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Abstract. The main purpose of this article is to show that there exists numerical

bound with respect to rational equivalences in some sense. We also prove that finite

dimensionality of the zero dimensional Chow groups are preserved by degeneration.

1. Introduction

Let X be a smooth projective variety over an algebraically closed field of charac-

teristic 0 and Z0X denote the group of 0-dimensional algebraic cycles of X (see §1.3

Ch. I [1]). We call a finite set {(Ci, φi)} where Ci’s are curves on X and φi’s rational

functions on Ci a rational equivalence datum. For a zero-cycle α ∈ Z0X which is ratio-

nally equivalent to zero, a rational equivalence datum for α is defined to be a rational

equivalence datum {(Ci, φi)} which satisfies

α =
∑

div(φi) =
∑

zero(φi)−
∑

pole(φi) ∈ Z0X.

Therefore α and β are rationally equivalent if and only if there exists a rational equiv-

alence datum {(Ci, φi)} for α − β. To a rational equivalence datum, one associates

several numerical data: let m be the number of curves of {Ci}, let pa be the maxi-

mum of the arithmetic genera pa(Ci) and let d the maximum of the degrees deg(φi).

Certainly, the triple (m, pa, d) depends on the choice of rational equivalence data for

α− β. Now we consider the case where the zero Chow group CH0(X) is trivial, which

means that any two closed points in X, namely two effective cycles of degree one, are

rationally equivalent. Our basic question is whether there exists a uniform bound on

the triple (m, pa, d) for all p − q where p, q go through all pairs of closed points of X.

More precisely, we are asking whether there exists a triple (m, pa, d) ∈ N3 such that

there is always a rational equivalence datum for all p − q whose numerical data does
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not exceed the given triple. One of our main results is to give the affirmative answer

to this question in the case that k is uncountable.

Theorem 1.1. Let X be a smooth projective variety over an algebraically closed field

of characteristic 0 which is uncountable. Assume CH0(X) = Z. Then there exists a

uniform bound (m, pa, d) of rational equivalences data for all p− q ∈ Z0X where p, q go

through all pairs of closed points of X.

See Theorem 2.4 for a more general formulation of the above theorem. It is a chal-

lenging problem to find an effective bound in the theorem. As an application, we obtain

the following result:

Theorem 1.2. Let C be a nonsingular curve over an algebraically closed field of char-

acteristic 0 which is uncountable, 0 ∈ C a closed point, f : X → C a flat projective

morphism with integral fibres and Y a subvariety of X . Let C ′ = C−{0}, X ′ = C ′×CX

and Y ′ = C ′ ×C Y. Assume that Y is of dimension at most 2 and, for any closed point

c ∈ C ′, the natural map ic∗ : CH0(Yc) → CH0(Xc) is surjective, that is, CH0(Xc) is

representable. Then CH0(X0) is representable.
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2. Rational equivalence of special type

Let k be an algebraically closed field of characteristic 0 and let X be a projective

variety over k. We start with definition:

Definition 2.1. A rational equivalence datum is a finite set {(Vi, φi)} where the Vi’s are

(n+1)-dimensional subvarieties of X, and φi ∈ k(Vi). Let α ∈ ZnX be a n-dimensional

algebraic cycle which is rationally equivalent to zero. We call {(Vi, φi)} a rational

equivalence datum for α if

α =
∑

div(φi) =
∑

zero(φi)−
∑

pole(φi) ∈ ZnX.



BOUNDEDNESS ON RATIONAL EQUIVALENCE 3

In the case that n = 0, we associate a triple (m, pa, d) ∈ N3 with a rational equivalence

datum {(Ci, φi)}: let m be the number of curves of {Ci}, let pa be the maximum of the

arithmetic genera pa(Ci) and let d the maximum of the degrees deg(φi). We say a triple

(m, pa, d) is bounded by a triple (M,P,D) if m ≤ M,pa ≤ P, d ≤ D. Let two 0-cycles

α, β be rationally equivalent. We call (M,P,D) a bound of rational equivalence of α, β

if there is a rational equivalence datum for α−β whose triple is bounded by (M,P,D).

Note that an effective zero-cycle α =
∑
nipi on X of degree n =

∑
ni can be viewed

as a closed point of the Chow variety Chow0,n(X) parametrizing effective algebraic

cycles of dimension 0 and degree n (see §3.21 Ch. III [3]).

Definition 2.2. Two effective zero-cycles α, β of degree n are said to be m-connected

if there exist m+ 1 effective 0-cycles α = α0, α1, . . . , αm = β in SnX such that for each

i = 0, 1 . . . ,m − 1, there is a morphism fi : P1
k → SnX such that fi(0) = αi, fi(∞) =

αi+1. We call the morphism fi a one-connection datum for (αi, αi+1).

It is known that two zero-cycles α, β are rationally equivalent if and only if there

exists a certain effective zero-cycle γ such that α + γ and β + γ are effective and

one-connected (see Example 1.6.3, [1]). Now we fix a base point p ∈ X.

Lemma 2.3. Let α, β be two rationally equivalent effective zero-cycles of degree m.

Then there exists a natural number n such that α+ np is 3-connected to β + np.

Proof. Take an arbitrary rational equivalence datum for β − α:

β − α =
∑

zero(φi)−
∑

pole(φi).

Set γ =
∑

zero(φi). Take an irreducible curve C ⊂ X which passes through both p

and supp(γ). By Serre’s vanishing on C, we find a rational function ψ on C such that

zero(ψ) = np and δ := pole(ψ)− γ are effective divisors on C. Put

α0 = α+ np = α+ zero(ψ)

α1 = α+ pole(ψ) = β +
∑

pole(φi) + δ

α2 = β +
∑

zero(φi) + δ = β + pole(ψ)

α3 = β + zero(ψ) = β + np
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And define three morphisms P1
k → Sm+nX as follows:

l0(t) := α+ ψ−1(t), l1(t) = β +
∑

φ−1i (t−1) + δ, l2(t) = β + ψ−1(t−1).

It follows from the construction that li gives a one-connection datum between αi and

αi+1. We draw a line configuration in Sm+nX to illustrate the situation:

SmX

Sm+nX

l0

l1

l2

α+ np

α+ γ + δ β + γ + δ

β + np

�

We will prove the following result.

Theorem 2.4. Let k be an algebraically closed filed of characteristic zero which is

uncountable and X , S be two algebraic varieties over k. Let f : X → S be a flat

projective morphism with integral fibers and Y ⊂ X be a closed subvariety.

Y

��

i // X

f
��
S

Assume that for any closed point s ∈ S, the natural map is∗ : CH0(Ys) → CH0(Xs) is

surjective. Then there exists a triple (M,P,D) ∈ N3 such that, for each closed point

ps ∈ Xs, we can find a 0-cycle Zs ∈ Z0Ys which is rationally equivalent to ps in Z0Xs
with a rational equivalence bounded by (M,P,D).

For the proof of Theorem 2.4, we use Proposition 2.5 as follows.

Proposition 2.5. Let k be an algebraically closed filed of characteristic zero which

is uncountable and X , S be two algebraic varieties over k. Let f : X → S be a flat

projective morphism with integral fibers and Y ⊂ X be a closed subvariety.

Y

��

i // X

f
��
S
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Let p : S → X be a section and assume that [p(s)] ∈ image(CH0(Ys) → CH0(Xs)) for

all closed point s ∈ S. Then there exists a triple (M,P,D) ∈ N3 such that, for each

closed point s ∈ S, we can find a 0-cycle Zs ∈ Z0Ys which is rationally equivalent to

p(s) in Z0Xs with a rational equivalence bounded by (M,P,D).

Proof of Proposition 2.5. We shall employ a Hilbert scheme argument. For each pair

of natural numbers n,m, set

Sn,m := {s ∈ S|np(s) + Z−s
3−con∼ (n− 1)p(s) + Z+

s , Z
+
s ∈ Em+1(Ys), Z−s ∈ Em(Ys)}

where Em(Ys) consists of all effective algebraic cycles of degree m in Z0Ys. By

assumption, for any s ∈ S we can take two effective 0-cycles Z+
s , Z

−
s of Ys such that

Z+
s − Z−s = p(s) ∈ CH0(Xs). Now Lemma 2.3 asserts that

∪Sn,m = S.

We claim Sn,m ⊂ S is a countable union of constructible sets. Let C3 be the u-

nique connected curve consisting of three copies of P1 whose dual graph is a tree.

Let us label three copies as Cα, Cβ, Cγ , such that Cβ is the unique copy which inter-

sect with the remaining two copies. Let us also mark two closed points {0,∞} ⊂

C3, where 0 belongs to Cα while ∞ belongs to Cγ . We remark that each point

of HomS(C3 × S,Chow0,n+m(X/S)) can be regarded as a morphism gs from C3 to

Chow0,n+m(X/S)s for a point s ∈ S. Consider the closed subset Hom0
n,m ⊂ HomS(C3×

S,Chow0,n+m(X/S)) consisting of those points whose corresponding morphisms gs have

the following property:

gs(0) ∈ np(s) + Chow0,m(Y/S)s, gs(∞) ∈ (n− 1)p(s) + Chow0,m+1(Y/S)s.

We equip Hom0
n,m with the reduced closed subscheme structure. Then, the image of

the composite

Hom0
n,m ⊂ HomS(C3 × S,Chow0,n+m(X/S))→ S

is nothing but Sn,m. By the theorem of Chevalley, Sn,m is a countable union of con-

structible sets Sn,m,i.

Lemma 2.6 below allows us to conclude that S = ∪Sn,m,i has a finite subcover.
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Lemma 2.6. Let X be an algebraic variety over an algebraically closed field k which is

uncountable and {Xn}n∈N a countable set of constructible subsets of X such that every

closed point of X lies on some Xn. Then there exists a natural number N such that

X = ∪Nn=1Xn.

Proof. We proceed by induction on dimX. If dimX = 0, then X consists of finite closed

points and we always have such N . Let dimX = m, and assume that lemma holds for

lower dimensional cases. As X is covered by finitely many affine open subschemes, we

may assume X is an affine variety from the beginning.

We prove some Xn contains a nonempty Zariski open subset U . If not, all Xn are

of dimension at most m − 1. For each irreducible component Xn,i of Xn, we take a

closed point xn,i ∈ Xn,i. We will find a nonempty hypersurface D which misses all

xn,i. The condition for D to contain xn,i can be written as a nonzero linear equation.

Since k is uncountable and the number of linear equations is countable, we have a D

which doesn’t satisfy any equations and thus is the one we want. For this D, let Di be

any irreducible component. We have dim(Xn ∩ Di) ≤ m − 2, for all n. By inductive

hypothesis, finitely many Xn ∩ Di should cover Di, contradiction by the dimension

reason.

To complete the proof, we again apply the inductive hypothesis to each component

of the complement X − U . �

We use the following lemma to conclude Proposition 2.5.

Lemma 2.7. Notations as above. Let Y ⊂ Hom0
n,m be an irreducible component.

Then the triples associated with the rational equivalences data corresponding to Y are

uniformly bounded.

Proof. Let Σ be the corresponding incidence variety:

Σ �
� //

pr1
��

Y ×S (C3 × S)×S Chow0,n+m(X/S)

Y.

Then, by applying the Chow functor (see [3, Ch. I, §3.21]), the third projection pr3 :

Σ→ Chow0,n+m(X/S) gives a family of nonnegative proper, algebraic cycles (U → Σ)

of X ×S Σ/Σ.
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For the closed subscheme Supp U ↪→ X ×S Σ, let V be its scheme theoretic image

with its reduced scheme structure under the following projective morphism

1X × pr1 : X ×S Σ→ X ×S Y.

We write π : V ⊂ X ×S Y → Y for the composition, where the latter morphism is

the second projection. Note that for any closed point y ∈ π(V ) = Y which is mapped

to s ∈ S, the corresponding morphism gy : C3 → Chow0,n+m(Xs) gives rise to a 3-

connection in Xs. Moreover, we have the following Cartesian diagram:

Supp U //

��

X ×S Σ //

��

Σ

��

(Supp U)y

88

//

��

Xs × C3

99

//

��

C3 ' Graph(gy)

88

��

V // X ×S Y // Y

Vy //

88

Xs //

99

y

88

According to [1, Ch. I, Prop. 1.6 ], the one-dimensional components of Vy are those

curves occurred in the 3-connection given by gy. We show that all the curves have

uniformly bounded arithmetic genera.

Consider the morphism π : V → Y introduced as above. There is a flattening

stratification Y1, Y2, . . . , Yk which are locally closed subschemes such that V ×Y Yi → Yi

is flat (cf. [4, Section 8]). So we may assume π is flat. Let C be a one dimensional

component of Vy equipped with its reduced structure. We claim the arithmetic genus

pa(C) = h1(C,OC) ≤ h1(Vy,OVy). Let IC be the ideal sheaf of C. Then the short

exact sequence 0 −→ IC −→ OVy −→ OC −→ 0 induces a long exact sequence

0 H0(Vy, IC) H0(Vy,OVy) H0(C,OC)

H1(Vy, IC) H1(Vy,OVy) H1(C,OC) 0

α0

So we have h1(C,OC) ≤ h1(Vy,OVy).

Since h1(Vy,OVy) is an upper semi-continuous function on Y , h1(Vy,OVy) is uniformly

bounded. Hence there is a uniform bound of arithmetic genera.

It remains to show the number of curves and the maximum of the degrees associated

with each of these rational equivalences data are bounded by constants. For any rational

equivalence datum given by a morphism C3 → Chow0,n+m(Xs), the sum of the degrees
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associated with it is bounded by 3(n+m). Therefore, the two numerical numbers are

both uniformly bounded by 3(n+m). �

Applying the lemma to our situation, we can find a triple (M,P,D) which is a

universal bound and then complete the proof of Proposition 2.5. �

Proof of Theorem 2.4. We just take the base change and apply Proposition 2.5:

X ×S X

��

// X

��
X // S

�

In the case that S is a point and the Chow group is Z, we have the following special

version:

Corollary 2.8. Let X be a smooth projective variety over C with CH0(X) = Z. Then

there exists a natural number N such that for all p, q ∈ X, Np is 3-connected to

(N − 1)p+ q.

3. Applications

As in Section 2, let k be an algebraically closed field of characteristic zero which

is uncountable. We have seen that rational equivalence of two effective cycles can be

realized by P1 connections of corresponding points in the moduli of effective cycles,

namely the Chow variety. It is well-known that the degeneration of rational curves is

still rational (see Proposition 3.2). By this observation, we get the following theorem:

Theorem 3.1. Let C be a nonsingular curve over k, 0 ∈ C a point, f : X → C a flat

projective morphism with integral fibres and Y a subvariety of X . Let C ′ = C − {0},

X ′ = C ′ ×C X and Y ′ = C ′ ×C Y.

X ′

�f ′

��

// X

�f

��

X0
oo

f0
��

C ′ // C {0}oo

Assume that, for any closed point c ∈ C ′, the natural map ic∗ : CH0(Yc)→ CH0(Xc) is

surjective. Then the morphism i0∗ : CH0(Y0) → CH0(X0) is surjective. In particular,

if Y is of dimension at most 2, CH0(X0) is representable (see [5, Definition 10.6]).



BOUNDEDNESS ON RATIONAL EQUIVALENCE 9

Proof. We take the base change X ×C X → X with the diagonal as a section. For

simplicity, we write S = X , X = X ×C X and YS = X ×C Y. Let n,m be nat-

ural numbers and Hom0
n,m as in the proof of Proposition 2.5, and Y an irreducible

component of Hom0
n,m. HomS(C3 × S,Chow0,n+m(X/S)) is an open subscheme of

Hilb((C3×S)×S Chow0,n+m(X/S)/S). Let Y be the closure of Y in Hilb((C3×S)×S
Chow0,n+m(X/S)/S), and Σ be the incidence variety corresponding to Y :

Σ

�u

��

// Σ

u
��

Y // Y

Now we use the following general fact:

Proposition 3.2. Let C be a nonsingular curve over k, 0 ∈ C a point and f :M→ C

a flat projective morphism such that we have the following commutative diagram

M− f−1(0)

ϕ

��

resf
// C − {0}

id
��

C3 × (C − {0})
pr2 // C − {0}

where ϕ is an isomorphism of schemes. Then the central fibre f−1(0) is connected and

each component is a rational curve.

Proof. The connectedness follows from Stein factorization. Since M− f−1(0) has a

trivial C3 fibration and f is flat, M has three componentsM1,M2,M3. And for each

i we have the following commutative diagram

Mi − f−1|Mi
(0)

ϕi

��

resf|Mi // C − {0}

id

��
P1 × (C − {0})

pr2 // C − {0}

where ϕi is an isomorphism. Then by semi-stable reduction (see [2, CH. II]), there is a

finite morphism π : C ′ → C with C ′ nonsingular and π−1(0) consists of one point, say
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0′, and a projective morphism p as follows:

M′i

f ′

��

p

$$
Mi × C ′ //

��

Mi

f
��

C ′
π // C

where p is an isomorphism over C ′ − {0′}, M′i is nonsingular, and the fibre f ′−1(0′) is

reduced with nonsingular components crossing normally. As f ′ is still flat, the Hilbert

polynomial of the fibre f ′−1(0′) is 0. Then the structure sheaf of every smooth compo-

nent has vanishing first cohomology. It follows that every component is isomorphic to

P1. This completes the proof.

�

By Proposition 3.2, u−1(y) is connected for any y ∈ Y and each component is a

rational curve. This means that each point of Y gives a rational equivalence. Let SY

be the image of the composition

Y ⊂ Hilb((C3 × S)×S Chow0,n+m(X/S)/S)→ S.

We see that SY is a closed subset of S satisfying [p(s)] ∈ image(CH0(Ys)→ CH0(Xs)), ∀s ∈

SY . Now by Theorem 2.4, there are finitely many Yi’s, with possibly different (n,m)’s,

such that ∪SYi ⊃ (S − f−1(0)). As ∪SYi is closed, we have ∪SYi = S. This completes

the proof. �
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