
2nd Reading

March 22, 2014 8:53 WSPC/S0129-167X 133-IJM 1450029

International Journal of Mathematics
Vol. 25, No. 4 (2014) 1450029 (11 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129167X14500293

On the Chern number inequalities satisfied by all smooth complete
intersection threefolds with ample canonical class

Mao Sheng, Jinxing Xu∗ and Mingwei Zhang

School of Mathematical Sciences
University of Science and Technology of China
96 Jinzhai Road, Hefei 230026, P. R. China

∗xujx02@ustc.edu.cn

Received 9 October 2013
Accepted 28 February 2014
Published 25 March 2014

We obtain all linear Chern number inequalities satisfied by any smooth complete inter-
section threefold with ample canonical bundle.

Keywords: Complete intersection threefolds; Chern number inequalities.

Mathematics Subject Classification 2010: 14J30

1. Introduction

This small note is motivated by finding a new Chern number inequality for a smooth
projective threefold X with ample canonical bundle. Let ci = ci(TX) be its Chern
class for i = 1, 2, 3. Yau’s famous inequality [4] in the three-dimensional case says
that

8c1c2 ≤ 3c3
1,

with equality if and only if X is uniformized by the complex ball. As it contains no
c3 term, one may naturally wonder whether there exists a Chern number inequality
involving c3. This is possible because of the following result:

Theorem 1.1 (Chang–Lopez [2, Corollary 1.3]). The region described by the

Chern ratios ( c3
1

c1c2
, c3

c1c2
) of smooth irreducible threefolds with ample canonical bun-

dles is bounded.

However, the result, as well as its proof, does not produce a new Chern number
inequality, even for the subclass of smooth complete intersections. Before the dis-
covery of a new method to handle the general case, it is valuable from a scientific
standpoint to treat this subclass firstly by bare hands. This is what we are going
to do here.
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Our method is to determine the convex hull in R
2 generated by Chern ratios

( c3
1

c1c2
, c3

c1c2
) of all smooth complete intersection threefolds with ample canonical

bundles. Let n be a natural number. A smooth complete intersection (SCI) threefold
X in P

n+3 is cut out by n hypersurfaces, and a nondegenerate one, i.e. not contained
in a hyperplane, by n hypersurfaces of degrees d1 + 1, . . . , dn + 1 with di ≥ 1 for
1 ≤ i ≤ n. The Chern numbers of a smooth X is uniquely determined by the tuple
(d1, . . . , dn). Therefore, we may use the notation

Q(n; d1, . . . , dn) =
(

c3
1

c1c2
,

c3

c1c2

)
∈ R

2

for Chern ratios of X . Note that X has ample canonical bundle if and only if∑n
i=1 di ≥ 5. Put

Q =

{
Q(n; d1, . . . , dn) |n ≥ 1, di ≥ 1,

n∑
i=1

di ≥ 5

}
⊂ R

2.

Let P be the convex hull of Q. We obtain the following theorem.

Theorem 1.2. P is a rational polyhedra with infinitely many faces. The corners
of P are given by the following points:

Q(1; 5) =
(

1
16

,
43
8

)
, Q(2; 2, 3) =

(
1
10

,
19
5

)
,

Q(3; 2, 3, 3) =
(

1
8
,
13
4

)
, Q(3; 2, 2, 2) =

(
1
3
,
23
12

)
,

Q(n; 1, . . . , 1) =
(

2(−4 + n)2

12 − 5n + n2
,

−24 + 14n− 3n2 + n3

3(−4 + n)(12 − 5n + n2)

)
, n ≥ 5.

Remark 1.1. In another work of Chang [1], she described a region R in the plane
of Chern ratios such that any rational point in R can be realized by a SCI threefold
with ample canonical bundle; Outside R there are infinitely many Chern ratios
of smooth complete intersection threefolds but no accumulating points. These two
results are related, but do not imply each other. See Fig. 1.

We proceed to deduce our main application of the above result. According to
the values of their x-coordinates, we label the corner points of P as follows:

p1 = Q(1; 5), p2 = Q(2; 2, 3), p3 = Q(3; 2, 3, 3),

p4 = Q(5; 1, 1, 1, 1, 1), p5 = Q(3; 2, 2, 2), pn = Q(n; 1, . . . , 1), n ≥ 6.

The sequence of points {pn} converges to the point

p∞ =
(

2,
1
3

)
.

The closure of P , denoted by P̄ , contains the points pn(n ≥ 1), p∞ as its corners.
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Fig. 1. Convex hull of Chern ratios.

For two distinct points p, q ∈ R
2, denote the line through p, q by Lpq, and the

line segment connecting p, q by pq. Denote the expressions of lines as follows:

Lp1p∞ : y = k0x + b0,

Lpmpm+1 : y = kmx + bm, m ≥ 1.
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The values of km, bm are:

(k0, b0) =
(
−242

93
,
515
93

)
, (k1, b1) = (−42, 8), (k2, b2) = (−22, 6),

(k3, b3) = (−14, 5), (k4, b4) =
(
−9

2
,
41
12

)
, (k5, b5) =

(
−13

5
, 3

)
,

km =
−28m + m2 + 4m3 − m4

(−4 + m)(−3 + m)(−20 − 5m + 3m2)
, ∀m ≥ 6,

bm =
−120 + 254m + 3m2 − 50m3 + 9m4

3(−4 + m)(−3 + m)(−20 − 5m + 3m2)
, ∀m ≥ 6.

The sequence of lines Lpmpm+1 converges to the line

L∞ : y = k∞x + b∞,

where k∞ = − 1
3 , b∞ = 1.

Theorem 1.3. Let C be the convex cone of linear inequalities satisfied by the Chern
numbers of each SCI threefold with ample canonical bundle. That is,

C = {(λ1, λ2, λ3) ∈ R
3|λ1c

3
1(X) + λ2c1(X)c2(X) + λ3c3(X) ≥ 0,

for any SCI threefold X with KX > 0}.
Then C is a rational convex cone with edges

(−k0,−b0, 1), (km, bm,−1)(m ≥ 1), (k∞, b∞,−1),

where by an edge we mean a one-dimensional face.

Proof. Let Č ⊂ R
3 be the closure of the convex cone generated by the set

{(c3
1(X), c1(X)c2(X), c3(X)) ∈ R

3 | X is a SCI threefold with KX > 0}.
Note that if X is a SCI threefold with KX > 0, then c1(X)c2(X) < 0. Indeed,

Yau’s inequality gives us 8c1(X)c2(X) ≤ 3c1(X)3, and the ampleness of canonical
bundle implies the inequality c3

1(X) < 0.
Since c1(X)c2(X) < 0, it can be easily seen that

Č = {(λx, λ, λy) |λ ∈ R≤0, (x, y) ∈ P̄}.
By definition, C is the dual cone of Č. By Theorem 1.2, the codimensional one faces
of Č are exactly the hyperplanes in R

3 determined by the vectors (−k0,−b0, 1),
(km, bm,−1)(m ≥ 1), (k∞, b∞,−1). From the duality of C and Č we get that
(−k0,−b0, 1), (km, bm,−1)(m ≥ 1), (k∞, b∞,−1) are exactly the edges (one-
dimensional faces) of C.

Corollary 1.1. If X is a SCI threefold with KX > 0, then its Chern numbers
satisfy the inequality 86c3

1 ≤ c3 <
c3
1
6 , with the equality 86c3

1 = c3 holds if and only
if X is isomorphic to a degree six hypersurface in P

4.
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Proof. It can be checked that
744
229

(−k0,−b0, 1) +
515
229

(k1, b1,−1) = (−86, 0, 1).

By Theorem 1.3, (−86, 0, 1) ∈ C, hence we have

c3 − 86c3
1 ≥ 0,

with equality holds iff(
c3
1

c1c2
,

c3

c1c2

)
= Lp1p∞ ∩ Lp1p2 = Q(1; 5),

which is equivalent to that X is isomorphic to a degree six hypersurface in P
4.

Similarly,

93
422

(−k0,−b0, 1) +
515
422

(k∞, b∞,−1) =
(

1
6
, 0,−1

)
.

By Theorem 1.3, we have
1
6
c3
1 − c3 ≥ 0,

with equality holds iff (
c3
1

c1c2
,

c3

c1c2

)
= Lp1p∞ ∩ L∞ = p∞.

Since p∞ is not in Q, the inequality 1
6c3

1 − c3 ≥ 0 is in fact strict.

Remark 1.2. In [3], the authors prove that for a smooth projective threefold X

admitting a smooth fibration of minimal surfaces of general type over a curve, it
holds that

c3(X) ≥ 1
18

c3
1(X).

According to Corollary 1.1, this inequality can never be satisfied for a SCI threefold
with ample canonical bundle. As pointed out by Professor Kang Zuo, this is actually
explained by the Lefschetz hyperplane theorem. Indeed, the hyperbolicity of the
moduli space of minimal surfaces of general type means that the base curve of a
smooth fibration is a hyperbolic curve and hence the fundamental group of the total
space X is nontrivial, in contrast with the triviality of the fundamental group of a
SCI implied by the Lefschetz hyperplane theorem.

2. Proof of Theorem 1.2

Suppose n ∈ N is a positive integer, and d1, . . . , dn ∈ R≥0 are non-negative real
numbers. Let sj =

∑n
i=1 dj

i , j ≥ 1. We define

c1(n; d1, . . . , dn) := 4 − s1,

c2(n; d1, . . . , dn) :=
s2
1 + s2

2
− 3(s1 − 2),
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c3(n; d1, . . . , dn) := −s3
1 + 3s1s2 + 2s3

6
+ (s2

1 + s2) − 3s1 + 4.

If d1 = · · · = dn = d, we denote ci(n; d1, . . . , dn) by ci(n; d), i = 1, 2, 3.

The following result is standard.

Lemma 2.1. Let X be a SCI threefold in P
n+3. If X is a complete intersection

of hypersurfaces with degrees d1 + 1, . . . , dn + 1, and ∀ 1 ≤ i ≤ n, di ≥ 1, then the
Chern classes of X are: ci(X) = ci(n; d1, . . . , dn)Hi, i = 1, 2, 3, where H is the
hyperplane class of P

n+3.

We divide the proof of Theorem 1.2 into three steps, corresponding to three
subsections.

Step 1: In Sec. 2.1, we firstly prove the x-coordinate of any point in Q is between
the x-coordinates of p1 and p∞. Then we prove any point of Q is below the line
Lp1p∞ .

Step 2: In Sec. 2.2, we prove that any point of Q is above the line Lpmpm+1 ,
∀m ≥ 6.

Step 3: In Sec. 2.3, we prove that ∀ i = 1, . . . , 5, if a point Q(n; d1, . . . , dn) ∈ Q

has x-coordinate less than or equal to the x-coordinate of p6, then Q(n; d1, . . . , dn)
lies above the line segment pipi+1.

After the three steps above, it is obvious that we have finished the proof of
Theorem 1.2.

Ideas of the proof in each step:
In steps 1 and 2, the idea of the proof is the following:
Given a line L : y = kx + b in R

2, to prove Q is below L is equivalent to verify
∀n, di ∈ N,

∑n
i=1 di ≥ 5,

c3(n; d1, . . . , dn) − kc3
1(n; d1, . . . , dn) − bc1(n; d1, . . . , dn)c2(n; d1, . . . , dn) ≥ 0,

and by the following Lemma 2.2, it suffices to verify ∀n ∈ N, d ∈ R, d ≥ 1, nd ∈
N, nd ≥ 5,

c3(n; d) − kc3
1(n; d) − bc1(n; d)c2(n; d) ≥ 0.

Similarly, in order to prove Q is above a line y = kx + b, it suffices to verify
∀n ∈ N, d ∈ R, d ≥ 1, nd ∈ N, nd ≥ 5,

kc3
1(n; d) + bc1(n; d)c2(n; d) − c3(n; d) ≥ 0.

Lemma 2.2. Let λ, µ, ν ∈ R be constants. ∀m ∈ N, we have

inf

{
λc3

1(n; d1, . . . , dn) + µc1(n; d1, . . . , dn)c2(n; d1, . . . , dn) + νc3(n; d1, . . . , dn) |

n ∈ N, di ∈ R,
n∑

i=1

di = m, di ≥ 1, ∀ i = 1, . . . , n

}

≥ inf{λc3
1(n; d) + µc1(n; d)c2(n; d) + νc3(n; d) | n ∈ N, d ∈ R, nd = m, d ≥ 1}
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Proof. This lemma is a direct consequence of the following elementary proposition.

Proposition 2.1. Let d1 ≤ d2 ≤ · · · ≤ dn be non-negative real numbers, sj =∑n
i=1 dj

i , j = 1, 2, 3, and λ, µ ∈ R be constants. For fixed n and s1, there exists a
natural number k ≤ n, such that the function λs2 + µs3 attains its minimal value
when d1 = · · · = dk = 0, and dk+1 = · · · = dn = s1

n−k .

In step 3, we firstly prove that there are only finite points of Q with x-coordinates
less than or equal to the x-coordinate of p6, then we verify case-by-case that if a
point of Q has x-coordinate less than or equal to the x-coordinate of p6, it lies
above the union of line segments

⋃5
i=1 pipi+1.

2.1.

We first give an estimate of the x-coordinates of points in Q.

Lemma 2.3. The x-coordinate of any point of Q is between the x-coordinates of
p1 and p∞.

Proof. Recall the x-coordinates of p1 and p∞ are 1
16 and 2, respectively. For any

point Q(n; d1, . . . , dn) in Q, by Lemma 2.1, its x-coordinate is

c1(n; d1, . . . , dn)3

c1(n; d1, . . . , dn)c2(n; d1, . . . , dn)
=

2(4 − s1)2

s2
1 + s2 − 6(s1 − 2)

,

where sj =
∑n

i=1 di, j = 1, 2.
What we want to prove is equivalent to

1
16

≤ 2(4 − s1)2

s2
1 + s2 − 6(s1 − 2)

≤ 2.

Since s1 ≥ 5, the inequalities above can be verified easily.

Recall the line Lp1p∞ has the expression y = k0x+b0, where k0 = − 242
93 , b0 = 515

93 .
According to the argument before Lemma 2.2, in order to prove Q is below Lp1p∞ ,
it suffices to prove the following:

Lemma 2.4. ∀n ∈ N, d ∈ R, nd ∈ N, nd ≥ 5, d ≥ 1,

f(n, d) := c3(n; d) − k0c
3
1(n; d) − b0c1(n; d)c2(n; d) ≥ 0.

Proof. Let s1 = nd, we have

f(n, d) = f̃(s1, d) =
1
93

(3500 − 2625s1 − 937ds1 − 31d2s1 + 422s2
1 + 211ds2

1).
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Since f̃(s1, d) is a quadratic polynomial of d with negative leading term, and 1 ≤
d ≤ s1, we have f̃(s1, d) ≥ Min{f̃(s1, 1), f̃(s1, s1)}. By computations,

f(s1, 1) =
1
93

(3500− 3593s1 + 633s2
1),

f(s1, s1) =
5
93

(700 − 525s1 − 103s2
1 + 36s3

1).

It is elementary to verify the above two polynomials of s1 are non-negative when
s1 ∈ N and s1 ≥ 5. Hence f(n, d) = f̃(s1, d) ≥ 0, ∀n ∈ N, d ∈ R, nd ∈ N, nd ≥
5, d ≥ 1.

2.2.

In this section, we prove that Q is above the line Lpmpm+1 , ∀m ≥ 6. Recall the line
Lpmpm+1 has an expression y = kmx + bm, where

km =
−28m + m2 + 4m3 − m4

(−4 + m)(−3 + m)(−20 − 5m + 3m2)
,

bm =
−120 + 254m + 3m2 − 50m3 + 9m4

3(−4 + m)(−3 + m)(−20 − 5m + 3m2)
.

According to the argument before Lemma 2.2, to prove Q is above the line
Lpmpm+1 , we need to study the non-negativity of the function

f(m, n, d) := kmc3
1(n; d) + bmc1(n; d)c2(n; d) − c3(n; d).

We have the following lemma.

Lemma 2.5. f(m, n, d) ≥ 0, if one of the following conditions holds:

(i) m, n ∈ N, d ∈ R, d ≥ 1, nd ∈ N, nd ≥ 5, m ≥ 10;
(ii) m, n ∈ N, d ∈ R, d ≥ 1, nd ∈ N, nd ≥ 11, m = 6, 7, 8, 9.

Proof. Let s1 = nd. In the new variable m, s1, d, we denote the function f(m, n, d)
by f̃(m, s1, d), then by the expressions of km, bm and ci(n; d),

f̃(m, s1, d) = f(m, n, d)

= km(4 − s1)3 + bm(4 − s1)
(

s2
1

2
− 3s1 + 6

)
+

s3
1

6
− s2

1 + 3s1 − 4

+
s1d

2

3
+

(
s2
1

2
− s1 +

bm(4 − s1)s1

2

)
d.

Suppose condition (i) holds, since f̃(m, s1, d) is a quadratic polynomial of d, we
have two cases:

Case I:
−(s2

1/2 − s1 + bm(4 − s1)s1/2)
2s1/3

≤ 1.
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In this case, f̃(m, s1, d) ≥ f̃(m, s1, 1) = f(m, s1, 1), and f(m, s1, 1) ≥ 0 is
equivalent to that the point Q(s1; 1, . . . , 1) lies above the line Lpmpm+1 , which can
be easily verified under the condition s1 ≥ 5.

Case II:

−(s2
1/2 − s1 + bm(4 − s1)s1/2)

2s1/3
≥ 1.

In this case, s1 ≥ 12bm−2
3bm−3 , and

f̃(m, s1, d) ≥ f̃

(
m, s1,

−(s2
1/2 − s1 + bm(4 − s1)s1/2)

2s1/3

)
.

By computations, we get

g(m, s1) := 12(−4 + m)2(−3 + m)2(−20 − 5m + 3m2)2·

f̃

(
m, s1,

−(s2
1/2 − s1 + bm(4 − s1)s1/2)

2s1/3

)

is a cubic polynomial of s1 with polynomial coefficients of m. We only need to verify
the positivity of g(m, s1).

Again, by computations, we get that if m ∈ N, m ≥ 10, then

g

(
m,

12bm − 2
3bm − 3

)
> 0,

∂g

∂s1

(
m,

12bm − 2
3bm − 3

)
> 0,

∂2g

∂s2
1

(
m,

12bm − 2
3bm − 3

)
> 0,

∂3g

∂s3
1

(
m,

12bm − 2
3bm − 3

)
> 0.

Note g(m, s1) is a cubic polynomial of s1, the positivity of g(m, s1) follows from
the above computations, and we have verified the conclusion under condition (i).

Suppose condition (ii) holds, by computations, we have

12bm − 2
3bm − 3

< 10, ∀m = 6, 7, 8, 9.

This inequality and condition (ii) imply s1 > 12bm−2
3bm−3 + 1 > 12bm−2

3bm−3 . We have

f̃(m, s1, d) ≥ f̃

(
m, s1,

−(s2
1/2 − s1 + bm(4 − s1)s1/2)

2s1/3

)
.

Again let

g(m, s1) := 12(−4 + m)2(−3 + m)2(−20 − 5m + 3m2)2·

f̃

(
m, s1,

−(s2
1/2 − s1 + bm(4 − s1)s1/2)

2s1/3

)
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which is a cubic polynomial of s1. We only need to show the positivity of g(m, s1).
By direct computations,

g

(
m,

12bm − 2
3bm − 3

+ 1
)

> 0,
∂g

∂s1

(
m,

12bm − 2
3bm − 3

+ 1
)

> 0,

∂2g

∂s2
1

(
m,

12bm − 2
3bm − 3

+ 1
)

> 0,
∂3g

∂s3
1

(
m,

12bm − 2
3bm − 3

+ 1
)

> 0.

Since g(m, s1) is a cubic polynomial of s1, the positivity of g(m, s1) follows from
the above computations. We have verified the conclusion under condition (ii).

From Lemmas 2.2 and 2.5, we get that Q(n; d1, . . . , dn) ∈ Q lies above the line
Lpmpm+1 , if one of the following conditions holds:

(i) m ≥ 10;
(ii) m = 6, 7, 8, 9,

∑n
i=1 di ≥ 11.

A case-by-case verification shows that if 5 ≤ ∑n
i=1 di ≤ 10, then Q(n; d1, . . . , dn)

lies above the line Lpmpm+1 , ∀m = 6, 7, 8, 9. So we have verified Q lies above the
line Lpmpm+1 , ∀m ≥ 6.

2.3.

In this section, we prove that ∀ i = 1, . . . , 5, if a point Q(n; d1, . . . , dn) ∈ Q has
x-coordinate less than or equal to the x-coordinate of p6, then Q(n; d1, . . . , dn) lies
above the line segment pipi+1.

Note that the x-coordinate of p6 is 4
9 . The following lemma tells us that there

are only finite points in Q with x-coordinates less than or equal to the x-coordinate
of p6.

Lemma 2.6. If s1 =
∑n

i=1 di ≥ 10, then

c1(n; d1, . . . , dn)3

c1(n; d1, . . . , dn)c2(n; d1, . . . , dn)
=

(4 − s1)2

(s2
1 + s2)/2 − 3(s1 − 2)

>
4
9
.

Proof. Since s2
1 ≥ s2, we have

s1 ≥ 10 ⇒ s2
1 − 12s1 + 24 > 0 ⇒ 5s2

1 − 60s1 + 120 > 0

⇒ 7s2
1 − 60s1 + 120 > 2s2

1 ⇒ 7s2
1 − 60s1 + 120 > 2s2

⇒ (4 − s1)2

(s2
1 + s2)/2 − 3(s1 − 2)

>
4
9
.

A case-by-case verification shows that the finite points {Q(n, d1, . . . , dn), 5 ≤∑n
i=1 di ≤ 9} lie above the lines {Lpipi+1 , 1 ≤ i ≤ 5}. By these verifications and the

above lemma, we have shown that, once the x-coordinate of a point Q(n; d1, . . . , dn)
is less than or equal to that of p6, it lies above the line Lpipi+1 , ∀ 1 ≤ i ≤ 5. This
completes the proof of Theorem 1.2.
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