensor decomposition of Cp-representations:

VQp
⊗Qp

Cp
∼= (V1 ⊗Qp2

Cp)⊗Cp
(V1,σ ⊗Qp2

Cp).

Since VQp
is crystalline, it is Hodge-Tate. This implies that Sen’s operator ΘV

of VQp
is diagonalizable over Cp. Let ΘV1

be Sen’s operator of V1. It can be
written naturally as Θ1 ⊕ Θ1,σ, where Θ1 is associated with V1 ⊗Qp2

Cp and Θ1,σ

to V1,σ ⊗Qp2
Cp. Thus one has

ΘV = Θ1 ⊗ id+ id⊗Θ1,σ.

This implies that Θ1 and Θ1,σ are diagonalizable. Now consider the eigenvalues of
them. For that we use the relation between the Hodge-Tate cocharacter and the
eigenvalues of Sen’s operator: they are related by the maps log and exp. Continue
the argument about Hodge-Tate cocharacter in Proposition 3.8, so let {τ = τ1, τ2}
be the GalQp

-orbit of τ . We can assume that in the above decomposition the
V1-factor corresponds to τ . It follows that the projection of μHT to the V1,σ-
factor is trivial. This implies that the eigenvalues of Θ1,σ are zero. Particularly
they are integral. So are those of Θ1. Hence ΘV1

is diagonalizable with integral
eigenvalues. So V1 is Hodge-Tate, and by Theorem 3.10 it is de Rham. By the
p-adic monodromy theorem, conjectured by Fontaine and first proved by Berger
(see [1]), it is potentially log crystalline. One shows further that it is potentially
crystalline. Let NV (resp. NV1

) be the monodromy operator of V (resp. V1). Then
one has the formulas:

NV1
= N1 +N1,σ, NV = N1 ⊗ id+ id⊗N1,σ .

Since V is crystalline, NV = 0. This implies that N1 = N1,σ = 0. Hence NV1
= 0

and V1 is potentially crystalline. �
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3.3. Consequence on the possibilities of the Newton polygon. We show
that the admissibility of a filtered φ-module associated with a crystalline repre-
sentation yields a classification of the Newton polygons in M0(k̄). The following
functors were introduced by Fontaine in order to study a Qpr -representation:

Definition 3.12. Let V be a Qpr -representation. For each 0 ≤ m ≤ r − 1, one
defines

D(m)
crys,r(V ) := (V ⊗Qpr ,σm Bcrys)

GalE .

One defines similarly the functors {D(m)
dR,r(V )}0≤m≤r−1 by replacing Bcrys with

BdR. The following lemma is obvious:

Lemma 3.13. Let V be a Qpr -representation. Then there is a natural isomorphism
of GalE-representations

V ⊗Qp
Qpr ∼=

r−1⊕
m=1

V ⊗Qpr ,σm Qpr .

By the lemma there is a natural direct decomposition

V ⊗Qp
Bcrys

∼= V ⊗Qp
(Qpr ⊗Qpr

Bcrys)

∼= (V ⊗Qp
Qpr)⊗Qpr

Bcrys

∼=
r−1⊕
m=0

V ⊗Qpr ,σm Bcrys,

which implies in particular a direct decomposition of E0-vector spaces

Dcrys(V ) =
r−1⊕
m=0

D(m)
crys,r(V ).

It is clear that V is crystalline iff dimE0
D

(m)
crys,r(V ) = dimQpr

V for either m holds.
Let V be a crystalline Qpr -representation. OverDcrys(V ) there is a natural σ-linear
map φ, and over DdR(V ) = Dcrys(V ) ⊗E0

E there is a natural filtration Fil. We
want to study some properties of the restrictions of them to a direct factor.

Lemma 3.14. The map φ permutes the direct factors {D(m)
crys,r(V )} cyclically. Con-

sequently, one has the decomposition of φr-modules

(Dcrys(V ), φr) =
r−1⊕
m=0

(D(m)
crys,r(V ), φr|

D
(m)
crys,r(V )

).

Moreover, each φr-submodule (D
(m)
crys,r(V ), φr|

D
(m)
crys,r(V )

) has the same Newton

slopes.

Proof. For d = v⊗σm b ∈ D
(m)
crys,r(V ), it follows from the formula φ(d)=v⊗σm+1 mod r

φ(b) that φ(d) ∈ D
(m+1 mod r)
crys,r (V ). So φ permutes the direct factors in a cyclic way.

Thus φr is preserved under direct decomposition. The last statement can be seen
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as follows: take a basis e of D
(0)
crys,r(V ). Then as φ is a semilinear isomorphism,

em = φm(e) is a basis of D
(m)
crys,r(V ). Let A be the matrix satisfying

φ(er−1) = Ae0.

Then under the basis {e0, e1, · · · , er−1} of Dcrys(V ), the representation matrix of
φr reads:

φr

⎛
⎜⎜⎜⎝

e0
e1
...

er−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

A 0 · · · 0
0 Aσ · · · 0
...

...
. . .

...

0 0 · · · Aσr−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

e0
e1
...

er−1

⎞
⎟⎟⎟⎠ .

From here, one sees the equality of Newton slopes on each factor clearly. �

As a consequence, one can define on the tensor product
⊗r−1

m=0 D
(m)
crys,r(V ) a

φ-module structure: for a vector of form v0 ⊗ · · · ⊗ vr−1, define

φten(v0 ⊗ · · · ⊗ vr−1) := φ(vr−1)⊗ φ(v0)⊗ · · · ⊗ φ(vr−2).

It is easily seen that the σr-linear map φr
ten is the tensor product of φr|

D
(m)
crys,r(V )

’s.

Next we consider the induced filtration Filim := Fili ∩D
(m)
dR,r(V ) on each direct

factor D
(m)
dR,r(V ) from DdR(V ). As filtered modules it holds that

(DdR(V ), F il) =

r−1⊕
m=0

(D
(m)
dR,r(V ), F ilm).

The tensor product
⊗r−1

m=0 D
(m)
dR,r(V ) is equipped with the filtration Filten, which

is the tensor product of Film’s.

Proposition 3.15. Let V1 be a crystalline Qpr -representation and V a Qp-represen-
tation such that there is an isomorphism of Qpr -representations:

V ⊗Qp
Qpr ∼= V1 ⊗Qpr

V1,σ ⊗Qpr
· · · ⊗Qpr

V1,σr−1 .

Then there is an isomorphism of filtered φ-modules:

Dcrys(V ) ∼=
r−1⊗
m=0

D(m)
crys,r(V1),

where the filtered φ-module structure on
⊗r−1

m=0 D
(m)
crys,r(V1) is given by Filten and

φten.

Proof. The original proof is lengthy. The current argument was suggested by the
referee. It is simpler and clearer. One observes the following natural isomorphisms
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of filtered φ-modules:

Dcrys(V ) = [V ⊗Qp
Bcrys]

GalE

∼= [V ⊗Qp
(Qpr ⊗Qpr

Bcrys)]
GalE

∼= [(V ⊗Qp
Qpr )⊗Qpr

Bcrys]
GalE

∼= [(V1 ⊗Qpr
V1,σ ⊗Qpr

· · · ⊗Qpr
V1,σr−1)⊗Qpr

Bcrys]
GalE

∼= [

r−1⊗
m=0

(V1,σm ⊗Qpr
Bcrys)]

GalE

∼= [

r−1⊗
m=0

(V1 ⊗Qpr ,σm Bcrys)]
GalE

=

r−1⊗
m=0

D(m)
crys,r(V1).

An extra explanation is possibly necessary: note first that the φ action on Bcrys

preserves Qpr and acts on it by σ. So it permutes the terms in the first tensor
product in the fourth line of the above isomorphisms. This implies the resulting φ-
structure on the tensor product in the last line as given by φten. As V1 is crystalline,

the subspace
⊗r−1

m=0 D
(m)
crys,r(V1) in the GalE-invariant space has the same dimension

as Dcrys(V ). Therefore, the equality in the last line follows. �

In the previous proposition we consider the case where V is polarizable and of
Hodge-Tate weights {0, 1}. Here V being polarizable means that there is a perfect
GalE-pairing V ⊗V → Qp(−1). This condition implies that if λ is a Newton (resp.
Hodge) slope of V , then 1− λ is also a Newton (resp. Hodge) slope of V with the
same multiplicity.

Proposition 3.16. Let V be a polarizable crystalline representation with Hodge-
Tate weights {0, 1}. If there exists a two dimensional crystalline Qpr -representation
V1 such that

V ⊗Qp
Qpr ∼= V1 ⊗Qpr

V1,σ ⊗Qpr
· · · ⊗Qpr

V1,σr−1

holds, then it holds that

(i) the Hodge slopes of V1 are {2r − 1× 0, 1× 1},
(ii) the Newton slopes of V1 are either {2r × 1

2r} or {r × 0, r × 1
r }.

Consequently, there are only two possible Newton slopes for V : {2r × 1
2} or

{1× 0, · · · ,
(
r
i

)
× i

r , · · · , 1× 1}.

Proof. Since the Hodge slopes of V are {n × 0, n × 1}, by Proposition 3.15, there

exists a unique factor D
(i)
crys,r(V1) with two distinct Hodge slopes {0, 1} and the

other factors have all Hodge slopes zero. Without loss of generality one can assume

that D
(0)
crys,r(V1) has Hodge slopes {1× 0, 1× 1} (and any other factor has {2× 0}).

Summing up the Hodge slopes of all factors, one obtains the Hodge polygon of
Dcrys(V1) as claimed. By the admissibility of the filtered φ-module structure on
Dcrys(V1), one finds that its Newton slopes must be of form {m1×0,m2×λ} where
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m1 +m2 = 2r holds and λ ∈ Q satisfies λm2 = 1. By Lemma 3.14, one finds that
r|mi, i = 1, 2. So m1

r + m2

r = 2 and m2 �= 0. There are only two possible cases:

Case 1: m1 = 0. This implies that m2 = 2r and λ = 1
2r .

Case 2: m1 �= 0. This implies that m1 = m2 = r and λ = 1
r . �

Now we can prove the following.

Theorem 3.17. Notation as above. Then there are two possible Newton polygons
in M0(k̄). Precisely it is either {2d+ε(D) × 1

2} or

{2d−r+ε(D) × 0, · · · , 2d−r+ε(D) ·
(
r

i

)
× i

r
, · · · , 2d−r+ε(D) × 1}.

Proof. Let x0 ∈ M0(k̄), Ax0
and Ax as above. The question is to determine the

possible Newton polygons of the filtered φ-module Dcrys(H
1
et(Āx0 ,Qp)). For a suit-

able large finite extension E of Qp, we can assume the direct-tensor decomposition
of the GalE-module H1

et(Āx0 ,Qp) as given in Corollary 3.7. Now Propositions 3.8
and 3.11 imply that we can assume that each tensor factor in the tensor decompo-
sition is crystalline. An unramified factor contributes only to a multiplicity in the
Newton polygon. Hence the theorem follows directly from Proposition 3.16. �

Remark 3.18. In this remark we would like to discuss the existence of each Newton
polygon in the classification. To this end, it suffices to realize that the method
of Noot for the original example of Mumford (see §§3-5 [21]) can be generalized
directly: Noot studied the reductions of CM points of a Mumford family. The set
of CM points can be divided into two types: let F ⊂ J be a maximal subfield of
D. Then J can either be written in a form N ⊗Q F (N is necessarily an imaginary
quadratic extension of Q) or not in such a form. To our purpose one finds that
the second case generalizes, and the resulting generalization gives the necessary
existence result. More precisely, Proposition 5.2 [21] provides the maximal subfields
in D of the second type with the following freedom: Let p be a prime of F over p.
Then J can be chosen so that p is split or inert in J . Secondly, Lemma 3.5 and
Proposition 3.7 [21] work verbatim for a general D except that in the case ε(D) = 1
one adds the multiplicity two to the constructions appearing therein. This step
gives us an isogeny class of CM abelian varieties which appear as Q̄-points of MK ,
and also as Z̄p-points of M and hence in M0(k̄). Finally the proof of Proposition
4.4 [21], namely the method of computing the Newton polygon for a CM abelian
variety modulo p, works in general. Thus one can also conclude the existence result
for the general case.

4. A direct-tensor decomposition of the universal filtered

Dieudonné module over a formal neighborhood

Let x0 be a k-rational point of M and M̂x0
the completion of M at x0. The

aim of this section is to show a direct-tensor decomposition of the restriction of
(H,F,∇, φ) to the formal neighborhood of x0. Let E be a finite extension of L
and x0 an E-rational point of M which specializes into x0. Corollary 3.7 gives a
decomposition of HZp

into direct-tensor product of GalE-lattices. By Propositions
3.11 and 3.16, V1 ⊂ V1 ⊗ Qp is a GalE-lattice of a two dimensional potentially
crystalline Qpr -representation with Hodge-Tate weights {2r − 1 × 0, 1 × 1}. By
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making a possible finite extension of E, we can assume that V1 ⊗ Qp is already
crystalline as a GalE-module.

4.1. Drinfel’d’s Op-divisible module and versal deformation. Recall the fol-
lowing notion of Op-divisible modules due to Drinfel’d (see Appendix [5]):

Definition 4.1. Let S = SpecR be an Op-scheme. An Op-divisible module over S
is a pair (G, f) consisting of a p-divisible group G over S and an action of Op on
G:

f : Op → End(G)

satisfying

(a) f(1) is the identity,
(b) G0 (the connected part of G) is of dimension 1,
(c) the derivation of f , f ′ : Op → End(Lie(G)) = R coincides with the struc-

tural morphism Op → R.

By the fundamental theorem of C. Breuil (see Corollary 3.2.4, Theorem 3.2.5
[4]), the GalE-lattice V1 corresponds to a p-divisible group B over OE .

Lemma 4.2. The corresponding p-divisible group B is an Op-divisible module over
OE of height 2.

Proof. By construction, one has the inclusion Zpr ⊂ EndGalE (V1). Since the functor
of Breuil is an anti-equivalence of categories, one obtains an inclusion as well,
Op

∼= Zpr ⊂ End(B). The condition (a) is obvious. The condition (b) on the
dimension of G and the assertion on the height of B follow from the Hodge-Tate
weights of V1 ⊗ Qp given in Proposition 3.16. By taking the derivation of the
inclusion, one obtains an inclusion of Zp-algebras Op ⊂ OE , which ought to be the
structural morphism by the naturalness of the functor. �

Let MB be the filtered Dieudonné module associated with B. Denote by LB the
previous GalE-lattice V1. Fix a generator s of Zpr as a Zp-algebra. The image of s
in EndGalE (LB) ⊂ EndZp

(LB) ⊂ L⊗
B is an étale Tate cycle of LB and is denoted by

sB,et. By the p-adic comparison theorem, one has a natural isomorphism respecting
GalE-action, filtrations and φ’s:

LB ⊗Zp
Bcrys

∼= MB ⊗W (k) Bcrys.

By one of the main technical results of [15] (see Proposition 0.2 [15]), the crystalline
Tate cycle sB, which corresponds to sB,et ⊗ 1 ∈ LB ⊗Zp

Bcrys in the above com-

parison, lies actually in M⊗
B . Let GB ⊂ GLZp

(LB) (resp. GB ⊂ GLW (k)(MB)) be
the subgroup defined by sB,et (resp. sB). By Corollary 1.4.3 (4) [15], the filtration
Fil1 ⊗ k on MB ⊗ k is GB ⊗W (k) k-split. Choose a cocharacter μ0 : Gm → GB ⊗ k
inducing this filtration and further choose a cocharacter μ : Gm → GB ⊂ GL(MB)
lifting μ0 (see 1.5.4 [15]). The cocharacter μ defines the opposite unipotent sub-
groups:

UGB

∩
��

⊂
�� GB

∩
��

UB
⊂

�� GL(MB)
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By construction, one has UGB
= UB ∩ GB. Let ÛGB

(resp. ÛB) be the completion
of UGB

at the identity section of UGB
(resp. UB), whose corresponding complete

local rings are denoted by RGB
and R respectively. The filtration on MB defined

by μ corresponds to a p-divisible group B′ over W (k) whose closed fiber B′ ⊗ k
is isomorphic to B ⊗ k as a p-divisible group over k. For later use we denote
this μ also by μB′ . Write (M ′

B, F il1M ′
B
, φM ′

B
) for the tuple defined by the filtered

crystal structure on M ′
B, and fix φÛGB

: RGB
→ RGB

as a lifting of the absolute

Frobenius. Following Faltings Remarks, §7 [11] (see also §1.5 [15]), one defines a

filtered F -crystal over ÛGB
by the tuple

(NB = M ′
B ⊗W (k) RGB

, F il1NB
= Fil1M ′

B
⊗W (k) RGB

, φNB
= u ◦ (φM ′

B
⊗ φÛGB

)),

where u ∈ UGB
(RGB

) is the tautological RGB
-point of UGB

. Then by Faltings [11],
there is a unique integrable connection ∇NB

over NB such that the quadruple

(NB, F il1NB
, φNB

,∇NB
) defines an object in MF∇

[0,1](ÛGB
). By Faltings Theorem

7.1 [10], there is a p-divisible group B over RGB
, unique up to isomorphism, such that

the attached filtered Dieudonné module to B is isomorphic to the above quadruple.
If we replace everything of UGB

with that of UB , the above discussion gives then a

versal deformation of B ⊗ k over ÛB , which by abuse of notation is denoted again
by B. In this context, the sublocus Spf(RGB

) ↪→ Spf(R) has an interpretation as
the versal deformation respecting the Tate cycles which are stabilized by GB (see
§7 [11] and Corollary 1.5.5 [15]). By Corollary 1.5.11 [15], B is isomorphic to the
pull-back of B along a W (k)-algebra morphism RGB

→ OE .
We proceed to study the natural GB-action on MB via the inclusion GB ⊂

GLW (k)(MB). Recall that we have fixed an element s ∈ Zpr . Let {si := sσ
i}0≤i≤r−1

⊂ Zpr be the Galois conjugates of s. The minimal polynomial of sB ∈ EndW (k)(MB)
is that of s ∈ Qpr over Qp. As Zpr ⊂ W (k), the minimal polynomial of sB splits
into linear factors and one has then the relation in EndW (k)(MB):

(sB − s0) · · · (sB − sr−1) = 0.

Let Mi ⊂ MB be the eigenspace of sB corresponding to the eigenvalue si. Re-
call that we have shown in §3 a direct sum decomposition of MB ⊗ Frac(W (k)) =

Dcrys(LB ⊗ Qp) by using the functors D
(i)
crys,r of Fontaine. Now we have the fol-

lowing.

Lemma 4.3. The eigen-decomposition MB =
⊕r−1

i=0 Mi is a lattice decomposition
of

MB ⊗ Frac(W (k)) =

r−1⊕
i=0

D(i)
crys,r(LB ⊗Qp).

Namely, Mi is a lattice in D
(i)
crys,r(LB ⊗Qp) for each i.

Proof. In the comparison isomorphism LB ⊗Zp
Bcrys

∼= MB ⊗W (k) Bcrys, the en-
domorphism sB,et ⊗ 1 corresponds to sB ⊗ 1. Also the endomorphisms commute
with the GalE-actions on both sides. The endomorphism sB,et ⊗ 1 on LB ⊗Zp

Zpr

decomposes into eigenspaces, and so we obtain a Zpr [GalE ]-module decomposition:

LB ⊗Zp
Bcrys = (LB ⊗Zp

Zpr)⊗Zpr
Bcrys =

r−1⊕
i=0

Li ⊗Zpr
Bcrys,
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where Li is the Zpr -submodule of LB ⊗Zp
Zpr corresponding to the eigenvalue

si. Under the comparison isomorphism it corresponds to the decomposition of a
W (k)[GalE ]-module:

MB ⊗W (k) Bcrys =

r−1⊕
i=0

Mi ⊗W (k) Bcrys.

Taking the GalE-invariants, we obtain

(Li ⊗Zpr
Bcrys)

GalE = Mi ⊗W (k) Frac(W (k)).

Finally we notice that the two indexed sets of GalE-modules {Li⊗Zpr
Bcrys}0≤i≤r−1

and {LB [
1
p ]⊗Qpr,σi Bcrys}0≤i≤r−1 are actually equal. The lemma follows. �

Proposition 4.4. The tensor product
⊗r−1

i=0 Mi is a lattice of the admissible filtered

φ-module
⊗r−1

i=0 D
(i)
crys,r(LB ⊗Qp) in Proposition 3.15.

Proof. The filtration Fil1B on MB ⊗W (k) OE is filtered free and restricts to the

filtration Fil1i on each direct factor Mi ⊗ OE . Also one sees from the proof of
Proposition 3.16 that there is a unique factor Mi with nontrivial Fil1i . Since φM ′

B

is σ-linear, it permutes the eigen-factors {Mi}0≤i≤r−1 cyclically. The proposition
is now clear. �

For later use, we denote the above lattice by (
⊗r−1

i=0 Mi, F il1ten, φten).

Lemma 4.5. The eigen-decomposition of MB is also a decomposition as a GB-
module. In fact, the W (k)-group GB is naturally isomorphic to

∏r−1
i=0 GL2(W (k)),

and the GB-module MB is isomorphic to the
∏r−1

i=0 GL2(W (k))-module⊕r−1
i=0 (W (k)⊕2)i, in which the i-th factor (W (k)⊕2)i is the tensor product of the

standard representation of the i-th factor GL2(W (k)) and the trivial representations
of the j-th factors with j �= i.

Proof. Because the GB-action on MB commutes with the sB-action by definition,
the eigen-decomposition of MB with respect to sB is preserved by the GB-action.
This can be seen more clearly if we go to the étale side: first of all, it is easy to see
that the commutant subalgebra of Zpr ⊂ EndZp

(LB) ∼= M2r(Zp) is EndZpr
(LB) ∼=

M2(Zpr). So the group GB ⊂ GLZp
(LB) ∼= GL2r(Zp) is isomorphic to GL2(Zpr),

and particularly it is connected. Next, by Corollary 1.4.3 (3) [15], there is a W (k)-
linear isomorphism LB ⊗Zp

W (k) ∼= MB which induces an isomorphism GB ×Zp

W (k) ∼= GB. As Zpr ⊂ W (k), one has isomorphisms

GB
∼= GL2(Zpr ⊗Zp

W (k)) ∼= GL2(

r−1∏
i=0

W (k)) =

r−1∏
i=0

GL2(W (k)).

Under the above isomorphism, the GB-module MB is isomorphic to the GB-module
LB tensorizing with W (k). Moreover the isomorphism preserves the eigen-decom-
positions of both sides. As said above, the GB-action on LB is isomorphic to the
standard representation of GL2(Zpr) on Z⊕2

pr , which is considered as a Zp-group
acting on a Zp-module by restriction of scalar. Thus, the action after tensorizing
with Zpr , that is, the standard GL2(Zpr ⊗Zp

Zpr )-action on (Zpr ⊗Zp
Zpr )⊕2, splits;

write

GL2(Zpr ⊗Zp
Zpr ) ∼=

r−1∏
i=0

GL2(Zpr), g �→ (g0, · · · , gr−1)
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and

(Zpr ⊗Zp
Zpr )⊕2 ∼=

r−1∏
i=0

Z⊕2
pr , v �→ (v0, · · · , vr−1).

Then g(v) is mapped to (g0v0, · · · , gr−1vr−1), and so also the action after tensoriz-
ing with the larger ring W (k). Hence the lemma follows. �

Proposition 4.6. The sublocus ÛGB
is a versal deformation of the p-divisible group

B ⊗ k as an Op-divisible module.

Proof. We calculate first the dimension of ÛGB
. It is equal to rankW (k)

g

Fil0g , where g

is the Lie algebra of GB and the filtration is the restriction of the tensor filtration on
EndW (k)(MB) = M∨

B⊗MB via the inclusion g ⊂ EndW (k)(MB). We claim that it is
one dimensional. By the discussion on the filtration in the proof of Proposition 4.4
and Lemma 4.5, one has an isomorphism of Lie algebras over W (k) g ∼=

⊕r−1
i=0 gl2,

such that there is a unique factor with the nontrivial induced filtration through the
isomorphism. This shows the claim. Now let B̃ → Z be a versal deformation of
B⊗k as Op-divisible modules. Thus one has a map f̃ : Op → End(B̃) which makes
the commutative diagram

Op

f
���

��
��

��
��

f̃
�� End(B̃)

⊗k

��

End(B)

Let scycle ∈ End(B) and s̃cycle ∈ End(B̃) be the images of s ∈ Op in the endo-
morphism Zp-algebras. The element scycle corresponds to sB under the Dieudonné
functor, and by Faltings Theorem 7.1 [10], the corresponding element s̃B to s̃cycle,

as an endomorphism of the filtered Dieudonné crystal attached to B̃, is a crystalline
Tate cycle and is the parallel continuation of sB over Z. By the universal property
Proposition 4.9 [18], the inclusion Z ⊂ Û

B
factors Z ⊂ ÛGB

⊂ Û
B
. As both Z and

ÛGB
are formally smooth of dimension one, it follows that Z = ÛGB

. �

Let (NB, F il1NB
, φNB

,∇NB
) be the universal filtered Dieudonné module attached

to B over ÛGB
. Put Ni = Mi ⊗ RGB

, 0 ≤ i ≤ r − 1. Then the Tate cycle sB ∈
EndRGB

(NB) induces the eigen-decomposition

(NB , F il1NB
,∇NB

) =
r−1⊕
i=0

(Ni, F il1Ni
,∇Ni

),

where Fil1Ni
(resp. ∇Ni

) is the restriction of Fil1NB
(resp. ∇NB

) to Ni. How-
ever the eigen-decomposition is not preserved by φNB

: recall that φNB
= u ◦

(φM ′
B
⊗ φÛGB

). As UGB
⊂ GB, u preserves the eigen-decomposition by Lemma

4.5. So φNB
permutes the factors in the eigen-decomposition in a cyclic way. In

order to state the following decomposition result, we need to introduce the category
MF∇

big,r, which is analogous to the category MF∇
big introduced by Faltings (see c)-

d), Ch. II [10]). The category MF∇
big,r(RGB

) consists of four tuples (N,Fil, φr,∇),
where N is a free RGB

-module, Fil is a sequence of RGB
-submodules with GrFil(N)

torsion free,
φr : N ⊗RGB

,φr
ÛGB

RGB
→ N
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satisfies the divisibility condition φr(Fili) ⊂ piN , ∇ is an integrable connection
satisfying the Griffiths transversality, and finally φr is parallel with respect to ∇.
Summarizing the above discussions, we have shown that

Proposition 4.7. The object (NB , F il1NB
,∇NB

) has a decomposition

(NB , F il1NB
,∇NB

) =

r−1⊕
i=0

(Ni, F il1Ni
,∇Ni

),

such that φNB
permutes the factors cyclically. Consequently, one has a direct sum

decomposition in the category MF∇
big,r(ÛGB

):

(NB, F il1NB
, φr

NB
,∇NB

) =
r−1⊕
i=0

(Ni, F il1Ni
, φNi

,∇Ni
),

where φNi
is the restriction of φNB

to Ni.

As a consequence, one can define an object in MF∇
[0,1](ÛGB

) by equipping the

tensor product
⊗r−1

i=0 (NB, F il1NB
,∇NB

) with the Frobenius φten, a construction
mimicing Proposition 4.4.

4.2. Tensor decomposition of the universal filtered Dieudonné module
over a formal neighborhood. Notation is as in the introductory part of this
section. Let A be the abelian scheme over OE with the closed fiber (resp. generic
fiber) A0 (resp. A0) given by x0 (resp x0). Put LA = HZp

= H1
et(Ā

0,Zp). For
simplicity of notation, we use the same letters A, etc., to mean the associated p-
divisible groups. Recall that Corollary 3.7 gives a GalE-lattice decomposition LA =

(VZp
⊗UZp

)⊕2ε(D)

. Let A1 and A2 be the two p-divisible groups over OE correspond-
ing to the lattice VZp

and UZp
respectively by the theorem of Breuil (see [4]). Write

LA1
= VZp

and LA2
= UZp

. Let (MA, F il1A, φA) be the filtered Dieudonné module
attached to A. We use similar notation for A1 and A2.

Proposition 4.8. One has a natural isomorphism of filtered φ-modules:

(MA, F il1A, φA) ∼= [(MA1
, F il1A1

, φA1
)⊗ (MA2

, F il1A2
, φA2

)]⊕2ε(D)

,

where the factor (MA1
, F il1A1

, φA1
) is naturally isomorphic to (

⊗r−1
i=0 Mi, F il1ten, φten)

in Proposition 4.4 and the factor (MA2
, F il1A2

, φA2
) is a unit crystal.

Proof. We have shown the above isomorphisms after inverting p of both sides: the
first isomorphism is a consequence of Propositions 3.8 and 3.11 as the functor Dcrys

commutes with tensor product. The second isomorphism is Proposition 3.15. Also
since UQp

is an unramified GalE-representation, (MA2
, φA2

) is a unit crystal and

the filtration Fil1A2
is trivial. To show that the isomorphisms hold without invert-

ing p, we shall apply the theory of S-modules of Kisin developed in [14] and in
§1.2, §1.4 [15]. Consider the first isomorphism: apply first the functor M to the

GalE-lattice decomposition LA = (LA1
⊕ LA2

)⊕2ε(D)

. From the proof of Theorem
1.2.2 [15] (see 1.2.2 [15]), one sees that the functor M respects the tensor product.
So after this step one obtains a corresponding decomposition of S-modules. To
get the decomposition of the filtered Dieudonné modules as claimed in the first
isomorphism, one applies next Theorem 1.4.2 and Corollary 1.4.3 (i) [15] to each
factor in the previous decomposition of S-modules. Consider then the second
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isomorphism: by Corollary 3.7, one has a tensor decomposition of Zpr [GalE ]-

modules: LA1
⊗Zp

Zpr =
⊗r−1

i=0 LB,σi , where LB,σi = LB ⊗Zpr ,σi Zpr , which is
also equal to Li in the eigen-decomposition of LB ⊗Zp

Zpr with respect to sB,et in

the proof of Lemma 4.3. Taking the r-th tensor power of LB ⊗Zp
Zpr =

⊕r−1
i=0 Li,

and then the Gal(Zpr |Zp)-invariants of both sides, one gets a natural direct decom-
position L⊗r

B = LA1
⊕L′

A1
of Zp[GalE ]-modules. Thus LA1

is naturally isomorphic

to a GalE-sublattice of L⊗r
B . Proposition 3.15 shows that this sublattice is in fact

of Hodge-Tate weights {0, 1} with the induced filtered φ-module structure given by
Proposition 4.4. This implies the second isomorphism. �

Put GA = GZp
and GA = GA ×Zp

W (k) ⊂ GLW (k)(MA), the subgroup defined
by the corresponding crystalline Tate cycles. Recall that after a conjugation by an
element in G(Qp), there is a central isogeny Z∗

p ×
∏n

i=1 SL2(OFpi
) → GA. Let GA1

(resp. GA2
) be the image of Z∗

p × SL2(OFp1
) (resp.

∏n
i=2 SL2(OFpi

)) in GL(LA1
)

(resp. SL(LA2
)). By the construction of the tensor decomposition, one has the

following commutative diagram:

GalE ��

����
���

���
���

� GA
� ��

��

GA1
×GA2

��

←↩

������
����

����
��

GL(LA1
)× SL(LA2

)
⊗

�� GL(LA1
⊗ LA2

)

Consider the group homomorphism

⊗r : GL(LB) → GL(L⊗r
B ), g �→ (g⊗r : v1 ⊗ · · · ⊗ vr �→ g(v1)⊗ · · · ⊗ g(vr)).

It is a central isogeny over the image.

Lemma 4.9. The restriction of ⊗r to the subgroup GB factors

⊗r|GB
: GB → GL(LA1

)×GL(L′
A1

) ⊂ GL(L⊗r
B ).

Proof. Recall that for a g ∈ GL(LB), g ∈ GB iff g(sB) = sB up to a scalar. This
implies that g ⊗ 1 preserves the eigen-decomposition of LB ⊗Zp

Zpr . So ⊗r(g ⊗ 1)
respects the direct sum decomposition

L⊗r
B ⊗Zp

Zpr = LA1
⊗Zp

Zpr ⊕ L′
A1

⊗Zp
Zpr .

Thus ⊗r(g) preserves the decomposition L⊗r
B = LA1

⊕ L′
A1

. Hence the lemma
follows. �

Let ξet : GB → GL(LA1
) be the composite of ⊗r|GB

with the projection to the
first factor in the above lemma. The reductive subgroup GA1

⊂ GL(LA1
) is defined

by a finite set of tensors in L⊗
A1

.

Lemma 4.10. A tensor in L⊗n
A1

is fixed by GA1
only if n = 2a is even, and it must

be of form det(LA1
)⊗a ⊂ L⊗n

A1
.

Proof. Assume n is positive. The GA1
-action respects the tensor decomposition

LA1
⊗Zp

Zpr =
⊗r−1

i=0 Li. A tensor in L⊗n
A1

fixed by GA1
is by definition a rank one

Zp-subrepresentation of GA1
. So it gives rise to a rank one Zpr -subrepresentation

of GA1
in [

⊗r−1
i=0 Li]

⊗n. Recall that the GA1
-action on Li is isomorphic to the

i-th σ-conjugate of the standard action of GL2(Zpr) on Z⊕2
pr . Then we study the

GL2(Qpr )-invariant lines in [
⊗r−1

i=0 (Q
⊕2
pr )i]

⊗n, where (Q⊕2
pr )i := Q⊕2

pr ⊗Qpr ,σiQpr . For
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that we apply the standard finite dimensional representation theory of complex Lie
groups (see [12] Ch. 6). For a partition λ of n, one has the irreducible decomposition

of
∏r−1

i=0 GL2(Qpr )-modules:

Sλ[
r−1⊗
i=0

(Q⊕2
pr )i] =

⊕
λ0,··· ,λr−1

Cλ0···λr−1λ · Sλ0
(Q⊕2

pr )0 ⊗ · · · ⊗ Sλr−1
(Q⊕2

pr )r−1,

where λi in the summation runs through all possible partitions of n. As dim(Q⊕2
pr )i

= 2, the only possible λis are of the form {n− a, a} for a ≤ n
2 , and

S{n−a,a}(Q
⊕2
pr )i =

{
S{n−2a}(Q

⊕2
pr )i = Symn−2a(Q⊕2

pr )i ⊗ [det(Q⊕2
pr )i]

a if 2a < n;
S{a,a}(Q

⊕2
pr )i = [det(Q⊕2

pr )i]
a if 2a = n.

Since GL2(Qpr) is embedded into
∏r−1

i=0 GL2(Qpr ) via g �→ (g, σg, · · · , σr−1g), the
above decomposition is also irreducible with respect to the GL2(Qpr)-action. Sum-
marizing these discussions, we conclude that there exists a GA1

-invariant tensor

sα in L⊗n
A1

only if n = 2a is even and sα ⊗ 1 ∈ [
⊗r−1

i=0 Li]
⊗n is of the form⊗r−1

i=0 [det(Li)]
a, which implies that sα ∈ det(LA1

)⊗a. �

Proposition 4.11. The morphism ξet factors

ξet : GB → GA1
⊂ GL(LA1

),

and the induced morphism ξet : GB → GA1
is a central isogeny.

Proof. Fix an even natural number n. Let sα ∈ L⊗n
A1

be a tensor for GA1
. It

is to show that the image of GB under ξet fixes sα. By Lemma 4.10, sα ⊗ 1 =⊗r−1
i=0 [det(Li)]

n
2 . It is clear that for a g ∈ GB, ⊗r(g) ⊗ 1 stabilizes the line⊗r−1

i=0 [det(Li)]
n
2 . This implies that ⊗r(g) stabilizes sα. As ξet is a central isogeny

over its image and both GB and GA1
are isomorphic to GL2(Zpr), ξet induces a

central isogeny from GB to GA1
. �

So we have the central isogenies GB ×GA2
� GA1

×GA2
� GA of groups over

Zp. Put GAi
= GAi

×Zp
W (k). Taking the base change to W (k) one obtains central

isogenies of groups over W (k):

GB × GA2

ξ1� GA1
× GA2

ξ2� GA.

For a certain natural number l, the cocharacter Gm → GA1
× GA2

, which is the
composite

Gm
x�→xl

−→ Gm
μB′×id−→ GB × GA2

ξ1−→ GA1
× GA2

,

lifts to a cocharacter ν : Gm → GA. By Proposition 4.8, the reduction of ν modulo
p induces the same filtration as given by Fil1A ⊗ k on MA ⊗ k. Then the filtration
on MA defined by ν corresponds to a p-divisible group A′ over W (k) lifting the
p-divisible A ⊗ k over k. We call ν in the following by μA′ . One discusses the
cocharacter ξ1 ◦ μB′ similarly and obtains then a p-divisible group A′

1 over W (k)
lifting A1⊗k. It follows that one has an isomorphism of filtered φmodules similar to
that in Proposition 4.8 for the filtered Dieudonné module of A by replacing A1 with
A′

1 and B in Proposition 4.4 with B′. Consider the opposite unipotents UGB
× id

(resp. UGA1
× id and UGA

) induced by the cocharacter μB′ × id (resp. ξ1 ◦ (μB′ × id)

and μA′). By the construction, ξ1 (resp. ξ2) restricts to an isogeny from UGB
× id
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to UGA1
× id. (resp. from UGA

to UGA1
× id). Thus taking the completion along

the identity section, one obtains an isomorphism

ξ̂cris = ξ̂−1
2 ◦ ξ̂1 : ÛGB

∼=−→ ÛGA
.

Let (NA, F il1NA
,∇NA

, φNA
) be the following filtered Dieudonné module over ÛGA

:

let RGA
be the complete local ring of ÛGA

and φÛGA
: RGA

→ RGA
the lifting of the

absolute Frobenius obtained by pulling back the φÛGB
via ξ̂−1

cris. The triple

(NA = M ′
A ⊗W (k) RGA

, F il1NA
= Fil1M ′

A
⊗W (k) RGA

, φNA
= u ◦ (φM ′

A
⊗ φÛGA

)),

where u is the tautological RGA
-point of UGA

, together with the connection ∇NA

deduced from Theorem 10 [11], makes the quadruple (NA, F il1NA
,∇NA

, φNA
) an

object in MF∇
[0,1](RGA

). We denote again by ξ̂cris the equivalence of categories

from MF∇
[0,1](ÛGB

) to MF∇
[0,1](ÛGA

) induced by the isomorphism ξ̂cris.

Theorem 4.12. One has a natural isomorphism in the category MF∇
[0,1](M̂x0

):

(H,F, φ,∇)|M̂x0

∼= {ξ̂cris[
r−1⊗
i=0

(Ni, F il1Ni
,∇Ni

), φten]⊗ (MA2
, F il1A2

, φA2
, d)}⊕2ε(D)

,

where [
⊗r−1

i=0 (Ni, F il1Ni
,∇Ni

), φten] ∈ MF∇
[0,1](ÛGB

) is the one introduced after

Proposition 4.7 and (MA2
, F il1A2

, φA2
, d) is a constant unit crystal with the triv-

ial connection.

Proof. From Proposition 2.3.5 [15] and its proof, one knows that M̂x0
= ÛGA

is the deformation space of the p-divisible group A0 with Tate cycles ⊂ M⊗
A

fixed by the group GA ⊂ GLW (k)(MA). By the remarks of Faltings, §7 [11], the

above quadruple (NA, F il1NA
,∇NA

, φNA
) gives an explicit description in the cate-

gory MF∇
[0,1](M̂x0

) of the restriction (H,F, φ,∇)|M̂x0
. The decomposition of the

triple (NA, F il1NA
, φNA

) follows from the above description of the universal filtered
Dieudonné module and the corresponding statement of Proposition 4.8. Then the
connection decomposes accordingly: we equip the decomposition with the connec-

tion ∇dec := (
⊗r−1

i=0 ∇Ni
⊗ d)⊕2ε(D)

. Then the decomposition of φNA
shows that it

is horizontal with respect to both ∇dec and ∇NA
. By the uniqueness of such a con-

nection (see proof of Theorem 10 [11]), ∇NA
is isomorphic to ∇dec as claimed. �

The following consequence of the previous result will be used in the next section.

Corollary 4.13. One has an isomorphism in the category MF∇
big,r(M̂x0

):

(H,F, φr,∇)|M̂x0

∼= {ξ̂cris
r−1⊗
i=0

(Ni, F il1Ni
, φNi

,∇Ni
)⊗ (MA2

, F il1A2
, φr

A2
, d)}⊕2ε(D)

.

5. Second tensor power of the universal filtered

Dieudonné module and a mass formula

Let f0 : X0 → M0 be the reduction of the universal abelian scheme modulo p. In
this section we construct a pair (P0, F̃rel) over M0⊗ k̄, where P0 is a line bundle of

negative degree and F̃rel : F
∗r
M0

P0 → P0 is a nonzero morphism. We show that the

reduced zero divisor of F̃rel is equal to the supersingular locus and the multiplicity
at each supersingular point is two.
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5.1. Preliminary discussion. In this subsection, we collect Faltings’s results
([10], [11]) into a form which we can apply in the following conveniently. Note
also that M in the following discussion could be relaxed to be an arbitrary smooth
proper scheme over W (k). Let U = SpecR ⊂ M be a small affine subset, which
means that there is an étale map W (k)[T±] → R. Let R̄ be the maximal extension
of R which is étale in characteristic zero (see Ch. II a) [10]) and ΓR = Gal(R̄|R)

be the Galois group. Let MF∇
[0,p−2](R) be the category introduced in §3 [11], and

RepZp
(ΓR) the category of continuous representations of ΓR on free Zp-modules of

finite rank. By the fundamental theorem (Theorem 5* [11]), there is a fully faithful
contravariant functor

D : MF∇
[0,p−2](R) → RepZp

(ΓR).

An object lying in the image of the functor D is called a dual crystalline representa-
tion.1 For our convenience, we shall also consider the covariant functor D∨, which
maps an object H ∈ MF∇

[0,p−2](R) to the dual of D(H) in RepZp
(ΓR), and call

an object in the image of D∨ a crystalline representation. The p-torsion analogue
of the above theorem is established in [10]. For clarity of exposition, we use the
subscript tor to distinguish the torsion analogues. So there is also a fully faithful
functor (Theorem 2.6 [10])

Dtor : MF∇
[0,p−2](R)tor → RepZp

(ΓR)tor.

It follows from the construction that for an object H ∈ MF∇
[0,p−2](R), one has

D(H) = lim∞←n Dtor(
H

pnH ). Faltings has defined an adjoint functor Etor of Dtor

(see Ch. II, f)-g) [10]). For an object L ∈ RepZp
(ΓR), one defines

E(L) := [ lim
∞←n

Etor(
L

pnL
)]/torsion.

Clearly, for L = D(H), it holds that

E(L) = lim
∞←n

Etor(
L

pnL
) = lim

∞←n

H

pnH
= H.

Finally define E∨(L) := E(L∨).

Lemma 5.1. Suppose W,W1,W2 ∈ RepZp
(ΓR). The following basic properties

hold:

(i) Suppose W = W1 ⊕ W2. Then W is crystalline if and only if each Wi is
also.

(ii) Suppose W is crystalline with Hodge-Tate weight n and a Schur functor Sλ
with λ a partition of m ≤ p− 1 satisfying mn ≤ p− 2. Then Sλ(W) is still
crystalline, and there is a natural isomorphism E∨(SλW) ∼= SλE

∨(W).
(iii) Suppose Wi, i = 1, 2, is crystalline with Hodge-Tate weights ni satisfying

n1n2 ≤ p− 2. Then W1 ⊗W2 is crystalline, and there is a natural isomor-
phism

E∨(W1 ⊗W2) ∼= E∨(W1)⊗E∨(W2).

1It is said to be dual because the functor D maps the first crystalline cohomology of an abelian
variety to the dual of the first étale cohomology. See Theorem 7 [11].
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Proof. Consider

Etor(W/pn) = Etor(W1/p
n)⊕Etor(W2/p

n).

By Ch. II (g) [10], one has always that l(Etor(Wi/p
n)) ≤ l(Wi/p

n), and the equality
holds iff Wi/p

n lies in the image of Dtor. Now assume W to be dual crystalline,

that is, W = D(H). So W
pnW

= D(H)
D(pnH) = Dtor(

H
pnH ). Hence from

l(W/pn) =
∑
i

l(Wi/p
n) ≥

∑
i

l(Etor(Wi/p
n)) = l(Etor(W/pn)),

it follows that there are Hi,n ∈ MF∇
[0,p−2](R)tor, i = 1, 2, such that Dtor(Hi,n) =

Wi/p
n and by the faithfulness of Dtor, H1,n ⊕ H2,n = H/pn. Taking the inverse

limit, one obtains Hi = lim∞←n Hi,n with the equality H1⊕H2 = H, which implies

that Hi is torsion free and is an object in MF∇
[0,p−2](R). Thus it follows that

D(Hi) = lim
∞←n

Dtor(Hi/p
n) = lim

∞←n
Wi/p

n = Wi,

and thereby Wi is dual crystalline. The other direction of (i) is obvious. Clearly (ii)

follows from (iii). To show (iii), it is to show that for Hi ∈ MF∇
[0,p−2](R), i = 1, 2,

there is a natural isomorphism D(H1)⊗D(H2) ∼= D(H1 ⊗H2). Taking an element

fi ∈ D(Hi), which is an R̂-linear map from Hi to B+(R) respecting the filtrations

and the φ’s, one forms the R̂-linear map f1 ⊗ f2 : H1 ⊗H2 → B+(R). It respects
the filtrations and the φ’s and therefore gives an element in D(H1 ⊗H2). So one
has a natural map D(H1) ⊗ D(H2) → D(H1 ⊗ H2), which is obviously injective.
Because both sides have the same Zp-rank, it remains to show that the quotient
D(H1⊗H2)/D(H1)⊗D(H2) has no torsion. For that we pass to modulo p reduction
and use the functor Dtor. The same argument as above applied to Hi/p shows that
the Fp-linear map Dtor(H1/p) ⊗Dtor(H2/p) → Dtor(H1 ⊗H2/p) is injective and
therefore is bijective. This shows the non-p-torsionness. �

Let U = {U} be a small affine open covering of M . Theorem 2.3 [10] shows that

one can define the global category MF∇
[0,p−2](M). Furthermore Faltings explained

that these various local functors Dtor glue to a global one from MF∇
[0,p−2](M)tor

to RepZp
(π1(M

0))tor (see page 42 [10]). By passing to a limit, one obtains a global

functor D : MF∇
[0,p−2](M) → RepZp

(π1(M
0)). An object in the image of D is

called a dual crystalline sheaf. Similarly, one defines D∨ and E∨ in the global
setting and calls an object in the image of D∨ a crystalline sheaf. Now let W be
a crystalline sheaf of M0 and H the corresponding filtered Frobenius crystal to W

(i.e., D∨(H) = W). Let x be aW (k)-valued point ofM . Consider the specialization
of both objects into the point x: via the splitting of the short exact sequence

1 → π1(M̄
0) → π1(M

0) → GalFrac(W (k)) → 1

induced by the point x0 : Frac(W (k)) → M0, Wx0 is a representation of
GalFrac(W (k)). On the other hand, Hx is obviously an object in MF [0,p−2](W (k)).

Lemma 5.2. Notation as above. Then the following statements hold:

(i) The Galois representation Wx0 ⊗Qp is crystalline in the sense of Fontaine.
(ii) Hx is naturally a strong divisible lattice of the Frac(W (k))-vector space

Dcrys(Wx0 ⊗Qp) in the sense of Fontaine-Laffaille ([9]).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MASS FORMULA 195

(iii) There is a natural isomorphism of Zp[GalFrac(W (k))]-modules:

D∨(Hx) ∼= D∨(H)x0 .

Consequently, there is a natural isomorphism in MF [0,p−2](W (k)):

E∨(W)x ∼= E∨(Wx0).

Proof. Clearly we can reduce the problem to a small affine subset U = SpecR ⊂ M .
Choose a local coordinate T of R such that the W (k)-point x of R is given by T = 1
(i.e., the composite W (k)[T±] → R → W (k) is the W (k)-morphism determined by

T �→ 1). Fix an isomorphism R̄⊗R W (k) ∼= W (k) such that the following diagram
commutes:

SpecW (k)

��

x̄ �� SpecR̄

��

SpecW (k)
x �� SpecR

Note that the subgroup ΓR,x ⊂ ΓR preserving the prime ideal ker(R̄ → W (k))
of x̄ is naturally isomorphic to GalFrac(W (k)), and it is equal to the image of the
splitting ΓR � GalFrac(W (k)) induced by the W (k)-point x. Fix a Frobenius lifting

φ of R̂ which fixes the point x (e.g. the one determined by T �→ T p). Note also

that the point x̄ : R̄ → W (k) induces a surjection of B+(W (k))-algebras B+(R̂) →
B+(W (k)), which preserves the filtration and the Frobenius. Recall that

D(H) = HomR̂,F il,φ(H,B+(R̂)) = (H∨ ⊗R̂ B+(R̂))Fil=0,φ=1

and

D(Hx) = HomW (k),F il,φ(Hx, B
+(W (k))) = (H∨

x ⊗W (k) B
+(W (k)))Fil=0,φ=1.

The above free Zp-modules (say of rank n) are basically obtained by solving
certain equations (see pages 127-128 [11] and pages 37-38 [10]). There are also
natural surjections

B+(R̂) � B+(R̂)/p ·B+(R̂) � R̄/p · R̄,

and similarly for B+(W (k)). These make the following diagrams commute:

B+(R̂)

��

�� B+(R̂)/p ·B+(R̂)

��

�� R̄/p · R̄

��

B+(W (k)) �� B+(W (k))/p ·B+(W (k)) �� W (k)/p ·W (k),

where the vertical arrows are induced by the point x̄. Faltings showed [10] that it

suffices to solve the equations over the quotient R̄/p (resp. W (k)/p) because each
solution over the quotient can be uniquely lifted. Now choose a filtered basis {hi}
of H, which restricts to a filtered basis of Hx. An element of D(H) is then given

by an n-tuple in B+(R̂) satisfying a system of equations coming from the condition
on φ’s. For each such n-tuple, we obtain an n-tuple in B+(W (k)) by projecting

each component to B+(W (k)) (the projection B+(R̂) � B+(W (k)) induced by the
point x̄). As the projection preserves the filtration and the Frobenius, and as the
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filtration and the Frobenius on Hx are the ones of H by restriction, any so-obtained
n-tuple satisfies the equations required for D(Hx). So we have a Zp-linear map

evx : D(H) → D(Hx), f �→ f(x).

Consider first the Galois action. Recall that GalFrac(W (k)) acts on D(Hx) ⊂
H∨

x ⊗W (k) B
+(W (k)) on the second tensor factor. But the ΓR-action on D(H) ⊂

H∨ ⊗R̂ B+(R̂) must also be intertwined with the connection ∇ on the first factor.
However the restriction to the subgroup ΓR,x does not involve the connection (see
Ch. II e) [10] for the p-torsion situation which we can also assume in the argument).
So the above map evx is equivariant with respect to ΓR,x-action on D(H) and
GalFrac(W(k)) action on D(Hx).

Next we claim that evx is a Zp-isomorphism. For that we consider the base
change evx ⊗ Qp and then the reduction evx ⊗ Fp. By Ch. II (h) [10], one has a
natural isomorphism

H ⊗R̂ B(R̂) ∼= D∨(H)⊗Zp
B(R̂),

which respects the ΓR-actions, filtrations and φ’s. Tensorizing the above isomor-
phism with B(W (k)) as B(R̂)-modules (the morphism B(R̂) � B(W (k)) induced
by x̄) and taking the ΓR,x-invariance of both sides, we obtain an isomorphism of
GalFrac(W (k))-representations:

Vcrys(Hx ⊗ Frac(W (k))) ∼= D∨(H)x0 ⊗Qp.

That is, there is a natural isomorphism D(H)x0 ⊗ Qp
∼= V ∨

crys(Hx ⊗ Frac(W (k))).
By Fontaine-Laffaille (see §§7-8 in [9]; see also §2 [4]), D(Hx) is a Galois lattice of
V ∨
crys(Hx ⊗ Frac(W (k))) by the isomorphism, and Hx is a strong divisible lattice

of Dcrys(D
∨(H)x0 ⊗ Qp). This shows (i) and (ii). Also it implies that the map

evx ⊗ Qp is an isomorphism. In particular the map evx is injective. Using the

fact that the composite B+(W (k)) → B+(R̂) → B+(W (k)) is the identity, one sees
that evx(D(H))∩pD(Hx) = evx(pD(H)), and the map evx⊗Fp : D(H)/pD(H) →
D(Hx)/pD(Hx) is therefore injective. Now that the Fp-vector spaces D(H)/pD(H)
and D(Hx)/pD(Hx) have the same dimension n, evx⊗Fp is an isomorphism. Thus
evx is an isomorphism. This proves (iii). �

Let r ∈ N be a natural number. Let RepZpr
(π1(M

0)) ⊂ RepZp
(π1(M

0)) be the

full subcategory of Zpr [π1(M
0)]-modules. An object which lies in both

RepZpr
(π1(M

0)) and the image of D∨ is called a Zpr -crystalline sheaf. One notes

that the proof of Theorem 2.3 [10] works verbatim to show that the local categories

{MF∇
big,r(U)}U∈U (see §4.1) glue into a global category MF∇

big,r(M). A typi-
cal object in this category is obtained by replacing the Frobenius of an object in
MF∇

[0,p−2](M) with its r-th power.

Lemma 5.3. Let W be a Zpr -crystalline sheaf. Assume that Zpr ⊂ OM . Then there

is a natural decomposition E∨(W) =
⊕r−1

i=0 E∨(W)i in the category MF∇
big,r(M).

Proof. The multiplication by s ∈ Zpr on W commutes with π1(M
0)-action. Hence

it gives rise to an endomorphism sMF of E∨(W) in the category MF∇
[0,p−2](M).

By assumption OM contains the eigenvalues of sMF . The eigen-decomposition of

E∨(W) with respect to sMF gives rise to a decomposition of form
⊕r−1

i=0 E∨(W)i
such that the direct factors are preserved by ∇ and permute cyclically by φ. Hence
the lemma follows. �
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5.2. Second wedge/symmetric power of the universal filtered Dieudonné
module. From now on the rational prime number p is assumed to be ≥ 5 in addi-
tion to Assumption 1.1. The aim of this subsection is to show a direct sum decom-
position of the second wedge (resp. symmetric) of the universal filtered Dieudonné
crystal for d an even (resp. odd) number. Recall that by Corollary 3.6 we have a

direct-tensor decomposition of étale local systems H = (V ⊗ U)⊕2ε(D)

. It follows
from Lemma 5.1 that the direct summand H′ := V ⊗ U of H is crystalline. As
det(H) ∼= Zp(−2d+ε(D)−1), it follows that

detH′ ∼= Zp(−2d−1)⊗ χ,

where χ is a 2-torsion crystalline sheaf (which is trivial when ε(D) = 0). Consider
the following Zpd -étale local system:

H̃′ := (V⊗ det(V)−
1
2 ⊗ U⊗ det(U)−

1
2 )⊗Zp

Zpd .

Because of the equality

2∧
(H̃′) = [

2∧
(H′)⊗ det(H′)−1]⊗Zp

Zpd ,

∧2
(H̃′) is a Zpd -crystalline sheaf. For 1 ≤ i ≤ r, put

Ṽi = V1,σi−1 ⊗ det(V1)
− 1

2 , Ṽ′
i = Ṽi ⊗Zpr

Zpd ,

and for r + 1 = r1 + 1 ≤ i ≤ r1 + r2, put

Ṽ′
i = (U1,σi−1 ⊗ det(U1)

− 1
2 )⊗Zpr2

Zpd ,

and so on. Then by Corollary 3.6, we have a decomposition of H̃′ into tensor product

of rank two Zpd -étale local systems: H̃′ =
⊗d

i=1 Ṽ
′
i. In the tensor decomposition,

we assume that the factor Ṽ1 corresponds to the place τ (see Lemma 3.1).

Remark 5.4. We conjecture that each tensor factor Ṽ′
i in the above decomposition

is a Zpd -crystalline sheaf. The next lemma shows that Sym2Ṽ′
i is a direct factor of

a crystalline sheaf and therefore crystalline by Lemma 5.1 (i).

The following lemma is proved by induction on d:

Lemma 5.5. For I = (i1, · · · , il) a multi-index in {1, · · · , d}, put Sym2(Ṽ′)I :=⊗l
j=1 Sym

2Ṽ′
ij
. One has a direct sum decomposition of Zpd-étale local systems:

(i) for d even,

2∧
(H̃′) =

⊕
I,|I| odd

Sym2(Ṽ′)I , Sym2(H̃′) =
⊕

I,|I| even

Sym2(Ṽ′)I ;

(ii) for d odd,

2∧
(H̃′) =

⊕
I,|I| even

Sym2(Ṽ′)I , Sym2(H̃′) =
⊕

I,|I| odd

Sym2(Ṽ′)I .

In the following we shall focus on the direct summand Sym2(Ṽ1) in the decompo-
sition since it is, so to speak, the (rank three) uniformizing direct factor of the weight
two integral p-adic variation of Hodge structures of the universal family. Also one
notices that this factor is actually defined over Zpr . So by taking the Gal(Zpd |Zpr)-
invariants, one obtains a direct decomposition into Zpr -dual crystalline sheaves with
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Sym2Ṽ1 as a direct factor for the second wedge (resp. symmetric) power for n even
(resp. odd).

Proposition 5.6. Let (H ′, F, φ,∇) ∈ MF∇
[0,1](M) be the subfiltered F -crystal

corresponding to the factor H′ ⊆ H. One has a direct sum decomposition in
MF∇

big,r(M):

(i) for d even,

2∧
(H ′, F, φr,∇) =

r⊕
i=1

E∨(Sym2Ṽi)0{−2d−1} ⊗E∨(χ)⊕ rest term;

(ii) for d odd,

Sym2(H ′, F, φr,∇) =
r⊕

i=1

E∨(Sym2Ṽi)0{−2d−1} ⊗E∨(χ)⊕ rest term.

Proof. We shall prove (i) only because (ii) can be similarly proved. By the discus-

sion before the proposition, we obtain a decomposition in MF∇
[0,2](M):

E∨(
2∧
(H′)⊗ χ−1 ⊗ Zpr) =

r⊕
i=1

E∨(Sym2Ṽi){−2d−1} ⊕ rest term.

The claimed decomposition is obtained by considering the eigen-decomposition of
both sides corresponding to the eigenvalue s0: The argument is similar to that of
Lemma 4.3. The right hand side is clear, and the question is the left hand side. It
suffices to consider the eigen-component after inverting p. By Ch. II h) [10], one
has a ΓR-isomorphism

E∨(
2∧
(H′)⊗ χ−1 ⊗ Zpr |Û )⊗R̂ B(R) ∼= (

2∧
(H′)⊗ χ−1 ⊗ Zpr |Û )⊗Zp

B(R).

It follows that

[E∨(
2∧
(H′)⊗ χ−1 ⊗ Zpr)|Û ]0[

1

p
] ∼= [

2∧
(H′)⊗Zp

χ−1 ⊗Zp
Zpr |Û ⊗Zpr

B(R)]ΓR

∼= [

2∧
H′ ⊗Zp

χ−1 ⊗Zp
B(R)]ΓR

∼= E∨(
2∧
H′)⊗E∨(χ−1)[

1

p
]

∼=
2∧
(E∨(H′))⊗E∨(χ−1)[

1

p
].

This shows that the eigen-submodule of E∨(
∧2

H′ ⊗ χ−1 ⊗ Zpr ) to the eigenvalue

s0 is naturally isomorphic to
∧2 H ′ ⊗ E∨(χ−1). The claimed decomposition then

follows. �

5.3. Construction of the pair. The aim of this subsection is to construct the pair
(P0, F̃rel) claimed in the introduction of the section. In the following, E0 denotes

E∨(Sym2Ṽ1)0{−2d−1} and Ẽ0 = E0⊗E∨(χ) for the factor in the decomposition in
Proposition 5.6. Note that the square of E∨(χ) is the trivial crystal. In particular,
its filtration is trivial and its restriction to each W (k)-valued point is a unit crystal.
Let x0 ∈ M0(k) be a k-rational point and x a W (k)-valued point of M lifting x0.
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Proposition 5.7. One has a natural isomorphism in the category MF∇
big,r(M̂x0

):

E0|M̂x0

∼= ξ̂crys[Sym
2N0 ⊗

r−1⊗
i=1

det(Ni)].

Proof. Assume d to be even. By Corollary 4.13, one has a natural isomorphism in
MF∇

big,r(M̂x0
):

H ′|M̂x0

∼= ξ̂crys(

r−1⊗
i=0

Ni)⊗MA2
.

By a Schur functor calculation as in Lemma 5.5, one finds that, via the isomor-

phism, ξ̂crys[Sym
2N0 ⊗

⊗r−1
i=1 det(Ni)] is a direct factor of

∧2
(H ′|M̂x0

) ⊗
E∨(χ−1)|M̂x0

. The point is to show that it is the direct factor E0|M̂x0
. Note that

ξ̂crys[Sym
2N0 ⊗

⊗r−1
i=1 det(Ni)] is the unique rank three direct factor with nontriv-

ial filtration. So it suffices to show that the rank three direct factor E0|M̂x0
also

has this property. To do so we show that the filtration of the filtered φr-module
(E0)x⊗FracW (k) is nontrivial. By Lemma 5.5, Sym2(Ṽ1(−2d−2)) is a direct factor

of the crystalline sheaf
∧2

(H′ ⊗ Zpr). So by Lemma 5.2 (i), (Sym2Ṽ1(−2d−2))x0

is a crystalline lattice for the group GalFracW (k), and by (iii), one has the equality
(after taking the eigen-component to the eigenvalue s0)

(E0)x = E∨(Sym2(Ṽ1(−2d−2))x0)0.

Then by Lemma 5.2 (ii) we determine the filtration of Dcrys(Sym
2(Ṽ1(−2d−2)x0 ⊗

Qp))0. Consider the GalFracW (k)-representation Sym2(Ṽ1(−2d−2)x0 ⊗ Qp). It is

equal to Sym2(Ṽ1,x0(−2d−2)⊗Qp), and by Proposition 3.11 V1,x0⊗Qp is crystalline
for an open subgroup GalE ⊂ GalFracW (k). As

Sym2(Ṽ1,x0(−2d−2)) = Sym2(V1,x0)⊗Zpr
det(V1,σ,x0)⊗Zpr

· · · ⊗Zpr
det(V1,σr−1,x0),

and the functor Dcrys commutes with a Schur functor for a crystalline representa-
tion, we have

Dcrys(Sym
2(Ṽ1,x0(−2d−2)⊗Qp))0 = Sym2(Dcrys(Ṽ1,x0(−2d−2)⊗Qp)0),

which is naturally isomorphic to [Sym2M0 ⊗
⊗r−1

i=1 det(Mi)]⊗ Frac(W (kE)). This
shows that the filtration of (E0)x⊗FracW (kE) is nontrivial. Thus, so is the filtration
on (E0)x ⊗ FracW (k). �

Construction of P0. Consider the filtration on the factor E0. As the Hodge filtra-
tion on H is filtered free (see §2 [11]), the induced filtration on E0 by Proposition
5.6 is also filtered free.

Lemma 5.8. The filtration F on E0 is nontrivial with form

E0 = F 0E0 ⊃ F 1E0 ⊃ F 2E0,

and each grading is locally free of rank one.

Proof. As it is filtered free, it suffices to show this over a point x as above. Then
it follows from Proposition 5.7 and the proofs of Propositions 3.11, 3.16. �
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By the lemma we put P = E0

F 1E0
= Ẽ0

F 1Ẽ0
, and P0 is the modulo p reduction

of P which is defined over M0. Next we consider the line bundle P0 over M0 by
taking a comparison with the variation of Hodge structures at infinity associated
to the Mumford family. Let (H1

dR, Fhod,∇GM ) be the automorphic vector bundle
over MK coming from the universal family of abelian varieties over MK . One has
a natural isomorphism

(H,F,∇)⊗Op
Fp

∼= (H1
dR, Fhod,∇GM )⊗F Fp.

We intend to show a tensor decomposition of (H ′, F,∇)⊗Op,τ
Q̄p of the form

(H ′, F,∇)⊗Op,τ
Q̄p = (H1, F1,∇1)⊗ · · · ⊗ (Hd, Fd,∇d),

where the first tensor factor on the right hand side is the unique one admitting the
nontrivial filtration. For this we apply the theory of de Rham cycles as developed
in §2.2 [15]. Let {sα,B} ⊂ H⊗

Q be a finite set of tensors defining the subgroup

GQ ⊂ GL(HQ). By Corollary 2.2.2 [15], it defines a set of de Rham cycles {sα,dR} ⊂
(H1

dR)
⊗ defined over the reflex field τ (F ), which are by definition ∇GM -parallel and

contained in Fil0.

Lemma 5.9. The set of de Rham cycles {sα,dR} induces a direct-tensor decompo-
sition

(H1
dR, Fhod,∇GM )⊗F,τ Q̄ = [

d⊗
i=1

(H1
dR,i, Fhod,i,∇GM

i )]⊕2ε(D)

such that the factor (H1
dR,1, Fhod,1,∇GM

1 ) is the unique one with nontrivial filtration.

Proof. Let π : M̃an := X ×G(Af )/K → MK(C) be the natural projection of com-
plex analytic spaces. The pull-back of (H1

dR,∇GM )⊗C over MK(C) via π is trivial-
ized, and by the de Rham isomorphism it is isomorphic to (HQ⊗QOM̃an

, 1⊗d). By

a similar discussion on the direct-tensor decomposition of the G(Q)-representation
HQ ⊗Q C as given in §2.1, the tensors sα,B ⊗ 1s induce a tensor decomposition of
π∗((H1

dR,∇GM ) ⊗ C). It is G(Q)-equivariant by construction and hence descends
to a decomposition on (H1

dR,∇GM ) ⊗ C. This is the same tensor decomposition
induced by the tensors sα,dR. Since they are defined over τ (F ), the tensor decompo-
sition already occurs over Q̄. We have also to check the property about the filtration
in the tensor decomposition. Note that the Hodge filtration π∗(H1

dR, Fhod)⊗C over
the point [0 × id] is induced from μh0

: Gm(C) → GC ⊂ GL(HC). The assertion
follows then from the definition of h0 in §2. �

Composing with the embedding ι : Q̄ ↪→ Q̄p, we obtain the claimed tensor
decomposition on (H ′, F,∇) ⊗Op,τ

Q̄p. Taking the grading with respect to Fhod,i,

one obtains the associated Higgs bundle (Ei, θi) with (H1
dR,i, Fhod,i,∇GM

i ). By the

lemma, only θ1 is nontrivial. In fact, it is a maximal Higgs field (see [29]), that is,

θ1 : F 1
hod,1

∼=−→
H1

dR,1

F 1
hod,1

⊗ ΩMK⊗Q̄.

Actually over each connected component of MK , θ1 ⊗ C is a morphism of locally
homogenous bundles of rank one. Then it must be an isomorphism, because it will
otherwise be zero, and together with the zero Higgs fields on the other factors Ei, i ≥
2, this implies that the Kodaira-Spencer map of the universal family is trivial, which

is absurd. As both F 1
hod,1 and

H1
dR,1

F 1
hod,1

are locally homogenous line bundles over each
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connected component of MK , their isomorphism classes are determined by the
corresponding representations of KR ⊗ C, where KR is the stabilizer of G(R) at
0 ∈ X. In this way one easily shows that they are dual to each other. By putting
L := F 1

hod,1, one then has

θ1 : L ∼= L−1 ⊗ ΩMK⊗Q̄.

By abuse of notation, we use L again to denote the base change of L to

M̄0 := M0 ⊗Fp
Q̄p = (MK ⊗F,τ Q̄)⊗ Q̄p.

Lemma 5.10. One has a natural isomorphism P0 ∼= L−2 over M̄0.

Proof. In fact we show that there is a natural isomorphism (E0, F ) ⊗ OM̄0
∼=

Sym2(H1, F1). We raise the defining field of M0 so that it contains the defining
field of Hi, 1 ≤ i ≤ d and Qpd . By abuse of notation, we use the same notation to
mean an above object after the base change. Let U = SpecR ⊂ M be a small affine
subset. We have a natural isomorphism H′ ⊗Zp

B(R) ∼= H ′ ⊗R B(R) respecting
ΓR-actions and filtrations (we forget the φ’s in the isomorphism). As Qpd ⊂ B(R),
we can write it as

(Ṽ1 ⊗ · · · ⊗ Ṽd)⊗Q
pd

B(R) ∼= (H1 ⊗ · · · ⊗Hd)⊗R[ 1p ]
B(R)

or
d⊗

i=1

[Ṽi ⊗Q
pd

B(R)] ∼=
d⊗

i=1

[Hi ⊗R[ 1p ]
B(R)].

In the comparison the tensor factor with numbering is preserved, because it is also
over a general Q̄-rational point of each connected component of U by a result of
Blasius and Wintenberger (see [2]; see also §4 [24]), which asserts that in the p-adic
comparison the tensors sα,et and sα,dR correspond. Then taking the second wedge
(symmetric) power for n even (odd) of the above isomorphism, we find the isomor-
phism Sym2V1 ⊗Q

pd
B(R) ∼= Sym2H1 ⊗R[ 1p ]

B(R) which respects ΓR-actions and

filtrations. Taking ΓR-invariants of both sides, we obtain the claimed isomorphism
over SpecR[ 1p ]. By the naturalness of the comparison, the local isomorphisms glue

into a global one. �

By the main theorems of Langton [16], the line bundle L−1 extends over M ⊗
Z̄p with the modulo p reduction L−1

0 , and the isomorphism in the above lemma

specializes to an isomorphism between P0 and L−2
0 . So we have shown the first

isomorphism in the following:

Proposition 5.11. One has natural isomorphisms P0
∼= L−2

0
∼= Ω−1

M0
over M̄0.

Proof. We have shown that over M̄0 the Higgs field θ1 induces an isomorphism
L2 ∼= ΩM0 . For the same reason as above, this isomorphism specializes into an
isomorphism L2

0
∼= ΩM0

. �

Construction of F̃rel. For each small affine U ∈ U , we choose a Frobenius lifting
FU : Û → Û , where Û is the p-adic completion of U . As E0 is an object in
MF∇

big,r(M), there is a map φr,FU
: F ∗r

U E0|Û → E0|Û . By Proposition 5.6, φr,FU

is the restriction of the second wedge (resp. symmetric) power of the r-th iterated
relative Frobenius morphism φFU

: F ∗
UH

′|Û → H ′|Û for d even (resp. odd) to the
direct factor E0|Û .
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Lemma 5.12. For each U , the image φr,FU
(F ∗r

U E0|Û ) ⊂ E0|Û is divisible by pr−1,
but not divisible by pr.

Proof. In the p-adic filtration

E0|Û ⊃ pE0|Û ⊃ · · · ⊃ pi−1E0|Û ⊃ piE0|Û ⊃ · · · ,

there is a unique i with the property

pi−1E0|Û ⊃ φr,FU
(F ∗r

U E0|Û ) � piE0|Û .

It suffices to show that i = r or equivalently that the images of φr,FU
(F ∗r

U E0|Û ) in
the successive gradings

pi−1E0|Û
piE0|Û

are zero for 1 ≤ i < r and nonzero for i = r. Let

x0 ∈ Û(k) and Ûx0
be the completion of Û at x0. It is equivalent to show the above

statement over each Ûx0
. This follows from the description of the relative Frobenius

φ over the formal neighborhood Ûx0
as described in §4.2 and the result for the closed

point x0. In detail it goes as follows: by Proposition 5.7, the filtered φr-module E0|x
is isomorphic to Sym2M0⊗(

⊗r−1
i=1 detMi)⊗unit crystal over W (k̄). By Proposition

3.16, the Newton slope of the rank one φr-module detMi, i ≥ 1, is either 1 × 1 or
1 × 2. In the former case, the Newton slopes of Sym2M0 are {1 × 0, 1 × 1, 1 × 2}.
These imply that φr(E0|x) is always divisible by pr−1. By Remark 3.18, the former
case does occur for a certain x0. So φr(E0|x) is not divisible by pr at such a closed
point. �

As φr,FU
(F ∗r

U F 1E0|Û ) ⊂ prE0|Û , the composite of the morphisms

F ∗r
U F 1E0|Û ↪→ F ∗r

U E0|Û

φr,FU
pr−1

−→ E0|Û
pr
� P|Û

mod p
� P0|U0

is zero. As a result we get the morphism

F ∗r
U E0|Û

F ∗r
U F 1E0|Û

= F ∗r
U P|Û → P0|U0

,

which clearly factors further through F ∗r
U P|Û

mod p
� F ∗r

U0
P0|U0

. Thus we obtain a

morphism F ∗r
U0
P0|U0

→ P0|U0
which is denoted by [

φr,FU

pr−1 ].

Lemma 5.13. The local morphisms {[φr,FU

pr−1 ]}U∈U glue into a global one, F̃rel :

F ∗r
M0

P0 → P0.

Proof. It is equivalent to show the following statement: for two different Frobe-
nius liftings FU and F ′

U of the absolute Frobenius FU0
, and for a local section of

(F ∗r
M0

P0)(U0) of form F ∗r
U0
s0 with s0 ∈ P0(U0), one has the equality [

φr,FU

pr−1 ](F ∗r
U0
s0) =

[
φr,F ′

U

pr−1 ](F ∗r
U0
s0). Let s be an element of E0(Û) lifting s0. It suffices to show that

(
φr,F ′

U

pr−1 F ′∗r
U − φr,FU

pr−1 F ∗r
U )(s) ∈ pE0(Û). Note that by replacing the Frobenius φr

of E0 with φr

pr−1 one obtains another object in MF∇
big,r(M), which is denoted by

E′
0. Let x0 ∈ Û(k) and Ûx0

be the completion of U at x0. Fix an isomorphism

Ûx0
∼= W (k)[[t]]. Then FU and F ′

U restrict to two Frobenius liftings on Ûx0
. For

any local section s′ of E′
0(Ûx0

), one has the Taylor formula (see §7 [11], Theorem
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2.3 [10], page 16 [15]): write ∂ = ∂t and z = F ′
U (t)− FU (t). Then it holds that

φr,F ′
U

pr−1
F ′∗
U (s′) =

∞∑
i=0

φr,FU

pr−1
F ∗
U (∇i

∂(s
′))⊗ zi

i!
.

Note that as z is divisible by p, zi

i! is divisible by p for all i ≥ 1. So the difference
φr,F ′

U

pr−1 F ′∗
U (s′)− φr,FU

pr−1 F ∗
U (s

′) belongs to pE′
0(Ûx0

). The lemma follows. �

Let S ⊂ M0(k̄) be the supersingular locus of f0 : X0 → M0.

Proposition 5.14. The morphism F̃rel is nonzero and takes zero at x0 ∈ M0(k̄)
iff x0 ∈ S.

Proof. The morphism F̃rel is nonzero because of Lemma 5.12. And when and only
when it takes zero at x0, the Newton slopes of the factors Mi in the proof of
Lemma 5.12 take values in {2 × 1}, which by the proof of Theorem 3.17 implies
that x0 ∈ S. �

5.4. A mass formula. In this subsection we deduce a mass formula for the su-
persingular locus S from the pair (P0, F̃rel). It is clear that we shall determine the
multiplicity of the Frobenius degeneracy at a supersingular point. To that end we
have the following result:

Proposition 5.15. The vanishing order of F̃rel at each supersingular point is two.

This is a local statement. Take an x0 ∈ S ∩ M0(k). By discussions in §4.1,
there is a Drinfel’d Op-divisible module B′ such that Corollary 4.13 holds. It is
also clear that B′ is supersingular. In this case, it is a formal p-divisible group. By
Proposition 5.7, the above statement can be deduced from the corresponding result
for the universal filtered Dieudonné module associated to a versal deformation of a
Drinfel’d Op-divisible module. To this end we shall apply the theory of display for

a local expression of the Frobenius. Note that Sym2N0⊗
⊗r−1

i=1 det(Ni) is contained

as a direct factor in
∧2(

⊗r
i=0 Ni) (resp. Sym2(

⊗r
i=0 Ni)) for r even (resp. odd).

The induced Frobenius on the factor Sym2N0 ⊗
⊗r−1

i=1 det(Ni) from the second

wedge/symmetric power of φr
ten on

⊗r
i=0 Ni is denoted by φr

ten
⊗2. We then have

the following.

Proposition 5.16. The vanishing order of φN0
mod p on N0

Fil1N0
along the equal

characteristic deformation at the point [B′] is one, and that of
φr
ten

⊗2

pr−1 mod p on
Sym2N0

Fil1Sym2N0
⊗
⊗r−1

i=1 detNi is two.

Proof. Note that it suffices to write the display over the equal-characteristic defor-
mation (see [22], [23], §2 [13]). For simplicity we shall take r = 2 in the following
argument. The proof for a general r is completely the same. Let (N,F, V ) be
the covariant Dieudonné module of the Cartier dual of the Drinfel’d Op-divisible
module B′ over k̄. So we have the eigen-decomposition N = N0 ⊕N1 with respect
to the endomorphism Op

∼= Zp2 . Choose a basis {Xi, Yi} for Ni, i = 0, 1. To write
the display, we need to arrange the order of the basis elements into {Y0, X1, Y1, X0}
with the understanding that X0 modulo p is the basis element of V N

pN which is a
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one dimensional k̄-vector space. Then the display under the chosen basis is given
by the matrix:

(
A3×3 B3×1

C1×3 D1×1

)
=

⎛
⎜⎜⎝

0 c1 d1 0
b1 0 0 a1
b2 0 0 a2
0 c2 d2 0

⎞
⎟⎟⎠ .

This is an invertible matrix; i.e., det

(
a1 b1
a2 b2

)
· det

(
c1 d1
c2 d2

)
is a unit. Since

both determinants are elements in W (k̄), it implies that each determinant is a
unit in W (k̄). The universal equal-characteristic deformation ring of B′ as a p-
divisible group is k̄[[t0, t1, t2]]. Let Ti ∈ W (k̄[[t0, t1, t2]]) be the Teichmüller lifting
of ti for 0 ≤ i ≤ 2. Then by Norman [22] and Norman-Oort [23] the display over

the universal equal-characteristic deformation is given by

(
A+ TC B + TD

C D

)
,

where T =
(
T0 T1 T2

)t
, and the Frobenius on the universal display is given

by

M1 :=

(
A+ TC p(B + TD)

C pD

)
.

We need to determine the one dimensional sublocus of Spf(k̄[[t0, t1, t2]]) where B′

deforms as a Drinfel’d module. Take s ∈ Zp2 to be a primitive element. Then the
endomorphism of N given by s has the matrix form (using the same basis):

M2 :=

⎛
⎜⎜⎝

ξ 0 0 0
0 ξσ 0 0
0 0 ξσ 0
0 0 0 ξ

⎞
⎟⎟⎠ .

The universal display of the Drinfel’d module has the property that the endomor-
phism matrix commutes with the Frobenius. That is, one has M1M

σ
2 = M2M1.

Now by an easy computation one finds that the one dimensional deformation as
the Drinfel’d module is given by t1 = t2 = 0. Write t = t0. Thus the two-iterated
Frobenius φ2

NB′ on NB′ along the equal-characteristic deformation is displayed by

φ2
NB′{Y0, X1, Y1, X0} = {Y0, X1, Y1, X0}Φ,

where Φ = M1M
σ
1 is equal to⎛

⎜⎜⎝
Φ11 0 0 Φ14

0 Φ22 Φ23 0
0 Φ32 Φ33 0

Φ41 0 0 Φ44

⎞
⎟⎟⎠ .

The nontrivial entries are given by

Φ11 = (bσ1 c1 + bσ2d1) + (bσ1 c2 + bσ2d2)t,Φ14 = (paσ1 c1 + paσ2d1)+(paσ1 c2 + paσ2d2)t,

Φ22 = (b1c
σ
1 + pa1c

σ
2 ) + b1c

σ
2 t

σ, Φ23 = (b1d
σ
1 + pa1d

σ
2 ) + b1d

σ
2 t

σ,

Φ32 = (b2c
σ
1 + pa2c

σ
2 ) + b2c

σ
2 t

σ, Φ33 = (b2d
σ
1 + pa2d

σ
2 ) + b2d

σ
2 t

σ,

Φ41 = bσ1 c2 + bσ2d2, Φ44 = paσ1 c2 + paσ2d2.

Consider first the element Φ11: its modulo p reduction is equal to the iterated
Hasse-Witt map on N0

Fil1N0
. As we require that B′ lies in the supersingular locus
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which is a finite set, it follows that

bσ1 c1 + bσ2d1 = 0 mod p, bσ1 c2 + bσ2d2 �= 0 mod p.

This shows the first assertion in the statement. So we can write that bσ1 c1+ bσ2d1 =
pv1, b

σ
1 c2 + bσ2d2 = u1, where u1 is a unit. Consider the induced Frobenius on

Sym2N0⊗
∧2 N1. We shall compute the coefficient before the element Y 2

0 ⊗X1∧Y1,

which is the basis element of Sym2N0

Fil1Sym2N0
⊗ detN1, under the map

φ2
ten

⊗2

p mod p.

Using the above matrix expression of φ2
NB′ one computes that the local expression

is given by

[−u2
1 det

(
a1 b1
a2 b2

)
det

(
c1 d1
c2 d2

)σ

]t2 + v2t
p + v3t

p2

.

By the previous discussion we know that the coefficient before t2 is a unit. As p is
assumed to be odd, it follows that the multiplicity is equal to two. �

Now the proof of Proposition 5.15 is clear:

Proof. By the construction of F̃rel, its vanishing order at x0 is equal to that of φr

pr−1

mod p on E0

F 1E0
along M̂0,x0

. Note that the closed formal subscheme M̂0,x0
⊂ M̂x0

represents the equal-characteristic deformation direction. By Proposition 5.7, the

restriction of E0 to M̂x0
is naturally isomorphic to ξ̂crys[Sym

2N0 ⊗
⊗r−1

i=1 det(Ni)].
Thus the result follows from Proposition 5.16. �

Corollary 5.17. Let S be the supersingular locus of f0 : X0 → M0. Then in the
Chow ring of M̄0 one has the cycle formula

2S = (1− pr)c1(M0),

where r = [Fp : Qp]. Consequently one has the mass formula

|S| = (pr − 1)(g − 1),

where g is the genus of M0.

Proof. By Propositions 5.14 and 5.15, it follows that

2S = (pr − 1)c1(P0).

By Proposition 5.11, one further has

c1(P0) = −2c1(L0) = −c1(M0).

By taking the degree of the cycle formula, one obtains the mass formula as claimed.
�
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Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 4, 547–608 (1983). MR707328 (85c:14028)

[10] Gerd Faltings, Crystalline cohomology and p-adic Galois-representations, Algebraic analysis,
geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore,
MD, 1989, pp. 25–80. MR1463696 (98k:14025)

[11] Gerd Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Amer.
Math. Soc. 12 (1999), no. 1, 117–144, DOI 10.1090/S0894-0347-99-00273-8. MR1618483
(99e:14022)

[12] William Fulton and Joe Harris, Representation theory, A first course; Readings in Mathemat-
ics. Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. MR1153249
(93a:20069)

[13] E. Z. Goren and F. Oort, Stratifications of Hilbert modular varieties, J. Algebraic Geom. 9
(2000), no. 1, 111–154. MR1713522 (2000g:14034)

[14] Mark Kisin, Crystalline representations and F -crystals, Algebraic geometry and number
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