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Abstract. This paper is devoted to the study of the Higgs bundle associated with the
universal abelian variety over the good reduction of a Shimura curve of PEL type. Due to
the endomorphism structure, the Higgs bundle decomposes into the direct sum of Higgs
subbundles of rank two. They are basically divided into two types: uniformizing type and
unitary type. As the first application we obtain the mass formula counting the number of
geometric points of the degeneracy locus in the Newton polygon stratification. We show
that each Higgs subbundle is Higgs semistable. Furthermore, for each Higgs subbundle of
unitary type, either it is strongly semistable, or its Frobenius pull-back of a suitable power
achieves the upper bound of the instability. We describe the Simpson—Ogus—Vologodsky
correspondence for the Higgs subbundles in terms of the classical Cartier descent.

1. Introduction

Let D be a quaternion division algebra over a totally real field F which is exactly split
at one infinite place of F. By choosing additionally a totally imaginary quadratic field ex-
tension K of F, the data (D, K) allows one to define a Shimura curve of PEL type (see [2]).
In this paper, we study the Higgs bundle (E, 0) associated with the universal abelian variety
over ./, which is one of the geometrically connected components of the good reduction of
this Shimura curve modulo p. The passage of the Higgs bundle from char 0 to char p has
two aims. The first is to study the Newton polygon stratification of the moduli space in char
p- A similar method has already been extensively employed in recent years (for example,
see [9], [6], [21]). The prototype of such study is the supersingular locus in the moduli space
of elliptic curves and the classical Deuring formula. From this example one sees a basic
phenomenon occurring in the geometry of a moduli space in char p, namely the degenera-
tion of the relative Frobenius morphism along certain algebraic sublocus of the whole mod-
uli space. The second aim is to investigate the relation between the Higgs bundles over a
char p (or p-adic) field and the topology of the underlying spaces in a char p (or p-adic)
field. In the classical situation, that is, over the field of complex numbers, this is beautifully
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2 Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p

expressed in the work of C. Simpson (see [28]). Recently, analogous theories over a char p
or p-adic ground field have emerged (see [25], [5] and [8]). We intend to apply these new
theories to study the Higgs bundles over Shimura curves of PEL type in char p and mixed
characteristic.

Our results are built on the previous work on the Shimura curves of PEL type, par-
ticularly the work of Carayol [1] and Deligne [2] and the book by Reimann [26]. Let .4, be
the good reduction in char p of the Shimura curve of PEL type associated with the quatern-
ion division algebra D and the imaginary quadratic field K (see Section 2 for details), and
let fo : o — -4, be the universal abelian variety and (E, 0) be the associated Higgs bundle.
Let g be the genus of the Shimura curve .#, which is strictly greater than one by our choice
of the level structure (see the end of Section 2). Most of the other notations appearing in the
following are collected at the end of this section.

Theorem 1.1 (Proposition 4.1 and 4.4). The Higgs bundle (E,0) decomposes into the
direct sum of rank two Higgs subbundles:

ped

where the endomorphism §ubalgebra Orx < Op acts on the summand E, (resp. E (5) via the
character g mod p (resp. ¢mod p). Assume further that p = 2g. Then for each ¢ € ® (resp.
¢ € ®) with §|p =t (resp. ¢|p = 7), the Higgs subbundle (E,,0,) (resp. (E 5 05)) is of maxi-
mal Higgs field (see [30]). Each of the remaining Higgs subbundles in the above decomposi-
tion is of trivial (or equivalently, zero) Higgs field.

The Higgs subbundles of maximal Higgs field are called of uniformizing type; while
those of zero Higgs field are called of unitary type. In char 0, a Higgs bundle of uniformiz-
ing type provides the uniformization of the base Shimura curve (see [30]) while that of uni-
tary type corresponds to a unitary representation of the topological fundamental group.
We then analyze the behavior of the iterated Frobenius morphism on the (0, 1)-component
of each Higgs subbundle and derive the following results.

Theorem 1.2 (Corollary 3.3 and Theorem 5.6). There are only two types of Newton
polygons in My(F). Let & be the jumping locus of the Newton polygons. Then one has the
following formula in the Chow ring of My:

1 .
g =51~ P e, ().

Taking the degree, one obtains the following mass formula for the Shimura curve M:
|7 = (1 = p ) (1 —g).

From this formula one sees that the number of closed points in the jumping locus of
the Newton polygons is proportional to the topological Euler characteristic of the Shimura
curve ./y. We would like to make the following conjecture.

Conjecture 1.3. Let 4 be the Shimura curve of Hodge type defined by Gg — GSpq
with a suitable level structure, where Gg is the Q-group of the units of a quaternion division
algebra D over a totally real field F by restriction of scalars. Let p be a prime number such
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that M is the good reduction of .4 modulo p. Then there are exactly two possible Newton
polygons for the closed points of My(F) and the cardinality of the jumping locus of the New-

1
ton polygons is equal to 3 (1-— pd))(top (o (C)), where d is the local degree [F, : Q,) and F,
is a splitting field of D over p.

In the case of Mumford’s families of abelian varieties the work of R. Noot provides
strong evidence for the above conjecture. He studied the potential good reduction of a sin-
gle abelian variety in a Mumford’s family, as well as its possible Newton polygons, using
Fontaine’s theory (see [23] and references therein). From the proof of the mass formula one
notices that certain Higgs subbundles of unitary type have no contribution to the jumping
of the Newton polygons since the iterated relative Frobenius morphisms do not degenerate
on these subbundles. It turns out that these Higgs subbundles of unitary type carry the
extra property of being strongly semistable, and this property characterizes the Higgs sub-
bundles of unitary type with non-degenerate iterated relative Frobenius actions. This moti-
vates us to study the (Higgs) stability of the Higgs subbundles under the Frobenius pull-
backs in general. For a semistable vector bundle £ over a smooth projective curve C in
char p, the invariant v(F}E) (see Section 6 for the definition) measures the extent of the
instability under the Frobenius pull-back. It is non-negative by definition and it is zero if
and only if FSE is still semistable. E is strongly semistable if v(F**E) =0 forall n = 1. It
is well known that v(FZE) has the upper bound (rank(E) —1)(2g(C) — 2) (see Theorem
6.2). Thus the extreme opposite of the strongly semistability is the case that

VFFE)=0, 1=n<ny,
V(FPE) = (rank(E) — 1) (29(C) —2).
We write the Gal(L | Q)-orbit of @ containing the uniformizing place 7 as follows:

Hom@p(Lp,@p) = {¢17" '7¢d7¢f7' . 7¢2{k}

with ¢,| = ¢ | = 7 such that the Frobenius automorphism o € Gal(L, | @,) acts on the
orbit via the cyclic permutation. Thus we have the following theorem.

Theorem 1.4 (Proposition 6.1, 6.3, and 6.6).  Assume that p = 2g. Then the following
statements are true:

() Each Higgs subbundle in Theorem 1.1 is Higgs semistable of slope zero. In particu-
lar, the Higgs subbundles of unitary type are semistable.

(ii) For ¢ ¢ Homg,(Ly, Q,), the Higgs subbundle (Ey,04) of unitary type is strongly
semistable (even étale trivializable). The same is true for its bar counterpart.

(iii) For ¢; € Homg, (Ly, Q,) with i & 1, the Higgs subbundle (E,,,0;,) of unitary type
satisfies

V(FyEy) =0, 1<n<d-—i,
v(Eg T Ey) =2 - 2.

The same is true for the ¢;-summand with i % 1 and for its bar counterpart.

Note 1:
Throughout
the paper we
wrote
“semistability”
without
hyphen
(similar to
semistable).
Do you
agree?

Note 2:
< inn=<ng
correct?
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For several reasons we are motivated to examine the Simpson—Ogus—Vologodsky
correspondence (see [25]) for the Higgs subbundles in Theorem 1.1. Let (%), V) be the first
relative de Rham bundle of fj with the canonical Gauss—Manin connection, which has also
an eigen-decomposition under the (s x-action (see Proposition 4.1). Let F,o, be the conju-
gate filtration on %’dIR, which is equally as important as the Hodge filtration in char p
geometry.

Theorem 1.5 (Theorem 7.3 and Corollary 7.4).  Assume that
p = max{2¢g,2([F : Q] + 1)}.

Then for each ¢ € ®, the Cartier transform of the direct summand (‘%dllw’ Vy) of (#jx, V) is
Jjust the Cartier descent of Grpm(%le’qﬁ, Vy). The same is true for its bar counterpart. As a

consequence, for ¢; in Theorem 1.4(iii), the Harder—Narasimhan filtration on F %’“*E@ is
identified with the Hodge filtration on ,%le g AL is similar for the star and bar counterparts.

By the above theorem one sees that the non-strongly semistable Higgs subbundles of
unitary type are closely related to the Higgs subbundles of uniformizing type. In some sense
one should consider these two types of Higgs subbundles as the same one. Compared with
its char 0 analogue, the topological meaning of the Higgs subbundles of uniformizing type
is still unclear to us.

The paper is organized as follows. In Section 2 the construction of a Shimura curve of
PEL type is briefly reviewed. In Section 3 some known results about Dieudonné modules of
the abelian varieties corresponding to the points on .#,(F) are summarized. In Section 4 the
decomposition of the Higgs bundle and the basic properties of the Higgs subbundles are
established. Applying the results in Section 3 and Section 4, we obtain the mass formula
for the Shimura curve .#, in Section 5. In Section 6 the Higgs semistability as well as the
semistability under Frobenius pull-backs of the Higgs subbundles are discussed. The de-
scription of the Simpson—Ogus—Vologodsky correspondence for the Higgs subbundles is
contained in Section 7.

Notations and Conventions. (i) For a prime q of a number field E, E; means the
completion of E with respect to q. For a field E of char 0 (local or global), () is the ring
of integers in E and E is an algebraic closure of E. Q," is the maximal unramified sub-
extension of Q,. Denote by k a finite field of char p and by [ an algebraic closure of k.
Let 0 € Gal(F | F,) be the Frobenius automorphism, defined by x +— x”. It is restricted to
the Frobenius automorphism of k. For F, denote by W([F) the ring of Witt vectors and
one has the canonical lifting of the Frobenius automorphism of F to W([F), which is again
denoted by o. It is similar for W (k) and k.

(ii) In this paper, F is a fixed totally real number field of degree n = 2, and p is a
rational prime number which is unramified in F. K and L are two fixed imaginary qua-
dratic field extensions of F (see Section 2 for details). We put ¥ = Homg(F,R) and
® = Homg(L, Q). D is a fixed quaternion division algebra over F, which is exactly split
at one infinite place t € ¥ of F.

(iii) For an algebraic variety X over k, one denotes by Fy the absolute Frobenius
morphism. For a morphism f : X — Y over k one has the following commutative diagram
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Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p 5

of Frobenius morphisms:

Ix |y x|y

X X’ X
\ l’ J ;
Yy — Y.

Fy

where the square in the diagram is the fiber product, #y |y is the relative Frobenius mor-
phism and 7y |y o #y |y = Fx. For a vector bundle & over X in char p, sometimes we de-
note the (iterated) Frobenius pull-back F;"& (n = 1) by &#").

(iv) In this paper, the term ‘reduction modulo p’ means the following: let R be a DVR
of mixed characteristic (0, p) with the residue field k(R), and M be an object defined over R,
which can be a module or a scheme. Then the reduction of M modulo p is the base change
of M from R to k(R).

Acknowledgment. We would like to thank the referee for his/her careful reading of
our paper and helpful advice. We thank C. Deninger for useful discussions on [4] and [5].
Special thanks go to A. Langer for his useful comments on Section 6 and particularly the
clarification of a main result in [17] (see Theorem 6.5).

2. Quaternion division algebras and the good reduction of a Shimura curve

Let D be a quaternion division algebra over F, which is split at the infinite place ©
and ramified at all remaining infinite places. That is, one has the following isomor-
phisms:

D®p.R=M(R), and D®p,R=H fory +r7,

where H is the Hamiltonian quaternion algebra over R. One considers the F-group of the
units D* as a Q-group by restriction of scalars and defines a homomorphism of real alge-
braic groups:

hp:S=C* — D*(R) = GLy(R) x (H*)"",
z:x—&—in((x y>,1,...,1).

The D*(R)-conjugacy class X of hp defines a Shimura curve S/ over the reflex field F,
where F' is considered as a subfield of C via the embedding z. For every open compact sub-
group C = D*(A'), Shp ¢ = Shp/C is a projective curve over F, and one has the identifi-
cation of its complex points

Shp,c(C) = D*(@)\(X x D*(A))/C,

where Ay is the ring of finite adeles of @ and D* acts on X by the conjugation and on the
second summand by the left multiplication.
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6 Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p

In certain cases Shp, ¢(C) is known to parameterize the principally polarized abelian
varieties over C with special Mumford—Tate groups (see for example [22], §4 and [30], §5).
It belongs to the category of Shimura varieties of Hodge type. In this paper we are going to
study a related Shimura curve Shs which is of PEL type. However the Shimura curve of
Hodge type provides the motivation for the further study of the current paper. Now we re-
call the so-called ‘modele étrange’ construction in [2]. First we need to choose an imaginary
quadratic field @(a) with o € C such that p is split in it. We put the composite K = F(«)
and it will be fixed in the whole discussion. Considering F'* and K* as Q-groups, we define
a new Q-group G by the following short exact sequence:

1l > F* > D*xK*5G—1,

where F* — D* x K* is given by f+ (f,f~!). We fix a subset ¥x = Homg(K,C)
which induces a bijection to ¥ by restriction to F. Note that Wk is obtained by the trivial
extensions of all embeddings of F into C to embeddings of K = F + Fa into C. One has an

identification K*(R) = [] C* and defines
YyeV¥

hg :S = K*(R)=C* x [[C*, zr~ (l,z,...,2).
it

Let X’ denote the conjugacy class of
hG = TR © (hD X hK) 'S — G(R)

It defines a Shimura curve Shg over K, where K is a subfield of C via the map 7 € ¥ =~ Wk.
A compact open subgroup C of G(Ay) defines a projective curve Shg ¢. For a suitable
C'" = D*(Ay), the neutral component of Shp ¢ and Shg ¢ are isomorphic to each other
over certain number field (see [26], §1). The Shimura curve Shg ¢ parameterizes the isogeny
classes of abelian varieties over K with PEL structure which we describe briefly as follows.
Let B = D ®p K. Define the natural involution on B by the formula

x®y) =x"®5

where * is the main involution on D and ~ is the complex conjugation on K which is the
generator of Gal(K | F). Let V' be the underlying @-vector space of B. There exists a non-
degenerate alternating Q-bilinear form

O:VxV —-=0Q

such that ®(bx, y) = O(x,b'y) for all b e B, x, y € V. It turns out that G is the group of
B-module automorphisms of V' preserving the bilinear form. So one has the natural linear
representation g : G(Q) = Autp(V,0) < Autg(V).

We write pOp = H P;. By fixing an embedding @ — Q,, one obtains a bijection be-
tween ¥ = Homg(F, @) and ]_[ Homg, (Fy,, @,). After a rearrangement of indices we can

assume that, under the above bl]eCtIOIl t lies in Homg, (Fp,,Q,). We fix the notation
p = p; for the whole paper. Since p is split in Q(o) by assumption, p,0x = q,q; for each i,

Note 3:
New order
correct?
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Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p 7

where the two primes of K over p; are distinguished in such a manner that Wy is bijectively
mapped onto ]_[ Homg, (K, @,) under the previous identification map. Now we fix a to-

tally 1 1mag1nary quadratlc extension L of F which is contained in D. Then L splits D glob-
ally. Namely there is an isomorphism of L-algebras D ®y L =~ M,(L). Furthermore one
can assume that each p, stays prime in L. So the composite field LK is particularly un-
ramified over p. One writes the prime ideal decomposition as

p Ik = H qqu

i=1

and one has a natural isomorphism of Q,-algebras
r
LK ®qQ, = [[ LK,, x LK;.
i=1

Moreover for each i one has an isomorphism LK, ®aq, @“r ~ I @;”. It is simi-
Homg, (LK, @))
lar for the bar counterpart. Then we obtain an isomorphism of @;"-algebras

LK ®q 0" = I o“x I av)
i=1 \p,
Ome

(LK,;, @) Hom, (LK;,, @)

It induces on the rings of integers a Z,-algebra isomorphism. One can simplify the nota-
tions by using the identification

_ r _ _
Homg (LK, Q) = J] Homg, (LK,,, Q,) x Homg, (LK;,, Q,),
i=1

and the partition Homg (LK, Q) = ® ][ ®, where ® = Homg(L, Q) is identified with the
subset of Homg (LK, Q) by extending each embedding of L into @ to an embedding of
LK = L(2) = L+ Lo into Q which is the identity on «. Thus we write the above isomor-
phism of Z,-algebras in the form:

(1) [T w(g) x w(¢) : Ok ®z W(F) = T] W(F) x W(F),

ded@ $ped®

where for each ¢ € @, w(¢) € Homg, (LK,,, @,) and w(¢) € Homg, (LK;,, Q,) for certain i.
By abuse of notations we also write the character w(¢) (resp. w(¢)) as ¢ (resp. ¢) simply. In
the following we come to an important notion for this section.

Definition 2.1.  Let S be an (f,-scheme and & be a locally free coherent (g-sheaf. It
is said to be a sheaf of type (L, Wk) if O x = Ende, (&) and & ®; W (F) has a decomposi-
tion induced by the isomorphism (1) as follows:

2) E@W(E) = @ (&6,

ped
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8 Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p

where &; corresponds to the character w(¢) and & corresponds to the character w(¢) with
the rank condition: & and & are of rank one if ¢| = 7, while & is of rank two and é;=0
if §|p + 7.

In order to define a level structure one shall choose an integral structure of the
Q-vector space V. One chooses an order (p of D containing (), with certain additional
properties (see [26], §2), and put O = Op ®, Uk (50 U x = Up). Then one takes the lattice
V7 of V to be the free Z-module (5 and puts G(Z) = Autg,(V7z,®). Thus one has an inte-
gral structure ¢ : G(Z) — Autz(V7) of the Q-algebraic group morphism &g.

Proposition 2.2 (Proposition 2.14 and Corollary 3.14 in [26]). For every level struc-
ture C = C, x C? = G(Ay) with C, = G(Z,) and C? small enough, there exists a proper
Or,-scheme ¢ which is the coarse moduli space of certain moduli functor of PEL type (see
Proposition 2.14 in [26] for the description of the moduli functor) with the endomorphism al-
gebra Og. Furthermore, if D is assumed to be split at p, then the reduction ¢ modulo p is
smooth over F.

We take one of the geometrically connected components .# of .4 ¢ with the reduction
Ay modulo p. For our purpose we shall take C” small enough so that we have the univer-
sal abelian scheme f : 2 — .. Under this assumption the genus of .# must be strictly
greater than one. By the construction of the moduli functor, the injection ¢ — End 4 (%)
turns R'f,0y into a sheaf of (L, W )-type.

3. Dieudonné modules and Newton polygons

Let A be an abelian variety which is represented by an [F-rational point of .#,. Let
(D=D(4),7,7") be the associated (contravariant) Dieudonné module. D is a free
W (F)-module of rank 8n and one has the identifications of k-vector spaces:

D/pD = Hig(4), 7°D/pD = H(4,Q), D/1'D(A) = H'(4,0,).

In this section we shall analyze the structure of D in the presence of the endomorphism
structure. Actually, since (p < End(A4), it follows that ()5 — End(D) and particularly
Orx < End(D). Therefore D is an Orx ®7 W (F)-module. The isomorphism (1) in Section
2 gives the decomposition

D= @ (Dy @ Dy).

ped
We put for 1 <i <r the local degree f; = [F}, : Q,] and L, = L ® F,,. For an element
¢ € @ one defines ¢* € @ to be the other element whose restriction to F is the same as that

of ¢. The following proposition contains the basic properties of each direct summand in the
above decomposition.

Proposition 3.1. The Dieudonné module D has the following properties:

(i) Ok acts on Dy (resp. D) via the character w(¢) (resp. W(¢)).
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Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p 9

i1) There is an endomorphism Il € Og ® Z, which induces a morphism I1 : Dy — Dy-.
P ¢ ¢
It is an isomorphism for ¢|, = t.

(iii) For ¢’F + T, 3’7([@,]5) = D(mg. For ¢‘F =T, pD(mj < /D¢ < D,mj
(iv) For each ¢ € ®, both Dy and Dy are of rank 2.

(v) The polarization induces a perfect alternative pairing between Dy and [D) More-
over Dy L Dy unless ¢ = ¢. Thus Dy and D are dual to each other.

Proof. (i) follows from the definition. The existence of IT € O ® Z, with the prop-
erty as in (ii) is actually a part of the conditions on (5 (see [26], §2). Clearly # commutes
with the Oz-action on D. Since # is o-semilinear, one has 7 (Dy) < Dyy by (i). Similarly
one has 7" (Dy4) < Dy. For a fixed ¢ we consider the short exact sequence

V(Do) Dy Dy

0— — — — 0.

Dy POy 7 Dgy

Dy
o
is equal to one in the former case and zero

By the rank condition in Definition 2.1, one has dimg
Dy

is equal to one if ¢| = 7, and

equal to two if ¢|, & 7. Moreover dimg
. ) ¢

in the latter case. By duality, namely H®(4,Q,)" =~ H'(A',04) with A" the dual abelian
Y (Degy) . .

% is equal to one in the former case and equal

¢ D
to zero in the latter case. So in both cases dim[pﬁ = 2 and therefore ranky ) Dy = 2.
¢

variety of A, it follows that dimg

(iv) follows from (v). By the above proof, we have 7"(D,4) = pDy for ¢|p + v and
pDy < ¥ (Doy) & Dy otherwise. By applying # to both sides and dividing by p if neces-
sary, one obtains (iii). Finally, since y(Ix, y) = y(x,/’y) for all x, y € D and / € B. We take
two idempotents /g, l¢/ with /y € (Urk) 4 and Iy € (Ork) 4. Then gy (lyx, lyy) = Y(x, [ylyy) =0
unless ¢ = ¢’, since /; € (OLk) j- Thus ( ) follows.

In the following we determine the possible Newton polygons of D). As it is an isogeny
invariant, we introduce the (F-)g-isocrystal (N = D ®7 Q, %), and similarly for ¢ € ®, the
direct summand N (resp. N ) which itself is generally not a sub F-g-isocrystal by the pre-
vious proposition. For each 1 <iZ<r,weputN;= &P Ny and similarly for N:.

¢eHomg, (Ly, Qp)
Then N; and N; are indeed F-g-isocrystals for each i. However if we set 7; = (- f’H)|

then by the relation a/ig = ¢*, one sees that (N4, 7;) is indeed an F-¢/i-isocrystal for each
¢ € Homg, (Ly,, Q,), and similarly for the bar counterpart.

Proposition 3.2. Let (N;, ) be the F-o-isocrystal as above. Then it has the following
possible Newton slopes:

(i) Fori =1 the Newton slopes are either 4f; x 1/2f1 or 2f1 x (0,1/f1).

(i) For i =2 the Newton slope is 4f; x 0.
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10 Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p

Proof. Since F : Ny — Nyy is an isogeny of isocrystals, (Ny, #;) and (Nyy, #;) have
the same Newton slopes. So the computation is reduced to the o/-isocrystals (N, Z;) of
height 2. Thus the result follows easily from the classification of the isocrystals of height 2
over [ (cf. Lemma 4.4 in [26] or [31]). [

We put d = [F, : Q)] = fi. The following corollary follows easily from the last prop-
osition.

Corollary 3.3. Let A be an abelian variety which is represented by an F-rational point
of My. Then the Newton polygon of A is of the following two possible types:

(4n —2d) x 0, 2dx1/d, 2dx(1-1/d), (4n—2d)x 1;
and

An—d)x0, 4dx1/2d, 4dx (1—1/2d), 4(n—d)x 1.

Proof. It suffices to notice that N; and N; are dual to each other as g-isocrystals by
Proposition 3.1 (v) for each 7. []

Remark 3.4. We see that there are only two possible Newton polygons for closed
F-points of the moduli space. The existence of the abelian varieties with the given Newton
polygons was shown by Honda—Tate theory. We refer to [1] or [26] for the details.

4. The decomposition of the Higgs bundle over a Shimura curve in char p

Let f: & — ./ be the universal abelian scheme in Section 2. By abuse of notations
we denote it again by f the base change to Z,. Let f°: & O — _#° be the base change of f
to @, and fy : 2y — .4 be the base change to F. Let #,, = R'f0.(Qy, | 4, d) be the first
relative de Rham bundle over .#. We put the first Hodge bundle £"-* = £,.Q}, | , and the
second Hodge bundle E%! = R'fy.04,. By the Ej-degeneration of the Hodge-to-de Rham
spectral sequence, one has the short exact sequence

0— EMN — delR—>E0’1 — 0.

It is well known that %, is endowed with the Gauss—Manin connection V. By taking the
grading (delR, V) with respect to the Hodge filtration, we obtain the Higgs bundle in char p:
(E,0) = (E" @ E*',0"" @ 0"") with 0" = 0.

By construction, the endomorphism ring of the universal abelian variety % over .4
contains (g. Thus each element b € @5 induces a morphism b : Zy — 2y over .. Let
Orx < Op be the maximal abelian subgroup as in Section 2. We have the following decom-
position under the @ g-action.

Proposition 4.1.  The first relative de Rham bundle (# ), V) with the Gauss—Manin
connection admits a decomposition into the direct sum of rank two subbundles with an inte-
grable connection

(i V) = B (Ao V4) ® (A 5. V),

Note 4:
Please check
the grammar
in “we denote
it again by /'
the base
change”
(maybe delete
“it"?)
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Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p 11

such that Opg acts on Ay g (resp. A le ) via the character ¢mod p (resp. ¢mod p). I
induces the decomposition of the Higgs bundle into the direct sum of rank two Higgs Sub—
bundles

(Ea 9) = @ (E¢)’ 0(15) @ (EJ’ ‘945)

¢ed

Furthermore, by writing
E,=E'@E)! E;=EX@EY
" ;. ©E; and Ej 7 @ P

one has rank Ei‘l = rank Eg'l =1 for ¢|, = ©; while for |, % t, one has ranqu?’1 =2 and
rank Eg'l =0.

Proof. The decomposition of %le with respect to the (; x-action follows from Prop-
osition 3.1 (i). Because (), acts on %) as endomorphisms over .#, it induces an action on
the relative de Rham complex as endomorphisms of complexes. Taking the hypercohomol-
ogy, it induces an action on the Hodge filtration 0 c E'0 %le. In other words, £ is an

(O x-invariant subbundle of de}. Thus one has the corresponding decomposition on E°.
o

E® 1 I'is the quotient bundle —4R E . Then for each ¢ (resp. ¢), one has an injective morphism
H iR,

1.0
E,

— E%! (resp. for ¢) induced by H)n — E!. So one has an isomorphism

%ple,qs 1,0 (o s : . 0,1
Denote S0 by E y (similarly for ¢), we obtain the decomposition of £'. By the short

4
exact sequence
0— Egz’o — %le’(p — Eg’l — 0,

the bundle E;, = E; 0 @EO ' has the same rank as deR , which is two by Proposition
3.1(3v). It is 51m11ar for ¢ It is clear that the resulting decomposmon on E%! coincides
with the induced action of (¢ x on R'fy.0z, = E*! by taking the higher direct image. Since
the bundle E%! is the modulo p reductlon of R'f. 0y, it is a sheaf of (L,W¥x)-type. The
assertions about the ranks of E "and E%' follow from the rank condition in Definition
2.1. Finally the )y x-action decomposes the Gauss—Manin connection as well. In fact, in
char 0 one can show that the (/; x-action on the relative de Rham bundle is flat with respect
to (in other words, commutes with) the Gauss—Manin connection because the endomor-
phism algebra defines the flat Hodge cycles on the relative Betti cohomology. By reduction
modulo p, the Oy g-action also commutes with V. Because (), ¢ acts on the direct summands
via the characters, V preserves each direct summand in the decomposition. The Higgs field 6
on E decomposes accordingly. []

Corollary 4.2. The Hodge-to-de Rham spectral sequence of the relative de Rham bun-
dle R f*(QJ‘ ., d) degenerates at E\-level. By taking the grading of( 1f*(Q[| v, d), V) with
respect to the Hodge filtration, one obtains the Higgs bundle (E,0) over . The O x-action
on the universal abelian scheme 2 over ./ as endomorphisms induces a decomposition of
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12 Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p

Higgs bundles

(Ev é) = @ (E¢7 é¢) @ (E¢_> 9&)

ped

The modulo p reduction of the above decomposition is the one over .y given in Proposition
4.1.

Proof. It suffices to show the Ej-degeneration of the Hodge-to-de Rham spectral se-
quence of f. It is equivalent to show that the natural morphism f.Qy | , — R (Qy \u»d)
is injective. By tensoring with @Q, the above morphism is injective by the well-known
E/-degeneration of the Hodge-to-de Rham spectral sequence for the first relative de Rham
bundle of f© (the generic fiber of f). So the kernel of the morphism consists of only
p-torsions. By modulo p and the E|-degeneration of the closed fiber f of f, there are actu-
ally no p-torsions. Thus the Hodge-to-de Rham spectral sequence of f degenerates at
Eq-level as well. [

Next we proceed to deduce some basic properties of the Higgs subbundles from the
above proposition. According to this proposition, the Higgs subbundle (Ej,04) (resp.
(Ej,0;)) has two nontrivial parts, namely, the (1,0)-part and the (0, 1)-part, if and only if
Al = r (resp. ¢| = 7). It is clear that there are totally four such direct summands in the
decomposition. We consider them first.

Proposition 4.3. Let ¢, ¢* be two unique elements of ® whose restriction to F is equal
to . Then one has an isomorphism of Higgs bundles (E4,04) = (Ey+,0,4+). One has also an
isomorphism for the bar counterpart.

Proof. In case of ¢|, = 7 the endomorphism I1 € Op ® Z, of Xy over .4, induces the
endomorphism IT e End(éfdﬂa) which is in fact an automorphism. By restricting I1 to each
closed point in .#, one knows from Proposition 3.1 (ii) (modulo p) that it induces an iso-
morphism IT : %le-, b= %le, 4+ Since IT commutes with the Gauss—Manin connection and
the Hodge filtration, it induces an isomorphism of Higgs bundles by taking the grading
with respect to the Hodge filtration:

I: (Ey,04) = (Ey, 0p7). O
The following result asserts that the chern class of the base Shimura curve .# is in
fact represented by the second Hodge bundle of the Higgs subbundles appearing in the

above proposition. This is one of significant features of the above Higgs subbundles.

Proposition 4.4.  Assume that p = 2g. Then for ¢ € ® with ¢| = 1, the Higgs bundle
(Ey,04) in char p is of maximal Higgs field. Consequently one has the equality

1
0,1y _
C1(E¢ )—Ecl(ﬂo).

Analogous statements hold for the bar counterpart.

Proof.  The Higgs subbundle (E; = E L0 E, 0.1 ,0,4) is the modulo p reduction of the
Higgs bundle (E,, 0,) over .4 by Corollary 4.2. For #| = 7, the Higgs bundle (E¢, 6?¢)
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that is the base change of (E~¢,§¢,) to /", is actually of maximal Higgs field (see [30]).
That is, the Higgs field 0¢l’0 : Egl’o — Ego’l ® Q 0 is an isomorphism. Then under the as-
sumption on p, we claim that the Higgs field in char p must be maximal. In fact, the Higgs
field 0(/1;0 can not be zero. Otherwise, the Higgs subbundle (E ;’O,O) of (Ey,04) is of non-
positive degree by the Higgs semistability (see Proposition 6.1). This is in contradiction
with the fact that

1
degEq}’O = degEgl’O = EdegQ’////o =g—1>0.

Since 0;"0 is a nonzero morphism between line bundles with the same degree, it must be an
isomorphism.

ol,0% 0l.,0

Moreover EO” ' is isomorphic to the dual £ of E 5 - By the theorem of Langton
([19], Main Theorem A’), the isomorphism extends to an isomorphism Eg’l ~E (;"0*. Thus
the maximality of 0y implies that (E 9, 1)2 ~ 7, Taking the cycle classes of both sides of
the isomorphism, we obtain the claimed formula. []

We believe that one can remove the condition on the prime p in the above proposi-
tion. It is clear that these Higgs subbundles in the decomposition of (E, @) are divided into
two types: one is of maximal Higgs field and the other is of zero Higgs field. This is the
char p analogue of the corresponding result in [30] in the char 0 case.

5. The Newton polygon jumping locus of the Shimura curve

In this section we prove the mass formula for the Shimura curve .#,. We refer to [7]
for the definition of the Newton polygon stratifications and other related notions. By Cor-
ollary 3.3, there are only two possible Newton polygons for points in .#(F). We denote
by % the subset of .#,(F) consisting of the closed points for which the Newton polygon
jumps. By a theorem of Grothendieck—Katz (see [15]), the Newton polygon jumps under
specialization, and . is an algebraically closed subset of .Z([F). In particular, the cardinal-
ity of & is finite.

We find that the morphisms 7, , FirEY! — E%! n > 1, where F g\ 18 the
composition of relative Frobenius morphisms (see [15] and [21]), can be applied to compute
the number ||, as is very interesting. One notices that the restriction of 7y, | 4 induces a
morphism Fy | 4, : F ;/OE;)’I — Eg(;jl for each ¢ € @, since the Frobenius morphism on D is
o-semilinear. Since each prime of F is inert in L, we shall use the same letter p to denote the
prime of L lying over the prime p of F. We write the subset of ® as

Hom@p(Lp?@P) = {¢17' . 'a¢d7¢f7' : '7¢;}’

in such a way that ¢,|, = ¢ |z = 7, and the Frobenius automorphism o, which is the gen-
erator of Gal(L, | Q,), acts on the set as the cyclic permutation of 2d letters. For example,

g, = ¢y, op; = ¢, and so on.

Proposition 5.1.  The notations are as above and all morphisms in the following are the
relative Frobenius morphisms. Let ¢ € ®. Then the following statements hold:
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14 Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p
(i) For ¢ e Homg,(Ly,Q,), one has two possibilities:

(1) If d =1, then F, EO i E(E is nonzero. The same holds for F, Eglil — Egl’l
and the bar counterparts. Moreover lhey have the same zero locus.

(i.2) If d = 2, then Fy, Eg I EO Vs injective, F, EO - E0 s surjective, and for
the bar counterparts,

(Zay).) g g0 = (Fay).a0) | e gor = 0.
WS o5

1
Moreover if d = 3, then F /,()E(gl — Eg_;ll is an isomorphism for 2 < i <d — 1.

(ii) For ¢ ¢ Homg, (L, @p), one has an isomorphism
0.1 01
f’ifgl./fu F Z/nE = E

Proof. We adopt a pointwise argument here. Let ¢ € .4, ([F) and let A be the fiber of
foovert. Let ( (A), 7,1 ) be the Dieudonné module of 4. We first discuss the d = 2 case.

Since ,/%‘e///o(F/,OE;) he anl and EO_1 =0 for (o¢))|; + 7, we have Fy| 4|5 o1 =0
1

and smnlarly for the ¢;-summand. Now we assume d = 3 and look at the mo(n?phlsm

F ;}OEOAI ~ E )1 for 2 <i <d— 1. Without loss of generality we discuss this only for i = 2.

§ D(4),

——— = 2. Furth 7 (D(4), ) = pD(A4

PB(A), urthermore 7~ (ID( )¢3) pD(4),,

by Proposition 3.1 (iii). We consider the g-semilinear map

Since ¢ + 7 for i = 2,3, we have dimg

d D(A4), D(A4),,
Fmodp: VD(A)Z_’WD(A)%

induced by 7 : D(4), — D(4),, . It is known that the above map is simply the Hasse—

Witt map after identifying the spaces (133’5 = H'(4,0,) 4 Now for ee D(4),, we
have that emod p € ker(# mod p) if and only if 7(e) e pD(4),, and if and only if
eeV ([[D(A) ¢3) = pD(4) 4, (by applying 7~ or # to both sides). So one sees that # mod P
is injective. Hence it must be surjective for the dimensional reason. This proves the isomor-
phism in (i.2) for i = 2 and similarly we have the isomorphisms in (ii). The similar argu-
ment proves the injectivity of E/},OE(EI’I — ¢ and the surjectivity of F 0 N E 0.1 fol-
lows by duality.

It remains to show the d = 1 case. In this case, the result in Corollary 3.3 tells us that
the p-rank of abelian varieties in .#,(F) is either 4(n — 1) or 4n. Now by (ii), all of the
¢-summands with ¢ ¢ Homg, (L,, Q,) have contributions to the p-rank. The existence of
closed points of p-rank 4(n — 1) implies that each of the four morphisms in (i) can not be
zero. Moreover, because of the existence of the other p-rank, all of the four morphisms will
vanish at a point ¢ as soon as one of them vanishes at 7. []

Now we consider the composition of the relative Frobenius morphisms

d 0.1(r" 0.1 0,1(p) 0,1
Tl By, — By, e By o EY
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As a consequence of the above analysis of the relative Frobenius morphisms, we have the
following

Proposition 5.2. Let t € My(F). Then t € & if and only if the map

d
gd . 0,19 0,1
Lo My E¢l - E¢;

vanishes at t.

Proof. For simplicity we put 1 = 97{{) .4, The d = 1 case follows directly from Prop-
osition 5.1 (i). Assume d = 2. One direction is clear. Namely if z € S, then the restriction
of & to the ¢,-summand must be zero at ¢ by Proposition 5.1 (ii). We proceed to show the
converse direction. Again by Proposition 5.1 (ii) the ¢-summands with ¢ ¢ Homg, (L,, Q,)
have no contribution to the jumping of the Newton polygons and we only need to consider
¢ € Homg, (Ly, Q,). It is clear that & maps the ¢-summand to the ¢; -summand and the
¢;-summand to the ¢-summand for 1 <i < d. For example, one has h(E0 1t >) EO !
Note that for the ¢-summand with ¢|, =+ 7 the rank of # must be reduced by at least one
and thus it contributes to the p-rank at most by one. There are 2(d — 1) such summands in
all. By the assumption / vanishes at ¢ on the ¢,-summand. Applying the endomorphism IT
one sees that /1 vanishes at 7 on the ¢;-summand too. It implies that the p-rank at 7 is at
most 4n — 2d — 2 by Proposition 5.1 (i.2), and therefore the p-rank can not be 4n — 2d.
Since there are only two possibilities for the p-ranks at ¢t € S. From the above proof, we
also see that the restriction of /4 to each ¢-summand with ¢ € Homg, (L,, Q,) vanishes at ¢
ifand only if € S. [J

Furthermore, we have

Proposition 5.3. The zero locus of f}i | Mo :Egl’l( — EY ¢1 is reduced. In other
words, the zero divisor of the global section of the line bundle

(EO’ 1(p9)

-1 0,1
o) ®E

defined by J“Z) |y 1S of multiplicity one.

Before we show this result, we make a digression into the display theory of Dieu-
donné modules. By a theorem of Serre—Tate ([16]), the equi-characteristic deformation of
an abelian variety 4 in positive characteristic is the same as that of its p-divisible group
A(p). The latter is determined by the display of the Dieudonné module D (A4'(p)) (see [24]

and the references therein). This is also true when polarizations and endomorphisms are
considered. We put D = D(A4’(p)) and recall that we have the following decomposition:

ped
where ® = Homg(L, Q).
Lemma 5.4. There exists a basis { Xy, Y, X5 Y; |p € D} of D, such that
(1) {Xy, Yy} is a basis for Dy, and X5, Y is the dual basis of D

(ii) For ¢|p =1, Yy, X; € V' (D); while for ¢ + 7, X;, Yz € V(D).

Note 5:

“Since ...” is

not a
complete
sentence.
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16 Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p
Proof. Note that for ¢ € @, we have a short exact sequence:
0— “/Dm]g/pﬂj)(ﬁ — |D¢/p|D¢ — |D¢/"V|Dﬂ¢ — 0.

For ¢| =+ 7, the statements in (i) and (ii) are obvious, by Proposition 3.1. For ¢|, = 7, first
of all, we prove that we can choose a basis Xy, Y, for Dy, such that Y, € 7" (Dgy). In this
case, by Proposition 3.1, the dimensions of the terms appearing in the above exact sequence
are in turn 1, 2, 1. Let Xy, Y, € Dy, such that the image of X, generates Dy/7 Dyy as vec-
tor space, and Y, generates 7 (D) as vector space. Then X4, Y, generate Dy/pDy,. By
Nakayama’s lemma, X, Y, is a basis of Dy with Yy € ¥ (D,,). Secondly, we prove that
there is a dual basis X 2 Y(/; of D P such that X ;€ 7”(D). Similarly as above, we can find a

basis x, y of D; with y € 7(ID). Let
a b
H:
(< 4)

be the intersection matrix of Xy, Y, and x, y. Thus we have the valuation v,(d) > 0,
b, ¢ are invertible and H is invertible. By solving a system of linear equations, we see

1 1
that X ;= W(dx —c¢y) and Y;= W(—beray) satisfy the requirements, since

vp(d) > 0 implies that dx = pd'x = V7 (d'x) e v (D). O

Under this basis of D, the corresponding display is

(¢ 5)

where the matrix 4, C are (we take n =2, d = [F, : Q,] = 2 for example)

0 0 0 0 a ¢ 0 O
a 0 0 0 0 0 0 O
b 0 0 0O O 0 0 O
4= 0 a- ¢~ 0 0 0 0 O
0 0 O a 0 0 0 O
0 0 O b O O O0 O
0o 0 0 O 0O 0 OO0
o 0o 0 O O 0 0O
and
0O 0 0 0 b d 0 0
O 0 0 0 0 0 00
O 0 0 0 0 0O 0O
C— 0 by~ d- 0 0 0 0 O
O 0 0 0 0 0 00
0O 0 0 0 0 0 00
O 0 0 0 0 0 00
O 0 0 0 0 0O 00
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Here the basis is arranged in an obvious manner. In this case, the Frobenius is given by the
i A pB
matrix .
C pD

Lemma 5.5. Let R = k[t]. The Og-action can be extended to spec(R). Hence the dis-
play of the infinitesimal universal deformation is given by

A+TC p(B+TD)
C pD ’

where T is the Teichmiiller lifting of t (that is, T = (¢,0,...)). In particular, the matrix
A+ TC, read mod p, is the Hasse—Witt matrix of the deformation corresponding to T.

Proof. 1t is known from Proposition 2.2 that the local deformation ring of the
Shimura curve is regular on one parameter. Let Dg be the display over R. Then

DR = @ ('DRM? @ [D)R.,/;)’
ped '

where D4 (resp. D 7) is obtained from Dy (resp. Dj) by extending scalars to W (R), with
the naturally given action of W (k) on each component. Recall that the action of Ok is
defined via the map

Org — ?(W(k) @ W(k), aw (...,w(d)(a), w(¢)(a),...).

This is a map of Dieudonné modules if and only if it commutes with the Frobenius; that is,
if and only if

MiM3 = MM,

where

A+TC p(B+TD)
Ml = )
C pD

M, — diag(...,w(¢)(a),..., w(¢)(a),...) 0
0 diag(...,w(¢)(a),...,w(¢)(a),...) )

It is easy to verify that this is true, by a direct computation. []
Now we come to the proof of Proposition 5.3.
Proof.  The universal Dieudonné module Dy, is displayed by the matrix

L _(A+TC B+TD
=" o)

Now we show that the locus of Z ¢ is of multiplicity one. For this we put

d
p
=y EY — BV
o | My ¢l* é )
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18 Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p

which is the dual of Z¢. It is then equivalent to show that the zero locus of 7" is of mul-
tiplicity one. Moreover, for simplicity we just take n = d = 2 in the following argument,
and the argument for the general case is completely the same. The following matrix
mod p is the Hasse—Witt matrix of the Frobenius of the local deformation:

0 0 0 0 a+thy c+td 0 0
@ 0 0 0 0 0 00
by 0 0 0 0 0 0 0
0 ay-+th c-+tdy- 0 0 0O 00
ATTC=1 0 0 e 0 0 0 0
0 0 0 by. 0 0 00
0 0 0 0 0 0O 00
0 0 0 0 0 0 0 0

Thus the Hasse—Witt matrix of 72 is the following matrix mod p:

0 0 0 fiu 0 0 0 O
0 0 0 0 f5s frs 0 0
0 0 0 0 fis fis 00
ol fm 0 0o o o o0 0o
(4+TONA+TC)" = | 7] fo fo 00 0 ol
0 foo fis 0 0 0 0 O
0O 0 0 0 0 0 00
0O 0 0 0 0 0 00

where
Sfia = (a1 + thy)as. + (¢1 + tdy)b5.,
fas = a(af +17b7),  fos = ax(cf +17d7),
Jas = bo(a] +1°b7),  fag = ba(ay +17b7),
Jfu = (ar- +thy-)a5 + (c1- + tdy-)b3,
fso = ar-(al. +1°b7.),  fs3 = ar-(c]. +17dY.),
Jor = by (af. +t°bY.),
Jo3 = by (c]. +17d}.).

Thus 72 is locally given by the function
(al* + tbl*)ag + (Cl* + tdl*)bg = (al*ag’ + C1*b§) + t(bl*ag +d1*bg) =0.

Ast=0¢e ¥, we have ay-aj + ¢1-bJ = 0 and by-a§ + d;-bg + 0. Thus the locus is of mul-
tiplicity one. []

Theorem 5.6. Let .4y be the moduli space constructed in Section 2 and let S be the
Newton polygon jumping locus in My. Then in the Chow ring of My the following formula

(AutoPDF V7 22/7/11 09:28) WDG Tmath J-2447 CRELLE, () PMU: K(K) 7/7/2011 pp. 1-26 2447_033-6867 (p. 18)




Sheng, Zhang and Zuo, Higgs bundles over Shimura curve in char p 19

holds:
1 d
925(1—17 Jei (),

where d = [F, : Q)] is the local degree. As a consequence, one obtains the mass formula
for My:

7] = (p* = D(g — 1),
where g is the genus of the Shimura curve M.

Proof:  The mass formula follows by taking the degree in the cycle formula. By

Proposition 4.3 and 4.4, the cycle of the zero locus of E%M/O : Egl 1 EEII is equal to

(r
a(Epl) —a(Eg" ") = (1= pha(Ey") =

#, 4 (1- Pd)cl(%O)-

N =

Then the theorem follows from Proposition 5.2 and 5.3. []

Remark 5.7. The last two sections have certain overlaps with parts of the paper [12]
by P. Kassaei. In particular one shall compare Corollary 4.4 and Proposition 5.3 here with
Proposition 4.1 and 4.3 in [12].

6. Stability and instability of the Higgs subbundles in char p

In this section we study the stability and instability of the Higgs subbundles con-
structed in Proposition 4.1. We will assume that p = 2¢g in this section, unless otherwise
specified.

Proposition 6.1. With the assumption on p as above, we have that for each ¢ € @,
(Ey4,04) and (E 5 0¢—) are Higgs semistable of degree 0. Particularly for ¢|p =+ t, the rank
two vector bundles Eg’l and E (%’0 are semistable.

Proof. By construction, for each ¢ € ®, (E4,04) and (E P2 0(/;) are the modulo p
reductions of Higgs bundles in characteristic 0 by Corollary 4.2. By Theorem 4.14 (3)
and Proposition 4.19 in [25], they are Higgs semistable under the assumption on p as in
the statement. Moreover for each place ¢ with ¢|; # 7 one has (E,, 04) = (Eo’l,ﬁg’l) and
(E 2 0&) = (E(;’O, (9(/1;’0) by Proposition 4.1. The Higgs field 02’1 is by definition zero, and
0(:;’0 is also zero as Eg‘l is a zero bundle. []

For a semistable bundle E of rank r over a smooth projective curve C defined over F,
one can ask further the semistability of the bundle over C under the n-th iterated Frobenius
pull-back F/"E for n = 1. It turns out that the bundles F"E are not necessarily semi-
stable. In order to measure the instability of F’E one introduces and studies the invariant
V(Fg‘E) = ﬂmax(Fg‘E> - ﬂmin(Fg‘E> where iumax(Fé‘E) (resp. :umin(FC*‘E)) is the SlOpC of Ey

Note 6:

Do you mean
“one can
further ask
about the
semistability”?
(e.g. insert
“about”)
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(resp. z ") in the Harder—Narasimhan filtration of FZE:

n—1

0=FEycE c---cE,=FE.

The following result says that F*E can not be very instable by exhibiting an upper bound
of W(FAE).

Theorem 6.2 (Lange—Stuhler [17], Satz 2.4 for r = 2; Shepherd-Barron [27], Corollary
2, and Sun [29], Theorem 3.1 for arbitrary rank). Let E be a rank r semistable bundle over
a smooth projective curve C of genus g defined over F. Then one has the inequality

WFE) < (r—1)(29 - 2).
In particular, FEE is still semistable when g < 1.

Based on the above inequality one can also deduce a generalization of it for n = 2 (see
[21], Theorem 3.7). A. Langer ([18], Corollary 6.2) actually obtained a better bound on this
issue and generalized the above inequality as well to a higher dimensional base. It is then
interesting to find examples where the upper bound of the inequality is reached. In the case
where the local degree [F, : Q] is strictly larger than one, certain Higgs subbundles over
the Shimura curve .#, do provide such examples (see the proposition in [11], §4.4, for a
classification of semistable bundles of rank two over curves in char 2).

Proposition 6.3.  Assume that [F, : Q,] > 1. The rank two semistable bundles Eg;l and

Eg;ll over My achieve the upper bound in Theorem 6.2. That is, one has the equality

(p)

(EOl = v(Egjl ) =2g—2.

Proof. 1t suffices to show the result for the ¢, piece. The proof for another piece is
completely similar. We consider the morphism

0,1(p) 0,1
Fay\a s By = By

where E: pt " is a line bundle since ¢;|, = 7. We put then & (resp. &') to be the kernel (resp.
the 1rnage) of the above morphism. That is, we have the following short exact sequence:

(p)

0—>(§—>Eg’/1 & — 0.

Since deg(Eg’Il) =0and deg(Eglil) =1 — g, we have deg E£11 ") _ 0 and degé' <1 —9.So
by the inequality in Theorem 6.2, one has the following inequalities:

(&) - u(6") < v(EX") <29 - 2 < u(8) - (&),

It follows that the above inequalities have to be an equality at each step and particularly
the assertion of the proposition follows. []

Combining this proposition with Proposition 5.1 (ii), one obtains Theorem 1.4 (iii).
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The other extreme about the semistability of a vector bundle under iterated Frobenius
pull-backs is expressed in the following definition.

Definition 6.4. Let E be a semistable vector bundle over a smooth projective curve C
as above. It is said to be strongly semistable if for all n = 1, the F"E are semistable.

In the case that for certain n = 1 one has an isomorphism F"E =~ E, the bundle E is
obviously strongly semistable. The following theorem gives us a characterization of the cat-
egory of the strongly semistable bundles over C.

Theorem 6.5 (Lange—Stuhler [17], §1). Let C be a smooth projective curve as above
and ©{'(C) be its étale fundamental group. Let E be a vector bundle over C of rank r. Then
the following conditions about E are equivalent:

(i) There exists n = 1 such that F"E ~ E.
(ii) There exists an étale covering map n : C — C such that n*E over C is trivial.

(i) E corresponds to a continuous representation n{'(C) — GI.(F) where GI,.(F) is
equipped with the discrete topology.

One calls the bundle E satisfying one of the above equivalent conditions étale trivializ-
able. The bundle E is strongly semistable if and only if there exists n = 0 such that F'E is
étale trivializable.

We can find such examples again among the Higgs subbundles in this study.

Proposition 6.6. (i) Assume p is not inert in F. Then for ¢ ¢ Homg, (Ly, Q,), Eg’l and
E(;‘O are étale trivializable, and particularly strongly semistable.

(ii) In case d =[F,: Q,] > 1, the semistable bundles E(g‘"l for 2 <i<d are not
strongly semistable and consequently stable.

Proof. (i) By Proposition 5.1 (ii), the morphism | 4, : ES’I(IJ) — ng;jl is an iso-
morphism in the case that ¢|, + 7. When ¢ ¢ Homg, (L,,,@,), we have (o¢)|, # 7. This
implies that for n large enough the composition of the relative Frobenius morphisms in-
duces an isomorphism Eg’l(p ) >~ Eg’l. The proof for E 10 is similar by replacing the rela-
tive Frobenius morphism in the argument by the relative Verschiebung morphism V| .4

. (ii) For ¢; € Homg, (Ly,,@,) with i # 1, we consider the composition # of the mor-
phisms

go1 Py go1 Fal 4 0,1(p)

o o, 0,1
4 b = By By
where the last morphism is surjective by the proof of Proposition 6.3. Thus the ke‘;}}SI of 5
provides a sub line bundle of positive degree (actually it is equalto g — 1) in £ 01 e and
therefore it is not semistable. The assertion about the stability follows from the following

simple lemma. []

Note 7:
Insert “the
bundles”
before “E)"!
1 0;?”
and E; ?
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Lemma 6.7. A strictly semistable rank two vector bundle E of degree zero over a
smooth projective curve C over [ is strongly semistable.

Proof. By the assumption, E is an extension of two degree zero line bundles. We
write

0—-%4 - FE— % — 0.

Suppose that E(?) is not semistable, and let . be a positive sub line bundle of it. Then we
have the morphisms

£ —EW - 7P,

Because deg 5,”2(‘" ) =0< deg ., the above composition is zero. Hence the inclusion of .# in
E factors through %7, That is, one has & = %,”). Again because

degglm =0<deg?,

we obtain a contradiction. In conclusion, E(?) is semistable. By induction on the iterations
of Frobenius pull-backs we see that E is actually strongly semistable. []

7. The Simpson—Ogus—Vologodsky correspondence of the Higgs subbundles in char p

One of the main results in [25] is to establish a char p analogue of the Simpson cor-
respondence. Let 7 : .#; — ./, be the projection map and Z, : .4y — 4, be the rela-
tive Frobenius in the commutative diagram of Frobenius morphisms for .4, over F (see
notations and conventions in Section 1). For the Shimura curve .#, over [, which is the
reduction of a Shimura curve over mixed characteristic, the Cartier transform C,, (see
[25]) is a functor from the category MIC(.#,) of flat bundles over .#, to the category
of Higgs bundles HIG(.#;) over ./, with each of them subject to suitable nilpotence
conditions. The functor is an equivalence of categories with the quasi-inverse functor
C% : HIG(My) — MIC(Ay). For the full subcategory of flat bundles with vanishing
p-curvatures, the functor is just the classical Cartier descent (see [13], §5), and it maps
onto the full subcategory of Higgs bundles with trivial Higgs fields over .#;. It is also clear
that the functor transforms the relative de Rham bundle (#), V) of the universal family
fo: %o — Ay to (E',0") = n*(E,0), which is the associated Higgs bundle of the family
Jo + &y — My, where f is the base change of fy via 7. In this section we examine the
Simpson—Ogus—Vologodsky correspondence and the Cartier transform for the Higgs sub-
bundles in Proposition 4.1. It will be assumed in this section that p = max{2g,2(n+ 1)}, in
order to fulfill the basic requirements in [25], Theorem 3.8. We use 2’ to denote the pull-
back to .# via n of an algebra-geometric object Z defined over ..

We have the ring homomorphisms () ¢ R End /4, (%)) 4 Endj/d(%é). Thus ¢’ denotes
the composition morphism. By abuse of notations, the induced ring homomorphisms from
Ok to the endomorphism rings End(# ), V) and End(E, 0) respectively are again denoted
by ¢. For example, the (s x-action on (E’,0") via ¢’ decomposes it into the direct sum of
eigen Higgs subbundles

(E',0) = g(%,@) ® (E}, 09,
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where (; ¢ acts on the direct summand E (/’5 via the character ¢ and similarly for its bar coun-
terpart.

Proposition 7.1. Let C, : MIC(My) — HIG( M) be the Cartier transform. Then
or each ¢ € ®, one has C ,Vy) = (Ej,0,). The same is true for its bar counterpart.
h ¢ € ®, one has C 4 (# g 4, Vy) = (E},0,). Th ‘ or its b

Proof. Take A € Opx. Applying Theorem 3.8 in [25] to the morphism ¢(4) : Zo — Zo
and the objects (O, 0) € MIC(Zy), (Uy1,0) € HIG(Z;), one obtains the following commu-
tative diagram:

Cy,

;(ﬂ)?ﬂz zl;wf’c

Cy

Applying the same theorem further to fy : 2y — .#, one obtains the second commutative
diagram:

Cxy
(O, 0) —— ((9;2“0’7 0)

1 DR 1 £1HIG
e |

Cy
(Hjp, V) —2 (E,0).

It is clear that the isomorphism ¢(1)”* (resp. ¢/(4)%) induces via the direct image
functor R'fy, the isomorphism ¢(2)”%: (#)e, V) = (#}e, V) (resp. the isomorphism
(WY (E' 0y — (E',0")). The above two commutative diagrams yield the following

commutative diagram:

%

C,
(delR’ V) — (Elv 6,)

;wf"l = %;w””

Cuy

(A g, V) — (E',0").
Since the action of A € Uz on (A, V) (resp. (E’,0")) is given by ¢(1)"%
one then has

(resp. ¢'(2),"),

() (Can(Higr 4 V9)) = Can (s(2)( Ay 4 Vg))
= Cy (4’5(/1)(%01112,(;)’ Vy))
= ¢(/1)C////o(f7fdl1z,¢a Vi),
which implies that C 4, (#,jg 4, V) = (E},0,). [

Let 0 = F2 < FL < F) = #}, be the conjugate filtration of J#,, which is flat

con con con
with respect to the Gauss—Manin connection (see [13], §3). For a subbundle W = %), we
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L WnFEZ, .
(W) = @ ———=. The p-curvature Yy of V defines the F-Higgs bundle

put Grg,
q=0 W n ch();l

con

Wy : Grig, (Hi) = Greg, (#ig) ® F 1 Qu.
As a reminder to the reader, we recall the definition of the F-Higgs bundle: an F-Higgs
bundle over a base C, which is defined over F, is a pair (E, /) where E is a vector bundle
over C, and 0 is a bundle morphism E — E ® FjQ¢ with the integral property 0 A 0 = 0.
The following lemma is a simple consequence of Katz’s p-curvature formula ([14], Theo-
rem 3.2), and it is also true in a general context.

Lemma 7.2. Let W < # ), be a subbundle preserved by the Gauss—Manin connec-
tion V. Then the F-Higgs subbundle (Grg,, (W), ‘pV|G"Fcon(W>) defines a Higgs subbundle of
(E',0") by the Cartier descent.

Proof. Since V preserves Fyop, it induces the connection Grp,  V on GVFCM(CWE,IR) by
taking grading. The operation of the p-curvature on this connection commutes with taking
the grading. It follows that ¥, v = Grg,, Yy, which is the zero map. The relative Cartier

isomorphism gives the isomorphism (Grr,, (#y), Grr,, V) = (7, E', V"), where V" is
the canonical connection by the Cartier descent. Taking this isomorphism for granted, we
see that the inclusion Grg,, (W) < Grg,, (#) descends to the inclusion F = E’. In other
words, #, F is isomorphic to Grg,, (W) via the relative inverse Cartier isomorphism. By
Katz’s formula (see [14]), the F-Higgs bundle (Grg,, (#,3), y) descends to the Higgs bun-

dle (E’,0). Thus the F-Higgs subbundle (Grg,, (W), Yyls, () descends to the Higgs
subbundle (F,0'|;) of (E’,0"). [

For simplicity the above resulting Higgs subbundle is called the Cartier descent of

Gre,,(W,V|y).

con

Theorem 7.3. For each ¢ € @, the following statements hold.
(1) Cto(H g oy Voy) = 7" (Ep, 0p).
(2) C////o(%leAqw V,) is the Cartier descent of Grpwn(%;Rvaj, Vy).

The similar statements hold for the bar counterpart.

Proof. By Proposition 7.1 it is equivalent to show the identification (E,)" = E,4. For
this we take 1 € O x. Then

S(EY") = (cW(Ey)) = (HADEg) = p()(Ep)' = (o) (2)(Ey) .

This proves the identification and therefore the first part of the theorem. Because
0| B = «9;, the second part is a consequence of Proposition 7.1 and Lemma 7.2. []

By this theorem we have a better understanding of the Higgs subbundles in Proposi-
tion 6.6 (ii) under the Frobenius pull-backs. Now assume that d = [F}, : Q,] > 1 and write
Homg, (Ly, Q,) = {¢y,--- ¢4 ¢1,---,95} as in Proposition 5.1. We deduce the following
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Corollary 7.4. For 2<i=<d, one has F*d g, = %dR . Moreover under this
identification, the Harder—Narasimhan filtration on Fj,d ’+1E¢ comczdes with the Hodge fil-
tration on A g which is induced from H ).

Proof.  We look at the i =d case first. Since ((E,,)’,0) € HIG(.4;) is of trivial
Higgs field,

C;Z(IJ ((E%)/a 0) = (g’:’/;o(E%)/v Vcan).

Because F 4, = mo Fy, we have 7, (E;,)' = Fj, E,,. On the other hand, the above theo-
rem says that

C_},;((E%)/,O) C%( ody ,0) = zz (E¢ 0) = (%de 5 ,V¢1)

It follows that (F, Ey,, V") = (A ) .47+ Vy; ). Forgetting the connections, we obtain the re-
sult for i = d. For 2 < i =d — 1, the same argument for E, implies that F;, E, = A b

As i+ 1 =d, one must have J{’dR b = Epr- By iterating the above arguments, one
obtains the results for all /s from the i = d case. From the second part of the proof of
Proposition 6.6, we have known that F *" ’+1E¢ is not semistable. It suffices to show that
the Hodge filtration on #), b= =F %E¢ , 1s the Harder—Narasimhan filtration. Since the
Harder—Narasimhan filtration is unique, it is equivalent to show that the sub line bundle
E(;*O < A 4 is of maximal degree. By Theorem 6.2, the maximal degree does not exceed

g — 1, which is exactly the degree of E 0. This completes the proof. []

Taking the grading of (F; xd— ’+1E¢i, V) with respect to the Harder—Narasimhan fil-
tration, one obtains a Higgs bundle different from the original Higgs subbundle (Ej,,0) of
unitary type. By the above result, the new Higgs bundle is exactly one of the Higgs sub-
bundles of unformizing type. Such a phenomenon might be quite general for Higgs bundles
over compact Shimura varieties in char p.
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