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Abstract. This paper is devoted to the study of the Higgs bundle associated with the
universal abelian variety over the good reduction of a Shimura curve of PEL type. Due to
the endomorphism structure, the Higgs bundle decomposes into the direct sum of Higgs
subbundles of rank two. They are basically divided into two types: uniformizing type and
unitary type. As the first application we obtain the mass formula counting the number of
geometric points of the degeneracy locus in the Newton polygon stratification. We show
that each Higgs subbundle is Higgs semistable. Furthermore, for each Higgs subbundle of
unitary type, either it is strongly semistable, or its Frobenius pull-back of a suitable power
achieves the upper bound of the instability. We describe the Simpson–Ogus–Vologodsky
correspondence for the Higgs subbundles in terms of the classical Cartier descent.

1. Introduction

Let D be a quaternion division algebra over a totally real field F which is exactly split
at one infinite place of F . By choosing additionally a totally imaginary quadratic field ex-
tension K of F , the data ðD;KÞ allows one to define a Shimura curve of PEL type (see [2]).
In this paper, we study the Higgs bundle ðE; yÞ associated with the universal abelian variety
over M0, which is one of the geometrically connected components of the good reduction of
this Shimura curve modulo p. The passage of the Higgs bundle from char 0 to char p has
two aims. The first is to study the Newton polygon stratification of the moduli space in char
p. A similar method has already been extensively employed in recent years (for example,
see [9], [6], [21]). The prototype of such study is the supersingular locus in the moduli space
of elliptic curves and the classical Deuring formula. From this example one sees a basic
phenomenon occurring in the geometry of a moduli space in char p, namely the degenera-
tion of the relative Frobenius morphism along certain algebraic sublocus of the whole mod-
uli space. The second aim is to investigate the relation between the Higgs bundles over a
char p (or p-adic) field and the topology of the underlying spaces in a char p (or p-adic)
field. In the classical situation, that is, over the field of complex numbers, this is beautifully
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expressed in the work of C. Simpson (see [28]). Recently, analogous theories over a char p

or p-adic ground field have emerged (see [25], [5] and [8]). We intend to apply these new
theories to study the Higgs bundles over Shimura curves of PEL type in char p and mixed
characteristic.

Our results are built on the previous work on the Shimura curves of PEL type, par-
ticularly the work of Carayol [1] and Deligne [2] and the book by Reimann [26]. Let M0 be
the good reduction in char p of the Shimura curve of PEL type associated with the quatern-
ion division algebra D and the imaginary quadratic field K (see Section 2 for details), and
let f0 : X0 !M0 be the universal abelian variety and ðE; yÞ be the associated Higgs bundle.
Let g be the genus of the Shimura curve M0 which is strictly greater than one by our choice
of the level structure (see the end of Section 2). Most of the other notations appearing in the
following are collected at the end of this section.

Theorem 1.1 (Proposition 4.1 and 4.4). The Higgs bundle ðE; yÞ decomposes into the

direct sum of rank two Higgs subbundles:

ðE; yÞ ¼
L
f AF
ðEf; yfÞl ðEf

; y
f
Þ;

where the endomorphism subalgebra OLK HOB acts on the summand Ef (resp. E
f
) via the

character fmod p (resp. fmod p). Assume further that pf 2g. Then for each f A F (resp.
f A F) with fjF ¼ t (resp. fjF ¼ t), the Higgs subbundle ðEf; yfÞ (resp. ðEf

; y
f
Þ) is of maxi-

mal Higgs field (see [30]). Each of the remaining Higgs subbundles in the above decomposi-

tion is of trivial (or equivalently, zero) Higgs field.

The Higgs subbundles of maximal Higgs field are called of uniformizing type; while
those of zero Higgs field are called of unitary type. In char 0, a Higgs bundle of uniformiz-
ing type provides the uniformization of the base Shimura curve (see [30]) while that of uni-
tary type corresponds to a unitary representation of the topological fundamental group.
We then analyze the behavior of the iterated Frobenius morphism on the ð0; 1Þ-component
of each Higgs subbundle and derive the following results.

Theorem 1.2 (Corollary 3.3 and Theorem 5.6). There are only two types of Newton

polygons in M0ðFÞ. Let S be the jumping locus of the Newton polygons. Then one has the

following formula in the Chow ring of M0:

S ¼ 1

2
ð1� p½Fp:Qp�Þc1ðM0Þ:

Taking the degree, one obtains the following mass formula for the Shimura curve M0:

jSj ¼ ð1� p½Fp:Qp�Þð1� gÞ:

From this formula one sees that the number of closed points in the jumping locus of
the Newton polygons is proportional to the topological Euler characteristic of the Shimura
curve M0. We would like to make the following conjecture.

Conjecture 1.3. Let M be the Shimura curve of Hodge type defined by GQ ! GSpQ
with a suitable level structure, where GQ is the Q-group of the units of a quaternion division

algebra D over a totally real field F by restriction of scalars. Let p be a prime number such
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that M0 is the good reduction of M modulo p. Then there are exactly two possible Newton

polygons for the closed points of M0ðFÞ and the cardinality of the jumping locus of the New-

ton polygons is equal to
1

2
ð1� pdÞwtop

�
M0ðCÞ

�
, where d is the local degree ½Fp : Qp� and Fp

is a splitting field of D over p.

In the case of Mumford’s families of abelian varieties the work of R. Noot provides
strong evidence for the above conjecture. He studied the potential good reduction of a sin-
gle abelian variety in a Mumford’s family, as well as its possible Newton polygons, using
Fontaine’s theory (see [23] and references therein). From the proof of the mass formula one
notices that certain Higgs subbundles of unitary type have no contribution to the jumping
of the Newton polygons since the iterated relative Frobenius morphisms do not degenerate
on these subbundles. It turns out that these Higgs subbundles of unitary type carry the
extra property of being strongly semistable, and this property characterizes the Higgs sub-
bundles of unitary type with non-degenerate iterated relative Frobenius actions. This moti-
vates us to study the (Higgs) stability of the Higgs subbundles under the Frobenius pull-
backs in general. For a semistable vector bundle E over a smooth projective curve C in
char p, the invariant nðF �CEÞ (see Section 6 for the definition) measures the extent of the
instability under the Frobenius pull-back. It is non-negative by definition and it is zero if
and only if F �CE is still semistable. E is strongly semistable if nðF n�

C EÞ ¼ 0 for all nf 1. It
is well known that nðF �CEÞ has the upper bound

�
rankðEÞ � 1

��
2gðCÞ � 2

�
(see Theorem

6.2). Thus the extreme opposite of the strongly semistability is the case that

nðF n�
C EÞ ¼ 0; 1e ne n0;

nðF n0�
C EÞ ¼

�
rankðEÞ � 1

��
2gðCÞ � 2

�
:

We write the GalðL jQÞ-orbit of F containing the uniformizing place t as follows:

HomQp
ðLp;QpÞ ¼ ff1; . . . ; fd ; f�1 ; . . . ; f�dg

with f1jF ¼ f�1 jF ¼ t such that the Frobenius automorphism s A GalðLp jQpÞ acts on the
orbit via the cyclic permutation. Thus we have the following theorem.

Theorem 1.4 (Proposition 6.1, 6.3, and 6.6). Assume that pf 2g. Then the following

statements are true:

(i) Each Higgs subbundle in Theorem 1.1 is Higgs semistable of slope zero. In particu-

lar, the Higgs subbundles of unitary type are semistable.

(ii) For f B HomQp
ðLp;QpÞ, the Higgs subbundle ðEf; yfÞ of unitary type is strongly

semistable (even étale trivializable). The same is true for its bar counterpart.

(iii) For fi A HomQp
ðLp;QpÞ with i3 1, the Higgs subbundle ðEfi ; yfiÞ of unitary type

satisfies

nðF n�
M0

EfiÞ ¼ 0; 1e ne d � i;

nðF d�iþ1�
M0

EfiÞ ¼ 2g� 2:

The same is true for the f�i -summand with i3 1 and for its bar counterpart.
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For several reasons we are motivated to examine the Simpson–Ogus–Vologodsky
correspondence (see [25]) for the Higgs subbundles in Theorem 1.1. Let ðH1

dR;‘Þ be the first
relative de Rham bundle of f0 with the canonical Gauss–Manin connection, which has also
an eigen-decomposition under the OLK -action (see Proposition 4.1). Let Fcon be the conju-
gate filtration on H1

dR, which is equally as important as the Hodge filtration in char p

geometry.

Theorem 1.5 (Theorem 7.3 and Corollary 7.4). Assume that

pfmaxf2g; 2ð½F : Q� þ 1Þg.

Then for each f A F, the Cartier transform of the direct summand ðH1
dR;f;‘fÞ of ðH1

dR;‘Þ is
just the Cartier descent of GrFcon

ðH1
dR;f;‘fÞ. The same is true for its bar counterpart. As a

consequence, for fi in Theorem 1.4(iii), the Harder–Narasimhan filtration on F d�iþ1�
M0

Efi is

identified with the Hodge filtration on H1
dR;f�1

. It is similar for the star and bar counterparts.

By the above theorem one sees that the non-strongly semistable Higgs subbundles of
unitary type are closely related to the Higgs subbundles of uniformizing type. In some sense
one should consider these two types of Higgs subbundles as the same one. Compared with
its char 0 analogue, the topological meaning of the Higgs subbundles of uniformizing type
is still unclear to us.

The paper is organized as follows. In Section 2 the construction of a Shimura curve of
PEL type is briefly reviewed. In Section 3 some known results about Dieudonné modules of
the abelian varieties corresponding to the points on M0ðFÞ are summarized. In Section 4 the
decomposition of the Higgs bundle and the basic properties of the Higgs subbundles are
established. Applying the results in Section 3 and Section 4, we obtain the mass formula
for the Shimura curve M0 in Section 5. In Section 6 the Higgs semistability as well as the
semistability under Frobenius pull-backs of the Higgs subbundles are discussed. The de-
scription of the Simpson–Ogus–Vologodsky correspondence for the Higgs subbundles is
contained in Section 7.

Notations and Conventions. (i) For a prime q of a number field E, Eq means the
completion of E with respect to q. For a field E of char 0 (local or global), OE is the ring
of integers in E and E is an algebraic closure of E. Qur

p is the maximal unramified sub-
extension of Qp. Denote by k a finite field of char p and by F an algebraic closure of k.
Let s A GalðF j FpÞ be the Frobenius automorphism, defined by x 7! xp. It is restricted to
the Frobenius automorphism of k. For F, denote by W ðFÞ the ring of Witt vectors and
one has the canonical lifting of the Frobenius automorphism of F to WðFÞ, which is again
denoted by s. It is similar for WðkÞ and k.

(ii) In this paper, F is a fixed totally real number field of degree nf 2, and p is a
rational prime number which is unramified in F . K and L are two fixed imaginary qua-
dratic field extensions of F (see Section 2 for details). We put C ¼ HomQðF ;RÞ and
F ¼ HomQðL;QÞ. D is a fixed quaternion division algebra over F , which is exactly split
at one infinite place t A C of F .

(iii) For an algebraic variety X over k, one denotes by FX the absolute Frobenius
morphism. For a morphism f : X ! Y over k one has the following commutative diagram
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of Frobenius morphisms:

X ���!FX jY
X 0 ���!pX jY

X???yf 0

???yf

Y ���!
FY

Y :

 ���
��

f

where the square in the diagram is the fiber product, FX jY is the relative Frobenius mor-
phism and pX jY �FX jY ¼ FX . For a vector bundle E over X in char p, sometimes we de-
note the (iterated) Frobenius pull-back F �nX E (nf 1) by Eðp

nÞ.

(iv) In this paper, the term ‘reduction modulo p’ means the following: let R be a DVR
of mixed characteristic ð0; pÞ with the residue field kðRÞ, andM be an object defined over R,
which can be a module or a scheme. Then the reduction of M modulo p is the base change
of M from R to kðRÞ.

Acknowledgment. We would like to thank the referee for his/her careful reading of
our paper and helpful advice. We thank C. Deninger for useful discussions on [4] and [5].
Special thanks go to A. Langer for his useful comments on Section 6 and particularly the
clarification of a main result in [17] (see Theorem 6.5).

2. Quaternion division algebras and the good reduction of a Shimura curve

Let D be a quaternion division algebra over F , which is split at the infinite place t
and ramified at all remaining infinite places. That is, one has the following isomor-
phisms:

DnF ; t RGM2ðRÞ; and DnF ;cRGH for c3 t;

where H is the Hamiltonian quaternion algebra over R. One considers the F -group of the
units D� as a Q-group by restriction of scalars and defines a homomorphism of real alge-
braic groups:

hD : S ¼ C� ! D�ðRÞGGL2ðRÞ � ðH�Þn�1;

z ¼ xþ iy 7! ð x y

�y x

� �
; 1; . . . ; 1Þ:

The D�ðRÞ-conjugacy class X of hD defines a Shimura curve ShD over the reflex field F ,
where F is considered as a subfield of C via the embedding t. For every open compact sub-
group CHD�ðA f Þ, ShD;C ¼ ShD=C is a projective curve over F , and one has the identifi-
cation of its complex points

ShD;CðCÞ ¼ D�ðQÞn
�
X �D�ðA f Þ

�
=C;

where Af is the ring of finite adèles of Q and D� acts on X by the conjugation and on the
second summand by the left multiplication.
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In certain cases ShD;CðCÞ is known to parameterize the principally polarized abelian
varieties over C with special Mumford–Tate groups (see for example [22], §4 and [30], §5).
It belongs to the category of Shimura varieties of Hodge type. In this paper we are going to
study a related Shimura curve ShG which is of PEL type. However the Shimura curve of
Hodge type provides the motivation for the further study of the current paper. Now we re-
call the so-called ‘modèle étrange’ construction in [2]. First we need to choose an imaginary
quadratic field QðaÞ with a A C such that p is split in it. We put the composite K ¼ FðaÞ
and it will be fixed in the whole discussion. Considering F� and K� as Q-groups, we define
a new Q-group G by the following short exact sequence:

1! F� ! D� � K� !p G ! 1;

where F � ! D� � K� is given by f 7! ð f ; f �1Þ. We fix a subset CK HHomQðK;CÞ
which induces a bijection to C by restriction to F . Note that CK is obtained by the trivial
extensions of all embeddings of F into C to embeddings of K ¼ F þ Fa into C. One has an
identification K�ðRÞG

Q
c AC

C� and defines

hK : S! K�ðRÞ ¼ C� �
Q
c3t

C�; z 7! ð1; z; . . . ; zÞ:

Let X 0 denote the conjugacy class of

hG ¼ pR � ðhD � hKÞ : S! GðRÞ:

It defines a Shimura curve ShG over K, where K is a subfield of C via the map t A CGCK .
A compact open subgroup C of GðAf Þ defines a projective curve ShG;C . For a suitable
C 0HD�ðAf Þ, the neutral component of ShD;C 0 and ShG;C are isomorphic to each other
over certain number field (see [26], §1). The Shimura curve ShG;C parameterizes the isogeny
classes of abelian varieties over K with PEL structure which we describe briefly as follows.
Let B ¼ DnF K. Define the natural involution on B by the formula

ðxn yÞ0 ¼ x�n y;

where � is the main involution on D and � is the complex conjugation on K which is the
generator of GalðK jFÞ. Let V be the underlying Q-vector space of B. There exists a non-
degenerate alternating Q-bilinear form

Y : V � V ! Q

such that Yðbx; yÞ ¼ Yðx; b 0yÞ for all b A B, x; y A V . It turns out that G is the group of
B-module automorphisms of V preserving the bilinear form. So one has the natural linear
representation xQ : GðQÞ ¼ AutBðV ;YÞHAutQðVÞ.

We write pOF ¼
Qr
i¼1

pi. By fixing an embedding Q! Qp, one obtains a bijection be-

tween C ¼ HomQðF ;QÞ and
‘r
i¼1

HomQp
ðFpi ;QpÞ. After a rearrangement of indices we can

assume that, under the above bijection, t lies in HomQp
ðFp1 ;QpÞ. We fix the notation

p ¼ p1 for the whole paper. Since p is split in QðaÞ by assumption, piOK ¼ qiqi for each i,
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where the two primes of K over pi are distinguished in such a manner that CK is bijectively

mapped onto
‘r
i¼1

HomQp
ðKqi ;QpÞ under the previous identification map. Now we fix a to-

tally imaginary quadratic extension L of F which is contained in D. Then L splits D glob-
ally. Namely there is an isomorphism of L-algebras DnF LGM2ðLÞ. Furthermore one
can assume that each pi stays prime in L. So the composite field LK is particularly un-
ramified over p. One writes the prime ideal decomposition as

pOLK ¼
Qr
i¼1

qiqi;

and one has a natural isomorphism of Qp-algebras

LKnQ Qp G
Qr
i¼1

LKqi � LKqi
:

Moreover for each i one has an isomorphism LKqi nQp
Qur

p G
Q

HomQp ðLKqi
;QpÞ

Qur
p . It is simi-

lar for the bar counterpart. Then we obtain an isomorphism of Qur
p -algebras

LKnQ Qur
p G

Qr
i¼1

� Q
HomQp ðLKqi

;QpÞ
Qur

p �
Q

HomQp ðLKqi
;QpÞ

Qur
p

�
:

It induces on the rings of integers a Zp-algebra isomorphism. One can simplify the nota-
tions by using the identification

HomQðLK ;QÞ ¼
‘r
i¼1

HomQp
ðLKqi ;QpÞ �HomQp

ðLKqi
;QpÞ;

and the partition HomQðLK;QÞ ¼ F
‘

F, where F ¼ HomQðL;QÞ is identified with the
subset of HomQðLK ;QÞ by extending each embedding of L into Q to an embedding of
LK ¼ LðaÞ ¼ Lþ La into Q which is the identity on a. Thus we write the above isomor-
phism of Zp-algebras in the form:

Q
f AF

wðfÞ � wðfÞ : OLK nZW ðFÞ !@
Q
f AF

WðFÞ �WðFÞ;ð1Þ

where for each f A F, wðfÞ A HomQp
ðLKqi ;QpÞ and wðfÞ A HomQp

ðLKqi
;QpÞ for certain i.

By abuse of notations we also write the character wðfÞ (resp. wðfÞ) as f (resp. f ) simply. In
the following we come to an important notion for this section.

Definition 2.1. Let S be an OFp
-scheme and E be a locally free coherent OS-sheaf. It

is said to be a sheaf of type ðL;CKÞ if OLK HEndOSðEÞ and EnZ WðFÞ has a decomposi-
tion induced by the isomorphism (1) as follows:

EnWðFÞ ¼
L
f AF
ðEflE

f
Þ;ð2Þ
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where Ef corresponds to the character wðfÞ and E
f
corresponds to the character wðfÞ with

the rank condition: Ef and E
f
are of rank one if fjF ¼ t, while Ef is of rank two and E

f
¼ 0

if fjF 3 t.

In order to define a level structure one shall choose an integral structure of the
Q-vector space V . One chooses an order OD of D containing OL with certain additional
properties (see [26], §2), and put OB ¼ ODnOF OK (so OLK HOB). Then one takes the lattice
VZ of V to be the free Z-module OB and puts GðZÞ ¼ AutOBðVZ;YÞ. Thus one has an inte-
gral structure x : GðZÞ ! AutZðVZÞ of the Q-algebraic group morphism xQ.

Proposition 2.2 (Proposition 2.14 and Corollary 3.14 in [26]). For every level struc-

ture C ¼ Cp � CpHGðAf Þ with Cp ¼ GðZpÞ and C p small enough, there exists a proper

OFp
-scheme MC which is the coarse moduli space of certain moduli functor of PEL type (see

Proposition 2.14 in [26] for the description of the moduli functor) with the endomorphism al-

gebra OB. Furthermore, if D is assumed to be split at p, then the reduction MC modulo p is

smooth over F.

We take one of the geometrically connected components M of MC with the reduction
M0 modulo p. For our purpose we shall take Cp small enough so that we have the univer-
sal abelian scheme f : X!M. Under this assumption the genus of M must be strictly
greater than one. By the construction of the moduli functor, the injection OB ,! EndMðXÞ
turns R1f�OX into a sheaf of ðL;CKÞ-type.

3. Dieudonné modules and Newton polygons

Let A be an abelian variety which is represented by an F-rational point of M0. Let�
D ¼ DðAÞ;F;V

�
be the associated (contravariant) Dieudonné module. D is a free

W ðFÞ-module of rank 8n and one has the identifications of k-vector spaces:

D=pD ¼ H 1
dRðAÞ; VD=pD ¼ H 0ðA;WAÞ; D=VDðAÞ ¼ H 1ðA;OAÞ:

In this section we shall analyze the structure of D in the presence of the endomorphism
structure. Actually, since OB HEndðAÞ, it follows that OB HEndðDÞ and particularly
OLK HEndðDÞ. Therefore D is an OLK nZ WðFÞ-module. The isomorphism (1) in Section
2 gives the decomposition

D ¼
L
f AF
ðDf lD

f
Þ:

We put for 1e ie r the local degree fi ¼ ½Fpi : Qp� and Lpi ¼ LnF Fpi . For an element
f A F one defines f� A F to be the other element whose restriction to F is the same as that
of f. The following proposition contains the basic properties of each direct summand in the
above decomposition.

Proposition 3.1. The Dieudonné module D has the following properties:

(i) OLK acts on Df (resp. D
f
) via the character wðfÞ (resp. wðfÞ).
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(ii) There is an endomorphism P A OB nZp which induces a morphism P : Df ! Df� .

It is an isomorphism for fjF ¼ t.

(iii) For fjF 3 t, FðDfÞ ¼ Dsf. For fjF ¼ t, pDsf kFDfkDsf.

(iv) For each f A F, both Df and D
f
are of rank 2.

(v) The polarization induces a perfect alternative pairing between Df and D
f
. More-

over Df ? Df 0 unless f
0 ¼ f. Thus Df and D

f
are dual to each other.

Proof. (i) follows from the definition. The existence of P A OB nZp with the prop-
erty as in (ii) is actually a part of the conditions on OB (see [26], §2). Clearly F commutes
with the OB-action on D. Since F is s-semilinear, one has FðDfÞLDsf by (i). Similarly
one has VðDsfÞLDf. For a fixed f we consider the short exact sequence

0!VðDsfÞ
pDf

! Df

pDf

! Df

VDsf

! 0:

By the rank condition in Definition 2.1, one has dimF

Df

VDsf
is equal to one if fjF ¼ t, and

equal to two if fjF 3 t. Moreover dimF

Dsf

VD
f

is equal to one in the former case and zero

in the latter case. By duality, namely H 0ðA;WAÞ�GH 1ðAt;OAtÞ with At the dual abelian

variety of A, it follows that dimF

VðDsfÞ
pDf

is equal to one in the former case and equal

to zero in the latter case. So in both cases dimF

Df

pDf
¼ 2 and therefore rankWðFÞDf ¼ 2.

(iv) follows from (v). By the above proof, we have VðDsfÞ ¼ pDf for fjF 3 t and
pDf kVðDsfÞkDf otherwise. By applying F to both sides and dividing by p if neces-
sary, one obtains (iii). Finally, since cðlx; yÞ ¼ cðx; l 0yÞ for all x; y A D and l A B. We take
two idempotents lf, lf 0 with lf A ðOLKÞf and lf 0 A ðOLKÞf 0 . Then cðlfx; lf 0yÞ ¼ cðx; l 0flf 0yÞ ¼ 0
unless f ¼ f 0, since l 0f A ðOLKÞf. Thus (v) follows.

In the following we determine the possible Newton polygons of D. As it is an isogeny
invariant, we introduce the (F-)s-isocrystal ðN ¼ DnZ Q;FÞ, and similarly for f A F, the
direct summand Nf (resp. N

f
) which itself is generally not a sub F-s-isocrystal by the pre-

vious proposition. For each 1e ie r, we put Ni ¼
L

f AHomQp ðLpi
;QpÞ

Nf and similarly for Ni.

Then Ni and Ni are indeed F-s-isocrystals for each i. However if we set Fi ¼ ðF fiPÞjNi
,

then by the relation s fif ¼ f�, one sees that ðNf;FiÞ is indeed an F-s fi -isocrystal for each
f A HomQp

ðLpi ;QpÞ, and similarly for the bar counterpart.

Proposition 3.2. Let ðNi;FÞ be the F-s-isocrystal as above. Then it has the following

possible Newton slopes:

(i) For i ¼ 1 the Newton slopes are either 4f1 � 1=2f1 or 2f1 � ð0; 1=f1Þ.

(ii) For if 2 the Newton slope is 4fi � 0.
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Proof. Since F : Nf ! Nsf is an isogeny of isocrystals, ðNf;FiÞ and ðNsf;FiÞ have
the same Newton slopes. So the computation is reduced to the s fi -isocrystals ðNf;FiÞ of
height 2. Thus the result follows easily from the classification of the isocrystals of height 2
over F (cf. Lemma 4.4 in [26] or [31]). r

We put d ¼ ½Fp : Qp� ¼ f1. The following corollary follows easily from the last prop-
osition.

Corollary 3.3. Let A be an abelian variety which is represented by an F-rational point

of M0. Then the Newton polygon of A is of the following two possible types:

ð4n� 2dÞ � 0; 2d � 1=d; 2d � ð1� 1=dÞ; ð4n� 2dÞ � 1;

and

4ðn� dÞ � 0; 4d � 1=2d; 4d � ð1� 1=2dÞ; 4ðn� dÞ � 1:

Proof. It su‰ces to notice that Ni and Ni are dual to each other as s-isocrystals by
Proposition 3.1 (v) for each i. r

Remark 3.4. We see that there are only two possible Newton polygons for closed
F-points of the moduli space. The existence of the abelian varieties with the given Newton
polygons was shown by Honda–Tate theory. We refer to [1] or [26] for the details.

4. The decomposition of the Higgs bundle over a Shimura curve in char p

Let f : X!M be the universal abelian scheme in Section 2. By abuse of notations
we denote it again by f the base change to Zp. Let f 0 : X0 !M0 be the base change of f

to Qp and f0 : X0 !M0 be the base change to F. Let H1
dR ¼ R1f0�ðW�X0 jM0

; dÞ be the first
relative de Rham bundle over M0. We put the first Hodge bundle E1;0 ¼ f0�W

1
X0 jM0

and the
second Hodge bundle E0;1 ¼ R1f0�OX0

. By the E1-degeneration of the Hodge-to-de Rham
spectral sequence, one has the short exact sequence

0! E1;0 !H1
dR ! E0;1 ! 0:

It is well known that H1
dR is endowed with the Gauss–Manin connection ‘. By taking the

grading ðH1
dR;‘Þ with respect to the Hodge filtration, we obtain the Higgs bundle in char p:

ðE; yÞ ¼ ðE1;0 lE0;1; y1;0l y0;1Þ with y0;1 ¼ 0.

By construction, the endomorphism ring of the universal abelian variety X0 over M0

contains OB. Thus each element b A OB induces a morphism b : X0 ! X0 over M0. Let
OLK HOB be the maximal abelian subgroup as in Section 2. We have the following decom-
position under the OLK -action.

Proposition 4.1. The first relative de Rham bundle ðH1
dR;‘Þ with the Gauss–Manin

connection admits a decomposition into the direct sum of rank two subbundles with an inte-

grable connection

ðH1
dR;‘Þ ¼

L
f AF
ðH1

dR;f;‘fÞl ðH1
dR;f

;‘
f
Þ;
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such that OLK acts on H1
dR;f (resp. H1

dR;f
) via the character fmod p (resp. fmod p). It

induces the decomposition of the Higgs bundle into the direct sum of rank two Higgs sub-

bundles

ðE; yÞ ¼
L
f AF
ðEf; yfÞl ðEf

; y
f
Þ:

Furthermore, by writing

Ef ¼ E
1;0
f lE

0;1
f and E

f
¼ E

1;0

f
lE

0;1

f
;

one has rankE0;1
f ¼ rankE0;1

f
¼ 1 for fjF ¼ t; while for fjF 3 t, one has rankE0;1

f ¼ 2 and

rankE0;1

f
¼ 0.

Proof. The decomposition of H1
dR with respect to the OLK -action follows from Prop-

osition 3.1 (i). Because OLK acts on X0 as endomorphisms over M0, it induces an action on
the relative de Rham complex as endomorphisms of complexes. Taking the hypercohomol-
ogy, it induces an action on the Hodge filtration 0HE1;0 HH1

dR. In other words, E1;0 is an
OLK -invariant subbundle of H1

dR. Thus one has the corresponding decomposition on E1;0.

E0;1 is the quotient bundle
H1

dR

E1;0
. Then for each f (resp. f ), one has an injective morphism

H1
dR;f

E
1;0
f

! E0;1 (resp. for f ) induced by H1
dR !! E0;1. So one has an isomorphism

E0;1 G
L
f AF

H1
dR;f

E
1;0
f

l
H1

dR;f

E
1;0

f

:

Denote
H1

dR;f

E
1;0
f

by E1;0
f (similarly for f ), we obtain the decomposition of E0;1. By the short

exact sequence

0! E
1;0
f !H1

dR;f ! E
0;1
f ! 0;

the bundle Ef ¼ E
1;0
f lE

0;1
f has the same rank as H1

dR;f, which is two by Proposition
3.1 (iv). It is similar for f. It is clear that the resulting decomposition on E0;1 coincides
with the induced action of OLK on R1f0�OX0

¼ E0;1 by taking the higher direct image. Since
the bundle E0;1 is the modulo p reduction of R1f�OX, it is a sheaf of ðL;CKÞ-type. The
assertions about the ranks of E0;1

f and E
0;1

f
follow from the rank condition in Definition

2.1. Finally the OLK -action decomposes the Gauss–Manin connection as well. In fact, in
char 0 one can show that the OLK -action on the relative de Rham bundle is flat with respect
to (in other words, commutes with) the Gauss–Manin connection because the endomor-
phism algebra defines the flat Hodge cycles on the relative Betti cohomology. By reduction
modulo p, the OLK -action also commutes with ‘. Because OLK acts on the direct summands
via the characters, ‘ preserves each direct summand in the decomposition. The Higgs field y

on E decomposes accordingly. r

Corollary 4.2. The Hodge-to-de Rham spectral sequence of the relative de Rham bun-

dle R1f�ðWX jM; dÞ degenerates at E1-level. By taking the grading of
�
R1f�ðWX jM; dÞ;‘

�
with

respect to the Hodge filtration, one obtains the Higgs bundle ð ~EE; ~yyÞ over M. The OLK-action

on the universal abelian scheme X over M as endomorphisms induces a decomposition of
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Higgs bundles

ð ~EE; ~yyÞ ¼
L
f AF
ð ~EEf; ~yyfÞl ð ~EEf

; ~yy
f
Þ:

The modulo p reduction of the above decomposition is the one over M0 given in Proposition

4.1.

Proof. It su‰ces to show the E1-degeneration of the Hodge-to-de Rham spectral se-
quence of f . It is equivalent to show that the natural morphism f�WX jM ! R1f�ðWX jM; dÞ
is injective. By tensoring with Q, the above morphism is injective by the well-known
E1-degeneration of the Hodge-to-de Rham spectral sequence for the first relative de Rham
bundle of f 0 (the generic fiber of f ). So the kernel of the morphism consists of only
p-torsions. By modulo p and the E1-degeneration of the closed fiber f0 of f , there are actu-
ally no p-torsions. Thus the Hodge-to-de Rham spectral sequence of f degenerates at
E1-level as well. r

Next we proceed to deduce some basic properties of the Higgs subbundles from the
above proposition. According to this proposition, the Higgs subbundle ðEf; yfÞ (resp.
ðE

f
; y

f
Þ) has two nontrivial parts, namely, the ð1; 0Þ-part and the ð0; 1Þ-part, if and only if

fjF ¼ t (resp. fjF ¼ t). It is clear that there are totally four such direct summands in the
decomposition. We consider them first.

Proposition 4.3. Let f, f� be two unique elements of F whose restriction to F is equal

to t. Then one has an isomorphism of Higgs bundles ðEf; yfÞG ðEf� ; yf�Þ. One has also an

isomorphism for the bar counterpart.

Proof. In case of fjF ¼ t the endomorphism P A OB nZp of X0 over M0 induces the
endomorphism P A EndðH1

dRÞ which is in fact an automorphism. By restricting P to each
closed point in M0, one knows from Proposition 3.1 (ii) (modulo p) that it induces an iso-
morphism P : H1

dR;f !H1
dR;f� . Since P commutes with the Gauss–Manin connection and

the Hodge filtration, it induces an isomorphism of Higgs bundles by taking the grading
with respect to the Hodge filtration:

P : ðEf; yfÞG ðEf� ; yf�Þ: r

The following result asserts that the chern class of the base Shimura curve M0 is in
fact represented by the second Hodge bundle of the Higgs subbundles appearing in the
above proposition. This is one of significant features of the above Higgs subbundles.

Proposition 4.4. Assume that pf 2g. Then for f A F with fjF ¼ t, the Higgs bundle

ðEf; yfÞ in char p is of maximal Higgs field. Consequently one has the equality

c1ðE0;1
f Þ ¼

1

2
c1ðM0Þ:

Analogous statements hold for the bar counterpart.

Proof. The Higgs subbundle ðEf ¼ E1;0
f lE0;1

f ; yfÞ is the modulo p reduction of the
Higgs bundle ð ~EEf; ~yyfÞ over M by Corollary 4.2. For fjF ¼ t, the Higgs bundle ðE0

f ; y
0
fÞ,
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that is the base change of ð ~EEf; ~yyfÞ to M0, is actually of maximal Higgs field (see [30]).

That is, the Higgs field y0f
1;0

: E0
f

1;0 ! E0
f

0;1
nWM0 is an isomorphism. Then under the as-

sumption on p, we claim that the Higgs field in char p must be maximal. In fact, the Higgs
field y1;0f can not be zero. Otherwise, the Higgs subbundle ðE1;0

f ; 0Þ of ðEf; yfÞ is of non-
positive degree by the Higgs semistability (see Proposition 6.1). This is in contradiction
with the fact that

degE1;0
f ¼ degE0

f

1;0 ¼ 1

2
degWM0 ¼ g� 1 > 0:

Since y1;0f is a nonzero morphism between line bundles with the same degree, it must be an
isomorphism.

Moreover E0
f

0;1
is isomorphic to the dual E0

f

1;0�
of E0

f

1;0
. By the theorem of Langton

([19], Main Theorem A 0), the isomorphism extends to an isomorphism E0;1
f GE1;0�

f . Thus

the maximality of yf implies that ðE0;1
f Þ

2 GTM0
. Taking the cycle classes of both sides of

the isomorphism, we obtain the claimed formula. r

We believe that one can remove the condition on the prime p in the above proposi-
tion. It is clear that these Higgs subbundles in the decomposition of ðE; yÞ are divided into
two types: one is of maximal Higgs field and the other is of zero Higgs field. This is the
char p analogue of the corresponding result in [30] in the char 0 case.

5. The Newton polygon jumping locus of the Shimura curve

In this section we prove the mass formula for the Shimura curve M0. We refer to [7]
for the definition of the Newton polygon stratifications and other related notions. By Cor-
ollary 3.3, there are only two possible Newton polygons for points in M0ðFÞ. We denote
by S the subset of M0ðFÞ consisting of the closed points for which the Newton polygon
jumps. By a theorem of Grothendieck–Katz (see [15]), the Newton polygon jumps under
specialization, and S is an algebraically closed subset of MðFÞ. In particular, the cardinal-
ity of S is finite.

We find that the morphisms Fn
X0 jM0

: F n�
M0

E0;1 ! E0;1, nf 1, where Fn
X0 jM0

is the
composition of relative Frobenius morphisms (see [15] and [21]), can be applied to compute
the number jSj, as is very interesting. One notices that the restriction of FX0 jM0

induces a

morphism FX0 jM0
: F �M0

E
0;1
f ! E

0;1
sf for each f A F, since the Frobenius morphism on D is

s-semilinear. Since each prime of F is inert in L, we shall use the same letter p to denote the
prime of L lying over the prime p of F . We write the subset of F as

HomQp
ðLp;QpÞ ¼ ff1; . . . ; fd ; f�1 ; . . . ; f

�
dg;

in such a way that f1jF ¼ f�1 jF ¼ t, and the Frobenius automorphism s, which is the gen-
erator of GalðLp jQpÞ, acts on the set as the cyclic permutation of 2d letters. For example,
sfd ¼ f�1 , sf

�
d ¼ f1, and so on.

Proposition 5.1. The notations are as above and all morphisms in the following are the

relative Frobenius morphisms. Let f A F. Then the following statements hold:
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(i) For f A HomQp
ðLp;QpÞ, one has two possibilities:

(i.1) If d ¼ 1, then F �M0
E

0;1
f1
! E

0;1
f�1

is nonzero. The same holds for F �M0
E

0;1
f�1
! E

0;1
f1

and the bar counterparts. Moreover, they have the same zero locus.

(i.2) If df 2, then F �M0
E

0;1
f1
! E

0;1
f2

is injective, F �M0
E

0;1
fd
! E

0;1
f�1

is surjective, and for

the bar counterparts,

ðFX0 jM0
Þj
F �
M0

E
0; 1

f1

¼ ðFX0 jM0
Þj
F �
M0

E
0; 1

f�
1

¼ 0:

Moreover if df 3, then F �M0
E

0;1
fi
! E

0;1
fiþ1

is an isomorphism for 2e ie d � 1.

(ii) For f B HomQp
ðLp;QpÞ, one has an isomorphism

FX0 jM0
: F �M0

E0;1
f GE0;1

sf :

Proof. We adopt a pointwise argument here. Let t A M0ðFÞ and let A be the fiber of
f0 over t. Let

�
DðAÞ;F;V

�
be the Dieudonné module of A. We first discuss the df 2 case.

Since FX0 jM0
ðF �M0

E
0;1

f1
ÞHE

0;1

sf1
and E

0;1

sf1
¼ 0 for ðsf1ÞjF 3 t, we have FX0 jM0

j
F �
M0

E
0; 1

f1

¼ 0

and similarly for the f�1 -summand. Now we assume df 3 and look at the morphism
F �M0

E
0;1
fi

GE
0;1
fiþ1

for 2e ie d � 1. Without loss of generality we discuss this only for i ¼ 2.

Since fijF 3 t for i ¼ 2; 3, we have dimF

DðAÞfi
pDðAÞfi

¼ 2. FurthermoreV
�
DðAÞf3

�
¼ pDðAÞf2

by Proposition 3.1 (iii). We consider the s-semilinear map

Fmod p :
DðAÞf2
VDðAÞf2

!
DðAÞf3
VDðAÞf3

induced by F : DðAÞf2 ! DðAÞf3 . It is known that the above map is simply the Hasse–

Witt map after identifying the spaces
DðAÞfi
pDðAÞfi

¼ H 1ðA;OAÞfi . Now for e A DðAÞf2 , we

have that emod p A kerðFmod pÞ if and only if FðeÞ A pDðAÞf3 , and if and only if
e A V

�
DðAÞf3

�
¼ pDðAÞf2 (by applying V or F to both sides). So one sees that Fmod p

is injective. Hence it must be surjective for the dimensional reason. This proves the isomor-
phism in (i.2) for i ¼ 2 and similarly we have the isomorphisms in (ii). The similar argu-

ment proves the injectivity of F �M0
E

0;1
f1
! E

0;1
f2

and the surjectivity of F �M0
E

0;1
fd
! E

0;1
f�1

fol-
lows by duality.

It remains to show the d ¼ 1 case. In this case, the result in Corollary 3.3 tells us that
the p-rank of abelian varieties in M0ðFÞ is either 4ðn� 1Þ or 4n. Now by (ii), all of the
f-summands with f B HomQp

ðLp;QpÞ have contributions to the p-rank. The existence of
closed points of p-rank 4ðn� 1Þ implies that each of the four morphisms in (i) can not be
zero. Moreover, because of the existence of the other p-rank, all of the four morphisms will
vanish at a point t as soon as one of them vanishes at t. r

Now we consider the composition of the relative Frobenius morphisms

Fd
X0 jM0

: E0;1
f1

ðpd Þ ! E0;1
f2

ðpd�1Þ ! � � � ! E0;1
fd

ðpÞ ! E0;1
f�1

:
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As a consequence of the above analysis of the relative Frobenius morphisms, we have the
following

Proposition 5.2. Let t A M0ðFÞ. Then t A S if and only if the map

Fd
X0 jM0

: E0;1
f1

ðpd Þ ! E0;1
f�1

vanishes at t.

Proof. For simplicity we put h¼Fd
X0 jM0

. The d ¼ 1 case follows directly from Prop-
osition 5.1 (i). Assume df 2. One direction is clear. Namely if t A S, then the restriction
of h to the f1-summand must be zero at t by Proposition 5.1 (ii). We proceed to show the
converse direction. Again by Proposition 5.1 (ii) the f-summands with f B HomQp

ðLp;QpÞ
have no contribution to the jumping of the Newton polygons and we only need to consider
f A HomQp

ðLp;QpÞ. It is clear that h maps the fi-summand to the f�i -summand and the

f�i -summand to the fi-summand for 1e ie d. For example, one has hðE0;1
f�1

ðpd ÞÞHE0;1
f1

.

Note that for the f-summand with fjF 3 t the rank of h must be reduced by at least one
and thus it contributes to the p-rank at most by one. There are 2ðd � 1Þ such summands in
all. By the assumption h vanishes at t on the f1-summand. Applying the endomorphism P
one sees that h vanishes at t on the f�1 -summand too. It implies that the p-rank at t is at
most 4n� 2d � 2 by Proposition 5.1 (i.2), and therefore the p-rank can not be 4n� 2d.
Since there are only two possibilities for the p-ranks at t A S. From the above proof, we
also see that the restriction of h to each f-summand with f A HomQp

ðLp;QpÞ vanishes at t
if and only if t A S. r

Furthermore, we have

Proposition 5.3. The zero locus of Fd
X0 jM0

: E0;1
f1

ðpdÞ ! E0;1
f�1

is reduced. In other

words, the zero divisor of the global section of the line bundle

ðE0;1
f1

ðpdÞÞ�1 nE
0;1
f�1

defined by Fd
X0 jM0

is of multiplicity one.

Before we show this result, we make a digression into the display theory of Dieu-
donné modules. By a theorem of Serre–Tate ([16]), the equi-characteristic deformation of
an abelian variety A in positive characteristic is the same as that of its p-divisible group
AðpÞ. The latter is determined by the display of the Dieudonné module D

�
AtðpÞ

�
(see [24]

and the references therein). This is also true when polarizations and endomorphisms are
considered. We put D ¼ D

�
AtðpÞ

�
and recall that we have the following decomposition:

D ¼
L
f AF
ðDf lD

f
Þ;

where F ¼ HomQðL;QÞ.

Lemma 5.4. There exists a basis fXf;Yf;Xf
;Y

f
j f A Fg of D, such that

(i) fXf;Yfg is a basis for Df, and X
f
, Y

f
is the dual basis of D

f
.

(ii) For fjF ¼ t, Yf;Xf
A VðDÞ; while for fjF 3 t, X

f
;Y

f
A VðDÞ.
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Proof. Note that for f A F, we have a short exact sequence:

0!VDsf=pDf ! Df=pDf ! Df=VDsf ! 0:

For fjF 3 t, the statements in (i) and (ii) are obvious, by Proposition 3.1. For fjF ¼ t, first
of all, we prove that we can choose a basis Xf, Yf for Df, such that Yf A VðDsfÞ. In this
case, by Proposition 3.1, the dimensions of the terms appearing in the above exact sequence
are in turn 1, 2, 1. Let Xf;Yf A Df, such that the image of X f generates Df=VDsf as vec-
tor space, and Yf generates VðDsfÞ as vector space. Then Xf, Yf generate Df=pDf. By
Nakayama’s lemma, Xf, Yf is a basis of Df with Yf A VðDsfÞ. Secondly, we prove that
there is a dual basis X

f
, Y

f
of D

f
, such that X

f
A VðDÞ. Similarly as above, we can find a

basis x, y of D
f
with y A VðDÞ. Let

H ¼ a b

c d

� �

be the intersection matrix of Xf, Yf and x, y. Thus we have the valuation vpðdÞ > 0,
b, c are invertible and H is invertible. By solving a system of linear equations, we see

that X
f
¼ 1

detðHÞ ðdx� cyÞ and Y
f
¼ 1

detðHÞ ð�bxþ ayÞ satisfy the requirements, since

vpðdÞ > 0 implies that dx ¼ p d 0x ¼VFðd 0xÞ A VðDÞ. r

Under this basis of D, the corresponding display is

A B

C D

� �
;

where the matrix A, C are (we take n ¼ 2, d ¼ ½Fp : Qp� ¼ 2 for example)

A ¼

0 0 0 0 a1 c1 0 0

a2 0 0 0 0 0 0 0

b2 0 0 0 0 0 0 0

0 a1� c1� 0 0 0 0 0

0 0 0 a2� 0 0 0 0

0 0 0 b2� 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

and

C ¼

0 0 0 0 b1 d1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 b1� d1� 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:
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Here the basis is arranged in an obvious manner. In this case, the Frobenius is given by the

matrix
A pB

C pD

� �
.

Lemma 5.5. Let R ¼ kJtK. The OB-action can be extended to specðRÞ. Hence the dis-

play of the infinitesimal universal deformation is given by

Aþ TC pðBþ TDÞ
C pD

� �
;

where T is the Teichmüller lifting of t (that is, T ¼ ðt; 0; . . .Þ). In particular, the matrix

Aþ TC, read mod p, is the Hasse–Witt matrix of the deformation corresponding to T.

Proof. It is known from Proposition 2.2 that the local deformation ring of the
Shimura curve is regular on one parameter. Let DR be the display over R. Then

DR ¼
L
f AF
ðDR;flD

R;fÞ;

where DR;f (resp. DR;f
) is obtained from Df (resp. Df

) by extending scalars to W ðRÞ, with
the naturally given action of WðkÞ on each component. Recall that the action of OLK is
defined via the map

OLK !
L
f

�
WðkÞlW ðkÞ

�
; a 7!

�
. . . ;wðfÞðaÞ; wðfÞðaÞ; . . .

�
:

This is a map of Dieudonné modules if and only if it commutes with the Frobenius; that is,
if and only if

M1M
s
2 ¼M2M1;

where

M1 ¼
Aþ TC pðBþ TDÞ

C pD

� �
;

M2 ¼
diag

�
. . . ;wðfÞðaÞ; . . . ; wðfÞðaÞ; . . .

�
0

0 diag
�
. . . ;wðfÞðaÞ; . . . ; wðfÞðaÞ; . . .

� !
:

It is easy to verify that this is true, by a direct computation. r

Now we come to the proof of Proposition 5.3.

Proof. The universal Dieudonné module DR is displayed by the matrix

A ¼ Aþ TC Bþ TD

C D

� �
:

Now we show that the locus of Fd is of multiplicity one. For this we put

Vd ¼Vd
X0 jM0

: E1;0

f�
1

! E0;1

f1

pd

;
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which is the dual of Fd . It is then equivalent to show that the zero locus of Vd is of mul-
tiplicity one. Moreover, for simplicity we just take n ¼ d ¼ 2 in the following argument,
and the argument for the general case is completely the same. The following matrix
mod p is the Hasse–Witt matrix of the Frobenius of the local deformation:

Aþ TC ¼

0 0 0 0 a1 þ tb1 c1 þ td1 0 0

a2 0 0 0 0 0 0 0

b2 0 0 0 0 0 0 0

0 a1� þ tb1� c1� þ td1� 0 0 0 0 0

0 0 0 a2� 0 0 0 0

0 0 0 b2� 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

Thus the Hasse–Witt matrix of V2 is the following matrix mod p:

ðAþ TCÞðAþ TCÞs ¼

0 0 0 f14 0 0 0 0

0 0 0 0 f25 f26 0 0

0 0 0 0 f35 f36 0 0

f41 0 0 0 0 0 0 0

0 f52 f53 0 0 0 0 0

0 f62 f63 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

where

f14 ¼ ða1 þ tb1Þas
2� þ ðc1 þ td1Þbs

2� ;

f25 ¼ a2ðas
1 þ tsbs

1 Þ; f26 ¼ a2ðcs1 þ tsd s
1 Þ;

f35 ¼ b2ðas
1 þ tsbs

1 Þ; f36 ¼ b2ðas
1 þ tsbs

1 Þ;

f41 ¼ ða1� þ tb1� Þas
2 þ ðc1� þ td1�Þbs

2 ;

f52 ¼ a2�ðas
1� þ tsbs

1�Þ; f53 ¼ a2�ðcs1� þ tsd s
1�Þ;

f62 ¼ b2�ðas
1� þ tsbs

1�Þ;

f63 ¼ b2�ðcs1� þ tsd s
1�Þ:

Thus V2 is locally given by the function

ða1� þ tb1� Þas
2 þ ðc1� þ td1� Þbs

2 ¼ ða1�as
2 þ c1�b

s
2 Þ þ tðb1�as

2 þ d1�b
s
2 Þ ¼ 0:

As t ¼ 0 A S, we have a1�a
s
2 þ c1�b

s
2 ¼ 0 and b1�a

s
2 þ d1�b

s
2 3 0. Thus the locus is of mul-

tiplicity one. r

Theorem 5.6. Let M0 be the moduli space constructed in Section 2 and let S be the

Newton polygon jumping locus in M0. Then in the Chow ring of M0 the following formula
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holds:

S ¼ 1

2
ð1� pdÞc1ðM0Þ;

where d ¼ ½Fp : Qp� is the local degree. As a consequence, one obtains the mass formula

for M0:

jSj ¼ ðpd � 1Þðg� 1Þ;

where g is the genus of the Shimura curve M0.

Proof. The mass formula follows by taking the degree in the cycle formula. By

Proposition 4.3 and 4.4, the cycle of the zero locus of F d
X0 jM0

: E0;1
f1

ðpdÞ ! E
0;1
f�1

is equal to

c1ðE0;1
f�1
Þ � c1ðE0;1

f1

ðpdÞÞ ¼ ð1� pdÞc1ðE0;1
f1
Þ ¼ 1

2
ð1� pdÞc1ðM0Þ:

Then the theorem follows from Proposition 5.2 and 5.3. r

Remark 5.7. The last two sections have certain overlaps with parts of the paper [12]
by P. Kassaei. In particular one shall compare Corollary 4.4 and Proposition 5.3 here with
Proposition 4.1 and 4.3 in [12].

6. Stability and instability of the Higgs subbundles in char p

In this section we study the stability and instability of the Higgs subbundles con-
structed in Proposition 4.1. We will assume that pf 2g in this section, unless otherwise
specified.

Proposition 6.1. With the assumption on p as above, we have that for each f A F,
ðEf; yfÞ and ðEf

; y
f
Þ are Higgs semistable of degree 0. Particularly for fjF 3 t, the rank

two vector bundles E
0;1
f and E

1;0

f
are semistable.

Proof. By construction, for each f A F, ðEf; yfÞ and ðE
f
; y

f
Þ are the modulo p

reductions of Higgs bundles in characteristic 0 by Corollary 4.2. By Theorem 4.14 (3)
and Proposition 4.19 in [25], they are Higgs semistable under the assumption on p as in
the statement. Moreover for each place f with fjF 3 t one has ðEf; yfÞ ¼ ðE0;1

f ; y0;1f Þ and
ðE

f
; y

f
Þ ¼ ðE1;0

f
; y1;0

f
Þ by Proposition 4.1. The Higgs field y0;1f is by definition zero, and

y1;0
f

is also zero as E0;1

f
is a zero bundle. r

For a semistable bundle E of rank r over a smooth projective curve C defined over F,
one can ask further the semistability of the bundle over C under the n-th iterated Frobenius
pull-back F �nC E for nf 1. It turns out that the bundles F �nC E are not necessarily semi-
stable. In order to measure the instability of F �CE one introduces and studies the invariant
nðF �CEÞ ¼ mmaxðF �CEÞ � mminðF �CEÞ where mmaxðF �CEÞ (resp. mminðF �CEÞ) is the slope of E1
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(resp.
En

En�1
) in the Harder–Narasimhan filtration of F �CE:

0 ¼ E0 HE1 H � � �HEn ¼ F �CE:

The following result says that F �CE can not be very instable by exhibiting an upper bound
of nðF �CEÞ.

Theorem 6.2 (Lange–Stuhler [17], Satz 2.4 for r ¼ 2; Shepherd-Barron [27], Corollary
2, and Sun [29], Theorem 3.1 for arbitrary rank). Let E be a rank r semistable bundle over

a smooth projective curve C of genus g defined over F. Then one has the inequality

nðF �CEÞe ðr� 1Þð2g� 2Þ:

In particular, F �CE is still semistable when ge 1.

Based on the above inequality one can also deduce a generalization of it for nf 2 (see
[21], Theorem 3.7). A. Langer ([18], Corollary 6.2) actually obtained a better bound on this
issue and generalized the above inequality as well to a higher dimensional base. It is then
interesting to find examples where the upper bound of the inequality is reached. In the case
where the local degree ½Fp : Qp� is strictly larger than one, certain Higgs subbundles over
the Shimura curve M0 do provide such examples (see the proposition in [11], §4.4, for a
classification of semistable bundles of rank two over curves in char 2).

Proposition 6.3. Assume that ½Fp : Qp� > 1. The rank two semistable bundles E
0;1
fd

and

E0;1
f�d

over M0 achieve the upper bound in Theorem 6.2. That is, one has the equality

nðE0;1
fd

ðpÞÞ ¼ nðE0;1
f�d

ðpÞÞ ¼ 2g� 2:

Proof. It su‰ces to show the result for the fd piece. The proof for another piece is
completely similar. We consider the morphism

FX0 jM0
: E0;1

fd

ðpÞ ! E0;1
f�1

;

where E
0;1
f�1

is a line bundle since f�1 jF ¼ t. We put then E (resp. E 0) to be the kernel (resp.
the image) of the above morphism. That is, we have the following short exact sequence:

0! E! E0;1
fd

ðpÞ ! E 0 ! 0:

Since degðE0;1
fd
Þ ¼ 0 and degðE0;1

f�1
Þ ¼ 1� g, we have degE0;1

fd

ðpÞ ¼ 0 and degE 0e 1� g. So

by the inequality in Theorem 6.2, one has the following inequalities:

mðEÞ � mðE 0Þe nðE0;1
fd

ðpÞÞe 2g� 2e mðEÞ � mðE 0Þ:

It follows that the above inequalities have to be an equality at each step and particularly
the assertion of the proposition follows. r

Combining this proposition with Proposition 5.1 (ii), one obtains Theorem 1.4 (iii).
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The other extreme about the semistability of a vector bundle under iterated Frobenius
pull-backs is expressed in the following definition.

Definition 6.4. Let E be a semistable vector bundle over a smooth projective curve C
as above. It is said to be strongly semistable if for all nf 1, the F �nC E are semistable.

In the case that for certain nf 1 one has an isomorphism F �nC EGE, the bundle E is
obviously strongly semistable. The following theorem gives us a characterization of the cat-
egory of the strongly semistable bundles over C.

Theorem 6.5 (Lange–Stuhler [17], §1). Let C be a smooth projective curve as above

and pet
1 ðCÞ be its étale fundamental group. Let E be a vector bundle over C of rank r. Then

the following conditions about E are equivalent:

(i) There exists nf 1 such that F �nC EGE.

(ii) There exists an étale covering map p : ~CC ! C such that p�E over ~CC is trivial.

(iii) E corresponds to a continuous representation pet
1 ðCÞ ! GlrðFÞ where GlrðFÞ is

equipped with the discrete topology.

One calls the bundle E satisfying one of the above equivalent conditions étale trivializ-

able. The bundle E is strongly semistable if and only if there exists nf 0 such that F �nC E is

étale trivializable.

We can find such examples again among the Higgs subbundles in this study.

Proposition 6.6. (i) Assume p is not inert in F. Then for f B HomQp
ðLp;QpÞ, E0;1

f and

E
1;0

f
are étale trivializable, and particularly strongly semistable.

(ii) In case d ¼ ½Fp : Qp� > 1, the semistable bundles E
0;1
fi

for 2e ie d are not

strongly semistable and consequently stable.

Proof. (i) By Proposition 5.1 (ii), the morphism FX0 jM0
: E0;1

f

ðpÞ ! E
0;1
sf is an iso-

morphism in the case that fjF 3 t. When f B HomQp
ðLp1 ;QpÞ, we have ðsfÞjF 3 t. This

implies that for n large enough the composition of the relative Frobenius morphisms in-

duces an isomorphism E0;1
f

ðpnÞ
GE0;1

f . The proof for E1;0

f
is similar by replacing the rela-

tive Frobenius morphism in the argument by the relative Verschiebung morphism VX0 jM0
.

(ii) For fi A HomQp
ðLp1 ;QpÞ with i3 1, we consider the composition h of the mor-

phisms

E0;1
fi

ðpd�iþ1Þ
G

FX0 jM0

E0;1
fiþ1

ðpd�iÞ � � � G
FX0 jM0

E0;1
fd

ðpÞ !! E0;1
f�1

;

where the last morphism is surjective by the proof of Proposition 6.3. Thus the kernel of h

provides a sub line bundle of positive degree (actually it is equal to g� 1) in E
0;1
fi

ðpd�iþ1Þ
and

therefore it is not semistable. The assertion about the stability follows from the following
simple lemma. r
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Lemma 6.7. A strictly semistable rank two vector bundle E of degree zero over a

smooth projective curve C over F is strongly semistable.

Proof. By the assumption, E is an extension of two degree zero line bundles. We
write

0!L1 ! E !L2 ! 0:

Suppose that E ðpÞ is not semistable, and let L be a positive sub line bundle of it. Then we
have the morphisms

L! E ðpÞ !L
ðpÞ
2 :

Because degL
ðpÞ
2 ¼ 0 < degL, the above composition is zero. Hence the inclusion of L in

E ðpÞ factors through L
ðpÞ
1 . That is, one has LHL

ðpÞ
1 . Again because

degL
ðpÞ
1 ¼ 0 < degL;

we obtain a contradiction. In conclusion, E ðpÞ is semistable. By induction on the iterations
of Frobenius pull-backs we see that E is actually strongly semistable. r

7. The Simpson–Ogus–Vologodsky correspondence of the Higgs subbundles in char p

One of the main results in [25] is to establish a char p analogue of the Simpson cor-
respondence. Let p : M 0

0 !M0 be the projection map and FM0
: M0 !M 0

0 be the rela-
tive Frobenius in the commutative diagram of Frobenius morphisms for M0 over F (see
notations and conventions in Section 1). For the Shimura curve M0 over F, which is the
reduction of a Shimura curve over mixed characteristic, the Cartier transform CM0

(see
[25]) is a functor from the category MICðM0Þ of flat bundles over M0 to the category
of Higgs bundles HIGðM 0

0Þ over M 0
0, with each of them subject to suitable nilpotence

conditions. The functor is an equivalence of categories with the quasi-inverse functor
C�1M0

: HIGðM 0
0Þ !MICðM0Þ. For the full subcategory of flat bundles with vanishing

p-curvatures, the functor is just the classical Cartier descent (see [13], §5), and it maps
onto the full subcategory of Higgs bundles with trivial Higgs fields over M 0

0. It is also clear
that the functor transforms the relative de Rham bundle ðH1

dR;‘Þ of the universal family
f0 : X0 !M0 to ðE 0; y 0Þ ¼ p�ðE; yÞ, which is the associated Higgs bundle of the family
f 00 : X 00 !M 0

0, where f 00 is the base change of f0 via p. In this section we examine the
Simpson–Ogus–Vologodsky correspondence and the Cartier transform for the Higgs sub-
bundles in Proposition 4.1. It will be assumed in this section that pfmaxf2g; 2ðnþ 1Þg, in
order to fulfill the basic requirements in [25], Theorem 3.8. We use P 0 to denote the pull-
back to M 0

0 via p of an algebra-geometric object P defined over M0.

We have the ring homomorphisms OLK !
v
EndM0

ðX0Þ !
0
EndM 0

0
ðX 00Þ. Thus v 0 denotes

the composition morphism. By abuse of notations, the induced ring homomorphisms from
OLK to the endomorphism rings EndðH1

dR;‘Þ and EndðE; yÞ respectively are again denoted
by v. For example, the OLK -action on ðE 0; y 0Þ via v 0 decomposes it into the direct sum of
eigen Higgs subbundles

ðE 0; y 0Þ ¼
L
f AF
ðE 0f; y

0
fÞl ðE 0f; y

0
f
Þ;
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where OLK acts on the direct summand E 0f via the character f and similarly for its bar coun-
terpart.

Proposition 7.1. Let CM0
: MICðM0Þ ! HIGðM 0

0Þ be the Cartier transform. Then

for each f A F, one has CM0
ðH1

dR;f;‘fÞ ¼ ðE 0f; y
0
fÞ. The same is true for its bar counterpart.

Proof. Take l A OLK . Applying Theorem 3.8 in [25] to the morphism vðlÞ : X0 ! X0

and the objects ðOX0
; 0Þ A MICðX0Þ, ðOX 00

; 0Þ A HIGðX 00Þ, one obtains the following commu-
tative diagram:

ðOX0
; 0Þ ���!CX0 ðOX 00

; 0Þ

vðlÞDR
�

???yG G

???yv 0ðlÞHIG
�

ðOX0
; 0Þ ���!CX0 ðOX 00

; 0Þ:

Applying the same theorem further to f0 : X0 !M0 one obtains the second commutative
diagram:

ðOX0
; 0Þ ���!CX0 ðOX 00

; 0Þ

R1f DR
0�

???y
???yR1f 0HIG

0�

ðH1
dR;‘Þ ���!CM0 ðE 0; y 0Þ:

It is clear that the isomorphism vðlÞDR
� (resp. v 0ðlÞHIG

� ) induces via the direct image
functor R1f0� the isomorphism vðlÞDR

� : ðH1
dR;‘Þ ! ðH1

dR;‘Þ (resp. the isomorphism
v 0ðlÞHIG

� : ðE 0; y 0Þ ! ðE 0; y 0Þ). The above two commutative diagrams yield the following
commutative diagram:

ðH1
dR;‘Þ ���!CM0 ðE 0; y 0Þ

vðlÞDR
�

???yG G

???yv 0ðlÞHIG
�

ðH1
dR;‘Þ ���!CM0 ðE 0; y 0Þ:

Since the action of l A OLK on ðH1
dR;‘Þ (resp. ðE 0; y

0Þ) is given by vðlÞDR
� (resp. v 0ðlÞHIG

� ),
one then has

v 0ðlÞ
�
CM0
ðH1

dR;f;‘fÞ
�
¼ CM0

�
vðlÞðH1

dR;f;‘fÞ
�

¼ CM0

�
fðlÞðH1

dR;f;‘fÞ
�

¼ fðlÞCM0
ðH1

dR;f;‘fÞ;

which implies that CM0
ðH1

dR;f;‘fÞ ¼ ðE 0f; y
0
fÞ. r

Let 0 ¼ F 2
con HF 1

con HF 0
con ¼H1

dR be the conjugate filtration of H1
dR, which is flat

with respect to the Gauss–Manin connection (see [13], §3). For a subbundle W HH1
dR we
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put GrFcon
ðWÞ ¼

L1
q¼0

W XF q
con

W XF
qþ1
con

. The p-curvature c‘ of ‘ defines the F -Higgs bundle

c‘ : GrFcon
ðH1

dRÞ ! GrFcon
ðH1

dRÞnF �M0
WM0

:

As a reminder to the reader, we recall the definition of the F -Higgs bundle: an F -Higgs
bundle over a base C, which is defined over F, is a pair ðE; yÞ where E is a vector bundle
over C, and y is a bundle morphism E ! EnF �CWC with the integral property y5y ¼ 0.
The following lemma is a simple consequence of Katz’s p-curvature formula ([14], Theo-
rem 3.2), and it is also true in a general context.

Lemma 7.2. Let W HH1
dR be a subbundle preserved by the Gauss–Manin connec-

tion ‘. Then the F-Higgs subbundle
�
GrFcon

ðWÞ;c‘jGrFcon ðW Þ
�
defines a Higgs subbundle of

ðE 0; y 0Þ by the Cartier descent.

Proof. Since ‘ preserves Fcon, it induces the connection GrFcon
‘ on GrFcon

ðH1
dRÞ by

taking grading. The operation of the p-curvature on this connection commutes with taking
the grading. It follows that cGrFcon‘

¼ GrFcon
c‘, which is the zero map. The relative Cartier

isomorphism gives the isomorphism
�
GrFcon

ðH1
dRÞ;GrFcon

‘
�
G ðF�

M0
E 0;‘canÞ, where ‘can is

the canonical connection by the Cartier descent. Taking this isomorphism for granted, we
see that the inclusion GrFcon

ðWÞHGrFcon
ðH1

dRÞ descends to the inclusion F HE 0. In other
words, F�

M0
F is isomorphic to GrFcon

ðWÞ via the relative inverse Cartier isomorphism. By
Katz’s formula (see [14]), the F -Higgs bundle

�
GrFcon

ðH1
dRÞ;c‘

�
descends to the Higgs bun-

dle ðE 0; y 0Þ. Thus the F -Higgs subbundle
�
GrFcon

ðWÞ;c‘jGrFcon ðW Þ
�
descends to the Higgs

subbundle ðF ; y 0jF Þ of ðE 0; y
0Þ. r

For simplicity the above resulting Higgs subbundle is called the Cartier descent of
GrFcon

ðW ;‘jW Þ.

Theorem 7.3. For each f A F, the following statements hold:

(1) CM0
ðH1

dR;sf;‘sfÞ ¼ p�ðEf; yfÞ.

(2) CM0
ðH1

dR;f;‘fÞ is the Cartier descent of GrFcon
ðH1

dR;f;‘fÞ.

The similar statements hold for the bar counterpart.

Proof. By Proposition 7.1 it is equivalent to show the identification ðEfÞ0 ¼ Esf. For
this we take l A OLK . Then

v 0ðlÞ
�
ðEfÞ0

�
¼
�
vðlÞðEfÞ

� 0 ¼ �fðlÞEf

� 0 ¼ fðlÞpðEfÞ0 ¼ ðsfÞðlÞðEfÞ0:

This proves the identification and therefore the first part of the theorem. Because
y 0jE 0

f
¼ y 0f, the second part is a consequence of Proposition 7.1 and Lemma 7.2. r

By this theorem we have a better understanding of the Higgs subbundles in Proposi-
tion 6.6 (ii) under the Frobenius pull-backs. Now assume that d ¼ ½Fp : Qp� > 1 and write
HomQp

ðLp;QpÞ ¼ ff1; . . . ; fd ; f�1 ; . . . ; f�dg as in Proposition 5.1. We deduce the following
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Corollary 7.4. For 2e ie d, one has F �d�iþ1M0
Efi ¼H1

dR;f�1
. Moreover under this

identification, the Harder–Narasimhan filtration on F �d�iþ1M0
Efi coincides with the Hodge fil-

tration on H1
dR;f�1

, which is induced from H1
dR.

Proof. We look at the i ¼ d case first. Since
�
ðEfd Þ

0; 0
�
A HIGðM 0

0Þ is of trivial
Higgs field,

C�1M0

�
ðEfd Þ

0; 0
�
¼
�
F�
M0
ðEfd Þ

0;‘can
�
:

Because FM0
¼ p �FM0

, we have F�
M0
ðEfd Þ

0 ¼ F �M0
Efd . On the other hand, the above theo-

rem says that

C�1M0

�
ðEfd Þ

0; 0
�
¼ C�1M0

ðE 0sfd ; 0Þ ¼ C�1M0
ðE 0f�1 ; 0Þ ¼ ðH

1
dR;f�1

;‘f�1
Þ:

It follows that ðF �M0
Efd ;‘

canÞ ¼ ðH1
dR;f�1

;‘f�1
Þ. Forgetting the connections, we obtain the re-

sult for i ¼ d. For 2e ie d � 1, the same argument for Efi implies that F �M0
Efi ¼H1

dR;fiþ1
.

As i þ 1e d, one must have H1
dR;fiþ1

¼ Efiþ1 . By iterating the above arguments, one
obtains the results for all i’s from the i ¼ d case. From the second part of the proof of
Proposition 6.6, we have known that F �d�iþ1M0

Efi is not semistable. It su‰ces to show that
the Hodge filtration on H1

dR;f�1
¼ F �M0

Efd is the Harder–Narasimhan filtration. Since the
Harder–Narasimhan filtration is unique, it is equivalent to show that the sub line bundle
E1;0
f�1

HH1
dR;f�1

is of maximal degree. By Theorem 6.2, the maximal degree does not exceed

g� 1, which is exactly the degree of E1;0
f�1

. This completes the proof. r

Taking the grading of ðF �d�iþ1M0
Efi ;‘

canÞ with respect to the Harder–Narasimhan fil-
tration, one obtains a Higgs bundle di¤erent from the original Higgs subbundle ðEfi ; 0Þ of
unitary type. By the above result, the new Higgs bundle is exactly one of the Higgs sub-
bundles of unformizing type. Such a phenomenon might be quite general for Higgs bundles
over compact Shimura varieties in char p.
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