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Abstract. Let k be the algebraic closure of a finite field of odd character-
istic p and X a smooth projective scheme over the Witt ring W (k) which
is geometrically connected in characteristic zero. We introduce the notion of
Higgs-de Rham flow1 and prove that the category of periodic Higgs-de Rham
flows over X/W (k) is equivalent to the category of Fontaine modules, hence
further equivalent to the category of crystalline representations of the étale
fundamental group π1(XK) of the generic fiber of X, after Fontaine-Laffaille
and Faltings. Moreover, we prove that every semistable Higgs bundle over the
special fiber Xk of X of rank ≤ p initiates a semistable Higgs-de Rham flow and
thus those of rank ≤ p− 1 with trivial Chern classes induce k-representations
of π1(XK). A fundamental construction in this paper is the inverse Cartier
transform over a truncated Witt ring. In characteristic p, it was constructed
by Ogus-Vologodsky in the nonabelian Hodge theory in positive characteristic;
in the affine local case, our construction is related to the local Ogus-Vologodsky
correspondence of Shiho.
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1. Introduction

Let k be the algebraic closure of a finite field of odd characteristic p, W := W (k)
the ring of Witt vectors and K its fraction field. Let X be a smooth projective
scheme over W which is geometrically connected in characteristic zero. The pa-
per is aimed to establish a correspondence between certain Higgs bundles over X
with trivial Chern classes which are stable over its special fiber Xk := X×W k and
certain integral crystalline representations which are absolutely irreducible mod-
ulo p of the étale fundamental group π1(XK) of the generic fiber XK := X×W K.

Inspired by the complex analytic theory of Simpson [31], Ogus and Vologodsky
[25] has established the nonabelian Hodge theorem in positive characteristic, that
is an equivalence of categories between a category of certain nilpotent Higgs mod-
ules and a category of certain nilpotent flat modules over a smooth variety over
k which is W2(k)-liftable (char k = 2 is also allowed). This equivalence general-
izes both the classical Cartier descent theorem and the relation between a strict
p-torsion Fontaine module and the associated graded Higgs module. Compared
with the complex theory, an obvious distinction is that the semistability condition
on Higgs modules does not play any role in Ogus-Vologodsky’s correspondence. In
the meantime, Faltings and others have been attempting to establish an analogue
of Simpson’s theory for varieties over p-adic fields. In [6], Faltings has established
an equivalence of categories between the category of generalized representation-
s of the geometric fundamental group and the category of Higgs bundles over
a p-adic curve, which has generalized the earlier work of Deninger-Werner [2]
on a partial p-adic analogue of Narasimhan-Seshadri theory. However, the major
problem concerning the role of semistability remains open; Faltings asked whether
semistable Higgs bundles of degree zero come from genuine representations in-
stead of merely generalized ones. We will address the semistability condition in
this paper.

Recall that, when X is a complex smooth projective variety, such a correspon-
dence has been established first by Hitchin [10] for polystable Higgs bundles over
a smooth projective curve and then by Simpson [30] in general. The key step in
the Hitchin-Simpson correspondence, as one may see in the following diagram, is
to solve the Yang-Mills-Higgs equation and obtain a correspondence from graded
Higgs bundles to polarized complex variations of Hodge structure over X.

{ (H,∇, F il,Φ)/X }

 ρ

∣∣∣∣∣∣
ρ : πtop

1 (X,x) → GL(C)
representation of Hodge
type


(⊕i+j=nE

i,j , θ)/X | graded
Higgs bundle of ci = 0, i > 0
and polystable



GrFil

Solution of
Yang-Mills-Higgs equation

by Hitchin and Simpson

Hitchin-Simpson
correspondence

Riemann-Hilbert
correspondence
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The notion of polarized Z-variation of Hodge structure (H,∇, F il,Φ) was intro-
duced by P. Griffiths [9], and later generalized to polarized C-variation of Hodge
structure by P. Deligne [1], where (H,∇) is a flat bundle with a Hodge filtration, Φ
is a polarization, which is horizontal with respect to ∇ and satisfies the Riemann-
Hodge bilinear relations; (⊕i+j=nEi,j, θ) denotes a graded Higgs bundle, where
θ is a direct sum of OX-linear morphisms θi,j : Ei,j → Ei−1,j+1⊗ΩX and θ∧θ = 0.

We return to the p-adic case. A good p-adic analogue of the category of polarized
complex variations of Hodge structure is the category MF∇[0,w](X/W )(w ≤ p− 1)

introduced first by Fontaine-Laffaille [7] for X = Spec W and later generalized
by Faltings [4, Chapter II] to the general case. An object in the category, called
Fontaine module, is also a quadruple (H,∇, F il,Φ), where (H,∇) is a flat bundle
over X, by which we mean a locally free OX-module H of finite rank, equipped
with an integrable W -connection ∇, Fil is a Hodge filtration, Φ is a relative
Frobenius which is horizontal with respect to ∇ and satisfies some compatibility
and strong p-divisibility conditions. The latter condition is a p-adic analogue of
the Riemann-Hodge bilinear relations. See §2 for more details. Fontaine-Laffaille
proved in the X = Spec W case and Faltings in the general case that, there
exists a fully faithful functor from the category MF∇[0,w](X/W )(w ≤ p− 2) to the

category of crystalline representations of π1(XK), i.e. a p-adic Riemann-Hilbert
correspondence. Our objective is to establish a p-adic analogue of the Higgs cor-
respondence from a certain category of graded Higgs modules with trivial Chern
classes to the category of Fontaine modules. Our results are encoded in the fol-
lowing big diagram:

MF∇[0,w](X/W ) {Periodic Higgs-de Rham flow}

{
ρ

∣∣∣∣ ρ : π1(XK)→ GL(Zp),
crystalline representation

} {
(⊕i+j=wE

i,j , θ)/X | graded
Higgs module of ci = 0, i > 0
and semistable

}
GrFil

Higgs
correspondence

Fontaine-Laffaille-Faltings
correspondence

As seen from the above diagram, the central notion in our theory is Higgs-de
Rham flow (especially the periodic one), which can be viewed as an analogue of
Yang-Mills-Higgs flow. To define a Higgs-de Rham flow over Xn := X ⊗ Z/pnZ
for all n ∈ N, the key ingredient is the inverse Cartier transform C−1

n over
Wn := W ⊗ Z/pnZ, see Definition 5.1. It is built upon the seminal work of
Ogus-Vologodsky [25]. In [25], they construct the inverse Cartier transform from
the category of (suitably nilpotent) Higgs modules over X ′1 = X1 ×Fk Spec k to
the category of (suitably nilpotent) flat modules over X1. However, over a gen-
eral smooth scheme X ′ over Wn, n ≥ 2, our lifting of inverse Cartier transform
operates not on the whole category of (suitably nilpotent) Higgs modules, rather
on a category which is over a subcategory of graded Higgs modules (over a proper
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scheme, there is a restriction on the Chern classes of Higgs modules). More details
about the category will be given below. In comparison with the construction of
Shiho [29], one finds that the existence of a Frobenius lifting over a chosen lifting
of X ′ over Wn+1 is not assumed in our construction. On the other hand, we do
not know whether the functor C−1

n is fully faithful for a proper Wn-scheme when
n ≥ 2.

The Higgs correspondence is established in an inductive way. That is, we shall
first define the notion of a Higgs de-Rham flow in characteristic p and then es-
tablish the Higgs correspondence for the periodic flows. This is the first step.
In this step, we need only assume the scheme X1 to be smooth over k and W2-
liftable. A choice of such a lifting does matter in the theory. Let us choose and
then fix a lifting X2/W2. Let Sn := Spec Wn and FSn : Sn → Sn the Frobenius
automorphism. Set X ′2 := X2 ×FS2

S2 which is a W2-lifting of X ′1 = X1 ×FS1
S1.

Let (X ,S) = (X1/k,X
′
2/W2) and C−1

X/S the inverse Cartier transform of Ogus-

Vologodsky [25] which restricts to an equivalence of categories from the full sub-
category of nilpotent Higgs modules HIGp−1(X ′1) of exponent ≤ p− 1 to the full
subcategory of nilpotent flat modules MICp−1(X1) of exponent ≤ p− 1. See also
our previous work [13] for an alternative approach via the exponential twisting to
the Ogus-Vologodsky’s theory over these subcategories. Let π : X ′1 → X1 be the
base change of FS1 to X1. From the geometric point of view, it is more natural to
make all terms in a flow defining over the same base scheme. So, instead of using
C−1
X/S , we take the composite functor C−1

1 := C−1
X/S ◦ π∗ ◦ ι from HIGp−1(X1) to

MICp−1(X1), where ι is an automorphism of the category HIGp−1(X1) defined
by sending (E, θ) to (E,−θ). The reader is advised to take caution on this point.
For a flat module (H,∇) over X1, a Griffiths transverse filtration Fil of level
w ≥ 0 on (H,∇) is defined to be a finite exhaustive decreasing filtration of H by
OX1-submodules

H = Fil0 ⊃ Fil1 ⊃ · · · ⊃ Filw ⊃ Filw+1 = 0,

such that its grading ⊕iFili/F ili+1 is torsion free and such that Fil obeys Grif-
fiths’ transversality

∇(Fili) ⊂ Fili−1 ⊗ ΩX1/k, 1 ≤ i ≤ w.

The triple (H,∇, F il) is called a de Rham module. By taking the grading with
respect to the filtration Fil, to every de Rham module (H,∇, F il) one can canon-
ically associate a graded Higgs module (E, θ) := (⊕iFili/F ili+1,⊕i∇̄i), where the
OX1-morphism ∇̄i is induced from ∇

∇̄i :
Fili

Fili+1
→ Fili−1

Fili
⊗ ΩX1/k.
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Definition 1.1. A Higgs-de Rham flow over X1 is a diagram of the following
form:

(H0,∇0)
GrFil0

%%

(H1,∇1)
GrFil1

##(E0, θ0)

C−1
1

99

(E1, θ1)

C−1
1

99

. . .

where the initial term (E0, θ0) ∈ HIGp−1(X1), Fili, i ≥ 0 is a Griffiths trans-
verse filtration on the flat module (Hi,∇i) := C−1

1 (Ei, θi) of level ≤ p − 1 and
(Ei, θi), i ≥ 1 is the associated graded Higgs module to the de Rham module
(Hi−1,∇i−1, F ili−1).

If the filtrations Fili, i ≥ 0 in the definition are all of level ≤ w (w ≤ p − 1), it
is said to be a Higgs-de Rham flow of level ≤ w. For a graded torsion-free Higgs
module (E = ⊕iEi, θ) ∈ HIGp−1(X1) (where θ : Ei → Ei−1 ⊗ ΩX1/k), there is a
natural Griffiths transverse filtration on (H,∇) := C−1

1 (E, θ), which is actually
nontrivial in general. Since the filtration {El := ⊕i≤lEi}l of E is θ-invariant, and
since C−1

1 is an exact functor, {(Hl,∇l) := C−1
1 (El, θ)}l is naturally a filtration

of (H,∇) and it is Griffiths transverse. But since {Hl}l is ∇-invariant, the asso-
ciated graded Higgs module has always the zero Higgs field. It is important to
observe that there exist other nontrivial Griffiths transverse filtrations than the
above one: the Hodge filtration in the geometric case (i.e. the strict p-torsion
Fontaine modules) and the Simpson filtration in the ∇-semistable case (see The-
orem A.4).

A Higgs-de Rham flow is said to be periodic if there exists an isomorphism of
graded Higgs modules φ : (Ef , θf ) ∼= (E0, θ0) (an explicit φ is a part of the defi-
nition); it is said to be preperiodic if it becomes periodic after removing the first
few terms. A Higgs module (E, θ) ∈ HIGp−1(X1) is said to be (pre)periodic if it
initiates a (pre)periodic Higgs-de Rham flow. The reader shall refer to Definition
3.1 for a precise definition. One may visualize a periodic Higgs-de Rham flow of
period f via the following diagram:

(H0,∇0)
GrFil0

$$

(Hf−1,∇f−1)
GrFilf−1

''
(E0, θ0)

C−1
1

99

· · · ·

C−1
1

88

(Ef , θf )

φ∼=

kk

Theorem 1.2 (Theorem 3.2). Let X2 be a smooth scheme over W2. Let w be an
integer between 0 and p−1. For each f ∈ N, there is an equivalence of categories
between the full subcategory of strict p-torsion Fontaine modules over X2/W2 of
Hodge-Tate weight ≤ w with endomorphism structure Fpf and the category of
periodic Higgs-de Rham flows over its special fiber X1 of level ≤ w and whose
periods are f .
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Next, we construct a lifting to Wn, n ∈ N of the inverse Cartier transform of
Ogus-Vologodsky [25] restricted to the full subcategory HIGp−2(X ′1). Let Xn be
a smooth scheme over Wn. We introduce a categoryH(X ′n), where X ′n := Xn×FSn
Xn, whose object is a tuple (E, θ, H̄, ∇̄, F̄ il, ψ̄), where (E, θ) is a nilpotent graded
Higgs module over X ′n of exponent ≤ p − 2, (H̄, ∇̄, F̄ il) is a de Rham module
over X ′n−1, and ψ̄ is an isomorphism of graded Higgs modules GrF̄ il(H̄, ∇̄) ∼=
(E, θ) ⊗ Z/pn−1Z. For n = 1, such a tuple is reduced to a nilpotent graded
Higgs module over X ′1 of exponent ≤ p− 2, and therefore H(X ′1) is just the full
subcategory HIGp−2(X ′1).

Theorem 1.3 (Theorem 4.1). Assume Xn is Wn+1-liftable. There exists a functor
C−1
n from the category H(X ′n) to the category MIC(Xn) of flat modules over
Xn such that C−1

n lifts C−1
n−1 and such that C−1

1 agrees with the inverse Cartier
transform C−1

X/S of Ogus-Vologodsky [25].

Based on the existence of an inverse Cartier transform over Wn, we define induc-
tively a periodic Higgs-de Rham flow over Xn/Wn for an arbitrary n (Definition
5.2) and establish the Higgs correspondence over Wn (Theorem 5.3). Passing to
the limit, we obtain the p-torsion free analogue of Theorem 1.2:

Theorem 1.4. Let X be a smooth scheme over W . For each integer 0 ≤ w ≤
p − 2 and each f ∈ N, there is an equivalence of categories between the category
of p-torsion free Fontaine modules over X/W of Hodge-Tate weight ≤ m with
endomorphism structure W (Fpf ) and the category of periodic Higgs-de Rham flows
over X of level ≤ w and whose periods are f .

The above theorem (and its p-torsion version) and the Fontaine-Laffaille-Faltings
correspondence (and its p-torsion version, see Theorem 2.3) together constitute
a p-adic (and p-torsion) version of Hitchin-Simpson correspondence. This corre-
spondence can be regarded as a global and higher Hodge-Tate weight general-
ization of the Katz’s correspondence on unit-root F -crystals. Using this corre-
spondence, a p-divisible group with isomorphic Kodaira-Spencer map over W is
constructed over the Serre-Tate lifting of an ordinary Abelian variety over k. See
Example 5.8.

Now, we shall bring the semistability condition on Higgs modules into consider-
ation, and explain our results along the vertical dotted line in the above big dia-
gram. For a smooth projective variety X1 over k of positive dimension, we choose
(and then fix) an ample divisor Z1 of X1. Let us define the (µ-)semistability for
a Higgs module (E, θ) over X1 with respect to the µZ1-slope:

µZ1(E) = c1(E)ZdimX1−1
1 /rank(E).

The slope of a torsion OX1-module is set to be infinity. Our first result is the
following

Theorem 1.5 (Theorem 6.6, Theorem A.1). Notation as above and assume addi-
tionally that X1 is W2-liftable. Let (E, θ) be a torsion free nilpotent Higgs module
over X1 of exponent ≤ p − 1. Suppose rank E ≤ p and ci(E) = 0, i > 0. Then
(E, θ) is semistable if and only if it is preperiodic.
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As a consequence, we obtain the following

Corollary 1.6 (Theorem 6.7). Let X/W be a smooth projective scheme over W .
For each nilpotent semistable Higgs bundle (E, θ) over Xk of rank E ≤ p− 1 and
ci(E) = 0, i > 0, one associates to it a unique rank E crystalline k-representation
of π1(XK) up to isomorphism.

The stronger rank condition in the above corollary results from the application
of the Fontaine-Laffaille-Faltings correspondence.

In the way to lift the previous result to the mixed characteristic situation, a non-
trivial obstruction occurs, namely the lifting of a Griffiths transverse filtration in
positive characteristic to a truncated Witt ring, which has prevented us from a
direct generalization of Corollary 1.6 to the mixed characteristic case. It turns
out that, in order to kill the obstruction, one is led to various ordinary conditions
on the base varieties. By working on this problem for a very simple kind of rank
two Higgs bundles of degree zero (the so-called Higgs bundle with maximal Higgs
field) over a curve, we have found a p-adic analogue of the Hitchin-Simpson’s uni-
formization of hyperbolic curves which relates intimately the above theory to the
theory of ordinary curves due to S. Mochizuki ([23]). In particular, the canonical
lifting theorem of Mochizuki for ordinary curves has been basically recovered in
our recent work [16].

Stability, rather than merely semistability, on periodic Higgs bundles over k makes
the choices involved in Higgs-de Rham flows basically unique. By the unicity of
one-periodic Higgs-de Rham flow initializing a stable Higgs bundle (Proposition
7.2 and Proposition 7.5), one is able to identify the category of one-periodic stable
Higgs modules with a full subcategory of the category of periodic Higgs-de Rham
flows. Combined with this unicity, the Higgs correspondence implies the following
rigidity result for Fontaine modules.

Theorem 1.7 (Corollary 7.6). Let X/W be a smooth projective scheme. Let
(Hi,∇i, F ili,Φi), i = 1, 2 be two p-torsion free Fontaine modules over X/W , and
(Ei, θi) the associated graded Higgs modules. If (Ei, θi) are isomorphic as graded
Higgs modules and additionally mod p are Higgs stable, then (Hi,∇i, F ili,Φi), i =
1, 2 are isomorphic.

To conclude, our final result is the following correspondence. An Fp-representation
ρ of π1 is said to be absolutely irreducible if ρ⊗ k is irreducible.

Theorem 1.8 (Corollary 7.7). Notation as above. There is an equivalence of
categories between the category of crystalline Zp (resp. Z/pnZ) representations of
π1(XK) with Hodge-Tate weight ≤ p−2 whose mod p reduction is absolutely irre-
ducible and the category of one-periodic Higgs bundles over X/W (resp. Xn/Wn)
whose exponent is ≤ p− 2 and mod p reduction is stable.

In the study of Hitchin-Simpson correspondence, one usually concentrates on the
subcategory of Higgs bundles with trivial Chern classes. However, the theory de-
veloped in this paper turns out to be also useful in the study of Higgs bundles with
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nontrivial Chern classes. This has been beautifully demonstrated in the recent
work [20] of A. Langer on a purely algebraic proof of the Bogomolov-Giesecker
inequality for semistable Higgs bundles in the complex case ([30, Proposition 3.4])
and the Miyaoka-Yau inequality for Chern numbers of complex algebraic surfaces
of general type. In his work, the notion of (semistable) Higgs-de Rham flow in
characteristic p has played as similar role as the Yang-Mills-Higgs flow over the
field of complex numbers.

The paper is structured as follows: basically, the paper consists of two part-
s: the first five sections §2-§5 are devoted to establish the theory of the Higgs
correspondence between the category of p-torsion Fontaine modules with extra
endomorphism structures and the category of periodic Higgs-de Rham flows; the
last two sections §6-§7 and the appendix aim towards applications of the previous
theory to produce the representations of π1 from (semi)-stable Higgs bundles. In
more detail, Section 2 is a preliminary, where we recall the basics of the theory
on Fontaine modules; in Section 3, we introduce the notion of a Higgs-de Rham
flow in positive characteristic and establish the Higgs correspondence in positive
characteristic; in Section 4, we construct a lifting of the inverse Cartier transfor-
m of Ogus-Vologodsky over an arbitrary truncated Witt ring; in Section 5, we
establish the Higgs correspondence over an arbitrary truncated ring; in Section
6, we introduce the notion of a strongly semistable Higgs module and show that
a strongly semistable Higgs module with trivial Chern classes is preperiodic and
vice versa, and consequently we produce crystalline representations of the alge-
braic fundamental groups of the generic fiber with k-coefficients from semistable
nilpotent Higgs bundles of small ranks over the closed fiber with trivial Chern
classes; in Section 7, we prove a rigidity theorem for Fontaine modules whose
associated graded Higgs modules are mod p stable; in Appendix A, we (joint
with Y.-H. Yang) prove that a semistable Higgs module of small rank is strong-
ly semistable, verifying partially a conjecture in the first version of the paper [14].

2. Preliminaries on Fontaine modules

The category of Fontaine modules, as introduced by G. Fatlings in [4], originates
from number theory. In the seminal paper [7], Fontaine and Laffaille introduced

the category MF f,q (resp. MF f,q
tor ) of strongly divisible filtered modules over

W (resp. of finite length) and constructed an exact and faithful contravariant
functor from the previous category to the category of representations of the Galois
group of the local field K (resp. of finite length). A representation lying in the
image of the functor is said to be crystalline. The significance of the category,
as shown in another seminal paper [8] by Fontaine-Messing, is due to the fact
that the crystalline cohomologies of many proper algebraic varieties over W lie
in the category. In the above cited paper, Faltings generalized both results to a
geometric base (see also [5] for the generalization to the semistable reduction case
and the case of a very ramified base ring). For us, this category plays the role
connecting a certain category of p-adic Higgs modules with a cartain category of



9

p-adic representations of algebraic fundamental groups. From the point of view
of nonabelian Hodge theory, this category is a nice p-adic analogue of polarized
complex variations of Hodge structure, a special but important class of the so-
called harmonic bundles. One of principal aims of this paper is to establish a
correspondence between the category of Fontaine modules and the category of
one-periodic Higgs-de Rham flows, in both positive and mixed characteristics.
This section is devoted to a brief exposition of this category and related known
results.

Remark 2.1. We shall remind the reader of the category of F -T -crystals devel-
oped in the monograph [24], which is also a p-adic analogue of the category of
complex variations of Hodge structure (with no emphasis on polarization). This
category is intimately related to the category of Fontaine modules (see particu-
larly [24, Proposition 5.3.9]). It is interesting to relate it to a certain category of
Higgs modules. This task has not been touched upon in this paper.

For clarity, we start with the p-torsion free Fontaine modules. Our exposition
is based on Ch. II [4] and §3 [5]. Let X be a smooth W -scheme. For an affine
subset U flat over W , there exists a (nonunique) absolute Frobenius lifting FÛ
on its p-adic completion Û . An object in the category MF∇[0,w](Û) is a quadruple

(H,∇, F il,ΦFÛ
), where

i) (H,Fil) is a filtered free OÛ -module with a basis ei of Fili, 0 ≤ i ≤ w.
ii) ∇ is an integrable connection on H satisfying the Griffiths’ transversality:

∇(Fili) ⊂ Fili−1 ⊗ ΩÛ .

iii) The relative Frobenius is an OÛ -linear morphism ΦFÛ
: F ∗

Û
H → H with

the strong p-divisible property: ΦFÛ
(F ∗

Û
Fili) ⊂ piH and

(2.1.1)
w∑
i=0

ΦFÛ
(F ∗

Û
Fili)

pi
= H.

iv) The relative Frobenius ΦFÛ
is horizontal with respect to the connection

F ∗
Û
∇ on F ∗

Û
H and ∇ on H.

The filtered-freeness in i) means that the filtration Fil on H has a splitting such
that each Fili is a direct sum of several copies of OÛ . Equivalently, Fil is a
finite exhaustive decreasing filtration of free OÛ -submodules which is split. The
pull-back connection F ∗

Û
∇ on F ∗

Û
H is the connection defined by the formula

F ∗
Û
∇(f ⊗ e) = df ⊗ e+ f · (dFÛ ⊗ 1)(1⊗∇(e)), f ∈ OÛ , e ∈ H|Û .

The horizontal condition iv) is expressed by the commutativity of the diagram

F ∗
Û
H

F ∗
Û
∇
��

ΦF
Û // H

∇
��

F ∗
Û
H ⊗ ΩÛ

ΦF
Û
⊗Id
// H ⊗ ΩÛ .



10 GUITANG LAN, MAO SHENG, AND KANG ZUO

As there is no canonical Frobenius liftings on Û , one must know how the relative
Frobenius changes under another Frobenius lifting. This is expressed by a Taylor
formula. Let Û = SpfR and F : R → R an absolute Frobenius lifting. Choose
a system of étale local coordinates {t1, · · · , td} of U (namely fix an étale map
U → Spec(W [t1, · · · , td])). Let R′ be any p-adically complete, p-torsion free
W -algebra, equipped with a Frobenius lifting F ′ : R′ → R′ and a morphism of
W -algebras ι : R→ R′. Then the relative Frobenius ΦF ′ : F ′∗(ι∗H)→ ι∗H is the
composite

F ′∗ι∗H
α∼= ι∗F ∗H

ι∗ΦF−→ ι∗H,

where the isomorphism α is given by the formula:

α(e⊗ 1) =
∑
i

∇i
∂(e)⊗

zi

i!
.

Here i = (i1, · · · , id) is a multi-index, and zi = zi11 · · · z
id
d with zi = F ′ ◦ ι(ti)− ι ◦

F (ti), 1 ≤ i ≤ d, and ∇j

∂ = ∇i1
∂t1
· · · ∇id

∂td
.

Let U = {Ui}i∈I be an open affine covering of X over W . For each i, let FÛi
be an absolute Frobenius lifting over Ûi. Then, after [4, Theorem 2.3], when

w ≤ p−1, the local categories {MF∇[0,w](Ûi)}i∈I glue into the category MF∇[0,w](X).

Its object is called a Fontaine module over X/W , and will be denoted again by a
quadruple (H,∇, F il,Φ), although the relative Frobenius Φ is only locally defined
and depends on a choice of absolute Frobenius lifting locally. For an open affine U
together with an absolute Frobenius lifting FÛ over Û , the symbol Φ(U,FÛ ) means
the evaluation of Φ at (U, FÛ).

Example 2.2. Let f : Y → X be a proper smooth morphism over W of relative
dimension w ≤ p − 2 between smooth W -schemes. Assume that the relative
Hodge cohomologies Rif∗Ω

j
Y , i+ j = w have no torsion. By Theorem 6.2 [4], the

crystalline direct image Rwf∗(OY , d) is an object in MF∇[0,w](X/W ).

The fundamental theorem of Fontaine-Laffaille (see [7, Theorem 3.3] for X =
Spec W ) and Faltings (see [4, Theorem 2.6*]), which is a p-adic analogue of the
Riemann-Hilbert correspondence over C, reads:

Theorem 2.3 (Fontaine-Laffaille-Faltings correspondence). Notation as above.
Assume furthermore X is proper over W and w ≤ p − 2. There exists a fully
faithful contravariant functor D from the category MF∇[0,w](X/W ) to the category
of étale local systems over XK.

The image of the functor D is called crystalline sheaves of Hodge-Tate weight n
over XK . We remind the reader that the functor D in [4] is covariant and its
image is the category of dual crystalline sheaves. In the above theorem for torsion
free Fontaine modules as well as its p-torsion analogue below, we actually use the
dual of the functor D.
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Variant 1: p-torsion. A p-torsion Fontaine module is formulated in a similar way.
In fact, the previous category MF∇[0,w](X/W ) is the p-adic limit of its torsion

variant (see c)-d). Ch. II [4]). The major modification in the p-torsion case
occurs to the formulation of strong p-divisibility. Note that Equation (2.1.1)
does not make sense in the p-torsion case. For each natural number n, a strict
pn-torsion Fontaine module (H,∇, F il,Φ) means the following: H is a finitely
generated OXn-module; Fil is a finite exhaustive decreasing filtration of OXn-
submodules on H satisfying Griffiths’ transversality with respect to an integrable
connection ∇; Φ is strongly p-divisible, namely, the evaluation of Φ at (U, FÛ) is
an OUn-isomorphism (Un := U ⊗ Z/pnZ, FUn := FÛ ⊗ Z/pnZ):

Φ(Un,FUn ) : F ∗UnH̃|Un ∼= H|Un ,

where H̃ is the quotient ⊕wi=0Fil
i/ ∼ with x ∼ py for any x ∈ Fili and y the

image of x under the natural inclusion Fili ↪→ Fili−1; the horizontal property for
Φ is formulated as in the non-torsion case, which means explicitly the following
commutative diagram:

F ∗UnH̃|Un
Φ(Un,FUn

)
//

F ∗Un∇̃
��

H|Un
∇
��

F ∗UnH̃|Un ⊗ ΩUn

Φ(Un,FUn
)⊗Id

// H|Un ⊗ ΩUn ,

where ∇̃ is the integral p-connection (see Definition 4.4) over H̃ induced by ∇
and F ∗Un∇̃ is similarly defined as F ∗

Û
∇ in the non p-torsion case by replacing ∇

resp. dFÛ in the composite therein with ∇̃ resp.
dFUn
p

(see Formula (4.15.1) for

a local expression). Let MF∇[0,w],n(X/W ) denote the category of strict pm-torsion
Fontaine modules. The Fontaine-Laffaille-Faltings correspondence as given above
is achieved by taking the p-adic limit of its p-torsion analogue.

Remark 2.4. Using Fitting ideals, Faltings [4, Theorem 2.1] shows that (H,Fil)
is indeed locally filtered free. A slight generalization obtained by A. Ogus using a
different method is given in [24, Theorem 5.3.3]. Note also that, in the formulation
of the category MF∇[0,w],n(X/W ), one actually requires only the existence of a
model Xn+1 over Wn+1. Although objects of this category are defined over Xn,

the horizontality of the relative Frobenius uses the operator
dFUn+1

p
, where FUn+1 is

an absolute Frobenius lifting on an open affine Un+1 ⊂ Xn+1. Also, the existence
of Xn+1 is required for the sake of the transition of two evaluations of the relative
Frobenius via the Taylor formula. Therefore, this category requires only the
existence of a smooth Wn+1-scheme Xn+1. In this case, we shall denote it by
MF∇[0,w](Xn+1/Wn+1).

Variant 2: extra endomorphism. For our purpose, we need to introduce the cate-
gory MF∇[0,w],f (X/W ) of Fontaine modules with endomorphism structure W (Fpf )
for each f ∈ N. It consists of five tuples (H,∇, F il,Φ, ι), where (H,∇, F il,Φ) is
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a torsion-free Fontaine module and

ι : W (Fpf ) ↪→ EndMF (H,∇, F il,Φ)

is an embedding of Zp-algebras. A morphism of this category is a morphism in
MF∇[0,w](X/W ) respecting the endomorphism structure ι. Clearly, the category
for f = 1 is nothing but the category of Fontaine modules. We introduce similarly
its p-torsion counterpart MF∇[0,w],n,f (X/W ) (and MF∇[0,w],f (Xn+1/Wn+1)), where

the extra endomorphism structure is given by an embedding of Z/pnZ-algebras:

ι : Wn(Fpf ) ↪→ EndMF (H,∇, F il,Φ).

3. Higgs correspondence in positive characteristic

Let us begin with the definitions of a (pre)periodic Higgs-de Rham flow and a
(pre)periodic Higgs module. Let X1 be a smooth variety over k and X2 a W2-
lifting of X1.

Definition 3.1. A preperiodic Higgs-de Rham flow over X1 (with respect to
the given W2-lifting X2) is a tuple (E, θ, F il0, · · · , F ile+f−1, φ), where e ≥ 0 and
f ≥ 1 are two integers, (E, θ) is a Higgs module in the category HIGp−1(X1),
Fili, 0 ≤ i ≤ e + f − 1 is a Griffiths transverse filtration on C−1

1 (Ei, θi) where
(E0, θ0) = (E, θ) and

(Ei, θi) := GrFili−1
(Hi−1,∇i−1), 1 ≤ i ≤ e+ f

is inductively defined, and φ is an isomorphism of graded Higgs modules

(Ee+f , θe+f ) ∼= (Ee, θe).

It is said to be periodic of period f (or f -periodic) if the integer e in above is
zero. The (Ei, θi)s (resp. (Hi,∇i)s) are called the Higgs (resp. de-Rham) terms
of the flow. A Higgs module (E, θ) over X1 is said to be (pre)periodic if there
exists a (pre)periodic Higgs-de Rham flow with the leading Higgs term (E, θ).

One may complete a preperiodic Higgs-de Rham flow over X1 into a Higgs-de
Rham flow in a natural way: note that the isomorphism φ induces the isomor-
phism

C−1
1 (φ) : C−1

1 (Ee+f , θe+f ) ∼= C−1
1 (Ee, θe),

and therefore one obtains naturally the filtration File+f on C−1
1 (Ee+f , θe+f ) by

pulling back File via the isomorphism. Then continue successively.

This section aims to establish the Higgs correspondence between the category
of periodic Higgs-de Rham flows over X1 and the category of strict p-torsion
Fontaine modules with extra endomorphism structure. Let us introduce the cat-
egory HDFw,f (X2/W2) as follows : its object is given by a periodic Higgs-de
Rham flow (E, θ, F il0, F il1, · · · , F ilf−1, φ) over X1 such that each filtration Fili
is of level ≤ w. Note that (E, θ) in a periodic Higgs-de Rham must be a graded
Higgs module. A morphism between two objects is a morphism of graded Higgs
modules respecting the additional structures. As an illustration, we explain a
morphism in the category HDFw,1(X2/W2) of one-periodic Higgs-de Rham flow
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in detail. Let (Ei, θi, F ili, φi), i = 1, 2 be two objects in the category. Then a
morphism

f : (E1, θ1, F il1, φ1)→ (E2, θ2, F il2, φ2)

is given by a morphism of graded Higgs modules

f : (E1, θ1)→ (E2, θ2)

such that the induced morphism of flat modules (by the functoriality of C−1
1 )

C−1
1 (f) : C−1

1 (E1, θ1)→ C−1
1 (E2, θ2)

preserves the filtrations, and moreover the induced morphism of graded Higgs
modules is compatible with φs, that is, the following diagram of natural mor-
phisms commutes:

GrFil1C
−1
1 (E1, θ1)

φ1−−−→ (E1, θ1)

GrC−1
1 (f)

y yf
GrFil2C

−1
1 (E2, θ2)

φ2−−−→ (E2, θ2).

Recall that MF∇[0,w],f (X2/W2) is the category of strict p-torsion Fontaine modules
with extra endomorphism Fpf . The Higgs correspondence in positive character-
istic is the following

Theorem 3.2. Notation as above. Let w ≤ p − 1 and f be a natural number.
Then there is an equivalence of categories between the category MF∇[0,w],f (X2/W2)

and the category HDFw,f (X2/W2).

We take an open covering {Ui} of X2/W2 consisting of open affine subsets which
are smooth over W2, together with an absolute Frobenius lifting FUi on each Ui.
By modulo p, one obtains an open affine covering {Ui,1} for X1. We show first a
special case of the theorem, namely the f = 1 case.

Proposition 3.3. There is an equivalence of categories between the category of
strict p-torsion Fontaine modules and the category of one-periodic Higgs-de Rham
flows over X1.

For simplicity, we denoteMF forMF∇[0,w],1(X2/W2) andHDF forHDFw,1(X2/W2).
In the following paragraph, we shall construct two functors

GR : MF → HDF, IC : HDF →MF,

and then show they are quasi-inverse to each other. For an (H,∇, F il,Φ) ∈MF ,
let (E, θ) := GrFil(H,∇) be the associated graded Higgs module. The following
lemma gives the first functor.

Lemma 3.4. There is a filtration Filexp on C−1
1 (E, θ) together with an isomor-

phism of graded Higgs modules

φexp : GrFilexp(C
−1
1 (E, θ)) ∼= (E, θ),

which is induced by the filtration Fil and the relative Frobenius Φ.
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Proof. By [13, Proposition 1.4], the relative Frobenius induces an isomorphism of
flat modules

Φ̃ : C−1
1 (E, θ) ∼= (H,∇).

So we define Filexp on C−1
1 (E, θ) to be the inverse image of Fil on H by Φ̃. It

induces tautologically an isomorphism of graded Higgs modules

φexp = Gr(Φ̃) : GrFilexp(C
−1
1 (E, θ)) ∼= (E, θ).

�

Next, the functor C−1
1 induces the second functor IC as follows. Given an object

(E, θ, F il, φ) ∈ HDF , we define the triple by

(H,∇, F il) = (C−1
1 (E, θ), F il).

What remains is to produce a relative Frobenius Φ from the φ. This is the most
technical point of the whole proof. Following Faltings [4, Ch. II. d)], it suffices
to give for each pair (Ui, FUi) an OUi,1-morphism

Φ(Ui,FUi )
: F ∗Ui,1GrFilH|Ui,1 → H|Ui,1 ,

where FUi,1 is the absolute Frobenius of Ui,1, satisfying the following conditions:

(1) strong p-divisibility, that is, Φ(Ui,FUi )
is an isomorphism,

(2) horizontal property,
(3) over each Uij,1 := Ui,1 ∩ Uj,1, Φ(Ui,FUi )

and Φ(Uj ,FUj ) are related via the

Taylor formula. Precisely, if the gluing map for Hi := H|Ui,1 and Hj :=
H|Uj,1 is Gij, then we shall have the following commutative diagram:

F ∗Ui,1GrFilHi|Uij,1
G̃ij
��

Φ(Ui,FUi
)|Uij,1

// Hi|Uij,1
Gij

��
F ∗Ui,1GrFilHj|Uij,1

εij

��

Hj|Uij,1
Id

��
F ∗Uj,1GrFilHj|Uij,1

Φ(Uj,FUj
)|Uij,1

// Hj|Uij,1 ,

where G̃ij denotes the obvious map induced by Gij, and εij is defined by
the Taylor formula which is given by the following expression:

(3.4.1) e⊗ 1→ e⊗ 1 +
w∑
|k|=1

(θ′∂)
k(e)⊗ zk

p|k|k!
,

where θ′ denotes the Higgs field of GrFil(Hj,∇). Here we take a system
of étale local coordinates {t̃1, · · · , t̃d} of Uij,2, which induces a system
of étale local coordinates {t1, · · · , td} on Uij,1, and k = (k1, · · · , kd) is a

multi-index, zk = zk1
1 · · · z

kd
d with

zk = F ∗Ui,2(t̃k)− F ∗Uj,2(t̃k),

and (θ′)k∂ = (θ′∂t1 )k1 · · · (θ′∂td )kd .
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Recall that H = {Hi := F ∗Ui,1E|Ui,1 , Gij}i∈I , where Gij has similar expression of

εij as 3.4.1 (see [13, The poof of Proposition 1.4]) :

Gij(e⊗ 1) = e⊗ 1 +
w∑
|k|=1

θk∂(e)⊗
zk

p|k|k!
.

We define
Φ(Ui,FUi )

= F ∗Ui,1φ : F ∗Ui,1GrFilH|Ui,1 → F ∗Ui,1E|Ui,1 .
By construction, Φ(Ui,FUi )

is strongly p-divisible (this is Condition (1)). As φ is
globally defined, we have the following diagram:

GrFilHi|Uij,1
φi|Uij,1−−−−→ E|Uij,1

Gr(Gij)

y yId
GrFilHj|Uij,1

φj |Uij,1−−−−→ E|Uij,1 .
Pulling back the above diagram via F ∗Ui,1 , we get the following diagram:

F ∗Ui,1GrFilHi|Uij,1
F ∗Ui,1

(φi)|Uij,1
−−−−−−−−→ F ∗Ui,1E|Uij,1

G̃ij

y yId
F ∗Ui,1GrFilHj|Uij,1

F ∗Ui,1
(φj)|Uij,1

−−−−−−−−→ F ∗Ui,1E|Uij,1 .
Then we extend it to the following diagram:

F ∗Ui,1GrFilHi|Uij,1
F ∗Ui,1

(φi)|Uij,1
−−−−−−−−→ F ∗Ui,1E|Uij,1

G̃ij

y yId
F ∗Ui,1GrFilHj|Uij,1

F ∗Ui,1
(φj)|Uij,1

−−−−−−−−→ F ∗Ui,1E|Uij,1
εij

y yGij
F ∗Uj,1GrFilHj|Uij,1

F ∗Uj,1
(φj)|Uij,1

−−−−−−−−→ F ∗Uj,1E|Uij,1
As φ ◦ θ′ = θ ◦ φ , we have for any local section e of GrFilHj|Uij,1 ,

Gij ◦ F ∗Ui,1(φj)(e⊗ 1) = φj(e)⊗ 1 +
w∑
|k|=1

θk∂(φj(e))⊗
zk

p|k|k!

= φj(e)⊗ 1 +
w∑
|k|=1

φj((θ
′)k∂(e))⊗

zk

p|k|k!

= F ∗Uj,1(φj) ◦ εij(e⊗ 1).

So the lower square of the last diagram is commutative (this is Condition (3)).
What remains to show is Condition (2).

Lemma 3.5. Each Φ(Ui,FUi )
is horizontal with respect to ∇.
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Proof. Put H̃ = GrFilH, θ′ = GrFil∇, Φi = Φ(Ui,FUi )
and FUi,1 the absolute

Frobenius over Ui,1. Following Faltings [4, Ch. II.. d)], it suffices to show the
commutativity of the following diagram

F ∗Ui,1H̃|Ui,1
Φi−−−→ H|Ui,1

F ∗Ui
∇
y ∇

y
F ∗Ui,1H̃|Ui,1 ⊗ ΩUi,1

Φi⊗Id−−−→ H|Ui,1 ⊗ ΩUi,1 ,

where F ∗Ui∇ is a connection induced by
dFUi
p

(F ∗Ui,1θ
′), i.e. the composite of

F ∗Ui,1H̃|Ui,1
F ∗Ui,1

(θ′)

−→ F ∗Ui,1H̃|Ui,1 ⊗ F
∗
Ui,1

ΩUi,1

Id⊗
dFUi
p−→ F ∗Ui,1H̃|Ui,1 ⊗ ΩUi,1 .

Thus it is to show the commutativity of the next diagram:

F ∗Ui,1H̃|Ui,1
F ∗Ui,1

(φ)

−−−−−→ F ∗Ui,1E|Ui,1
dFUi
p

(F ∗Ui,1
(θ′))

y dFUi
p

(F ∗Ui,1
(θ))

y
F ∗Ui,1H̃|Ui,1 ⊗ ΩUi,1

F ∗Ui,1
(φ)⊗Id

−−−−−−−→ F ∗Ui,1E|Ui,1 ⊗ ΩUi,1 .

As φ is a morphism of graded Higgs modules, one has the following commutative
diagram:

H̃|Ui
φ−−−→ E|Ui,1

θ′

y yθ
H̃|Ui,1 ⊗ ΩUi,1

φ⊗Id−−−→ E|Ui,1 ⊗ ΩUi,1 .

The pullback via F ∗Ui,1 of the above diagram yields commutative diagrams:

F ∗Ui,1H̃|Ui,1
F ∗Ui,1

(θ′)

��

F ∗Ui,1
(φ)

// F ∗Ui,1E|Ui,1
F ∗Ui,1

(θ)

��
dFUi
p

(F ∗Ui,1
(θ))

!!

F ∗Ui,1H̃|Ui,1 ⊗ F
∗
Ui,1

ΩUi,1

F ∗Ui,1
(φ)⊗Id
//

F ∗Ui,1
(φ)⊗

dFUi
p

--

F ∗Ui,1E|Ui,1 ⊗ F
∗
Ui,1

ΩUi,1

Id⊗
dFUi
p

))
F ∗Ui,1E|Ui,1 ⊗ ΩUi,1 .

Chasing the outside of the above diagram gives the required commutativity. �

Now we can prove Proposition 3.3.

Proof. The equivalence of categories follows by providing natural isomorphisms
of functors:

GR ◦ IC ∼= Id, IC ◦ GR ∼= Id.
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We define first a natural isomorphism A from IC ◦GR to Id: for (H,∇, F il,Φ) ∈
MF , put

(E, θ, F il, φ) = GR(H,∇, F il,Φ), (H ′,∇′, F il′,Φ′) = IC(E, θ, F il, φ).

Then one verifies that the map

Φ̃ : (H ′,∇′) = C−1
1 ◦GrFil(H,∇) ∼= (H,∇)

gives an isomorphism from (H ′,∇′, F il′,Φ′) to (H,∇, F il,Φ) in the category MF .
We call it A(H,∇, F il,Φ). It is straightforward to verify that A is indeed a
transformation. Conversely, a natural isomorphism B from GR ◦ IC to Id is
given as follows: for (E, θ, F il, φ), put

(H,∇, F il,Φ) = IC(E, θ, F il, φ) (E ′, θ′, F il′, φ′) = GR(H,∇, F il,Φ).

Then φ : GrFil ◦C−1
1 (E, θ) ∼= (E, θ) induces an isomorphism from (E ′, θ′, F il′, φ′)

to (E, θ, F il, φ) in HDF , which we define to be B(E, θ, F il, φ). It is direct to
check that B is a natural isomorphism. �

Before moving to the proof of Theorem 3.2 in general, we shall introduce an
intermediate category, the category of one-periodic Higgs-de Rham flows with
endomorphism structure Fpf : an object is a five tuple (E, θ, F il, φ, ι), where
(E, θ, F il, φ) is object in HDF and ι : Fpf ↪→ EndHDF (E, θ, F il, φ) is an em-
bedding of Fp-algebras. As an immediate consequence of Proposition 3.3, we
have

Corollary 3.6. There is an equivalence of categories between the category of strict
p-torsion Fontaine modules with endomorphism structure Fpf and the category of
one-periodic Higgs-de Rham flows over X1 with endomorphism structure Fpf .

Obviously, Corollary 3.6 and the next proposition will complete the proof of
Theorem 3.2.

Proposition 3.7. There is an equivalence of categories between the category of
one-periodic Higgs-de Rham flows of level ≤ w over X1 with endomorphism struc-
ture Fpf and the category HDFw,f (X2/W2).

Start off with an object (E, θ, F il0, · · · , F ilf−1, φ) in HDFw,f (X2/W2). Put

(G, η) :=

f−1⊕
i=0

(Ei, θi)

with (E0, θ0) = (E, θ). As the functor C−1
1 is compatible with direct sum, one

has the identification

C−1
1 (G, η) =

f−1⊕
i=0

C−1
1 (Ei, θi).

We equip C−1
1 (G, η) with the filtration Fil =

⊕f−1
i=0 Fili by the above identifica-

tion. Also φ induces a natural isomorphism of graded Higgs modules

φ̃ : GrFilC
−1
1 (G, η) ∼= (G, η)
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as follows: as

GrFilC
−1
1 (G, η) =

r−1⊕
i=0

GrFiliC
−1
1 (Ei, θi),

we require that φ̃ maps the factor GrFiliC
−1
1 (Ei, θi) identically to the factor

(Ei+1, θi+1) for 0 ≤ i ≤ f − 2 (assume f ≥ 2 to avoid the trivial case) and
the last factor GrFilf−1

(Ef−1, θf−1) isomorphically to (E0, θ0) via φ. Thus the

constructed quadruple (G, η, F il, φ̃) is a periodic Higgs-de Rham flow of period
one.

Lemma 3.8. Notation as above. There is a natural embedding of Fp-algebras

ι : Fpr → EndHDF (G, η, F il, φ̃).

Thus the extended tuple (G, η, F il, φ̃, ι) is a one-periodic Higgs-de Rham flow with
endomorphism structure Fpf .

Proof. Choose a primitive element ξ1 in Fpf |Fp once and for all. To define the
embedding ι, it suffices to specify the image s := ι(ξ1), which is defined as follows:
write

(G, η) = (E0, θ0)⊕ (E1, θ1)⊕ · · · ⊕ (Ef−1, θf−1).

Then s = mξ1⊕mξp1
⊕· · ·⊕m

ξp
f−1

1

, wherem
ξp
i

1

, i = 0, · · · , f−1 is the multiplication

map by ξp
i

1 . It defines an endomorphism of (G, η) and preserves Fil on C−1
1 (G, η).

Write (GrFil ◦ C−1
1 )(s) to be the induced endomorphism of GrFilC

−1
1 (G, η). It

remains to verify the commutativity

φ̃ ◦ s = (GrFil ◦ C−1
1 )(s) ◦ φ̃.

In terms of a local basis, it boils down to the following obvious equality
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
φ 0 . . . 0




ξ1 0 . . . 0
0 ξp1 . . . 0
...

...
. . .

...

0 0 . . . ξp
f−1

1

 =


ξp1 0 . . . 0

0 ξp
2

1 . . . 0
...

...
. . .

...
0 0 . . . ξ1




0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
φ 0 . . . 0

 .

�

Conversely, given a one-periodic Higgs-de Rham flow with endomorphism struc-
ture Fpf , say (G, η, F il, φ, ι), we can associate it an object in HDFw,f (X2/W2) as
follows: the endomorphism ι(ξ1) decomposes (G, η) into eigenspaces:

(G, η) =

f−1⊕
i=0

(Gi, ηi),

where (Gi, ηi) is the eigenspace to the eigenvalue ξp
i

1 . The isomorphism C−1
1 (ι(ξ1))

induces the eigen-decomposition of the de Rham module as well:

(C−1
1 (G, η), F il) =

f−1⊕
i=0

(C−1
1 (Gi, ηi), F ili).
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Under the decomposition, the isomorphism φ : GrFilC
−1
1 (G, η) ∼= (G, η) decom-

poses into ⊕f−1
i=0 φi such that for i ≤ f − 2,

φi : GrFiliC
−1
1 (Gi, ηi) ∼= (Gi+1, ηi+1),

and φf−1 : GrFilf−1
C−1

1 (Gf−1, ηf−1) ∼= (G0, η0). Set (E, θ) = (G0, η0).

Lemma 3.9. Let (E0, θ0) = (E, θ). Then the filtrations {Fili}s and isomor-

phisms of graded Higgs modules {φi}s induce inductively the filtration F̃ ili on
C−1

1 (Ei, θi), i = 0, · · · , f − 1 and the isomorphism of graded Higgs modules

φ̃ : GrF̃ ilf−1
C−1

1 (Ef−1, θf−1) ∼= (E, θ).

Thus the extended tuple (E, θ, F̃ il0, · · · , F̃ ilf−1, φ̃) is an object in HDFw,f (X2/W2).

Proof. The filtration F̃ il0 on C−1
1 (E0, θ0) is just Fil0. Set

(E1, θ1) = GrFil0C
−1
1 (E0, θ0).

Via the isomorphism

C−1
1 (φ0) : C−1

1 GrFil0C
−1
1 (G0, η0) ∼= C−1

1 (G1, η1),

we obtain the filtration F̃ il1 on C−1
1 (E1, θ1) from the Fil1 on C−1

1 (G1, η1) by
pull-back. By construction, one has the isomorphism

GrC−1
1 (φ0) : GrF̃ il1C

−1
1 (E1, θ1) ∼= GrFil1C

−1
1 (G1, η1).

Repeating the same procedure for (E2, θ2) and so on, we shall inductively obtain

the filtration F̃ ili on C−1
1 (Ei, θi) for i = 1, · · · , f − 1. Finally we define

φ̃ : GrF̃ ilf−1
C−1

1 (Ef−1, θf−1) = (GrF̃ ilf−1
C−1

1 ) ◦ · · · ◦ (GrF̃ il0C
−1
1 )(E, θ)→ (E, θ)

to be the composite (GrC−1
1 )f−1(φ0) ◦ · · · ◦ (GrC−1

1 )(φf−2) ◦ φf−1. �

We come to the proof of Proposition 3.7.

Proof. For f = 1, there is nothing to prove. Suppose f ≥ 2 in the following.
Note that Lemma 3.8 gives a functor E from HDFw,f (X2/W2) to the category
of one-periodic Higgs-de Rham flows with endomorphism structure Fpf , while
Lemma 3.9 gives a functor D in the opposite direction. We show that they give
an equivalence of categories. It is direct to see that

D ◦ E = Id.

So it remains to give a natural isomorphism τ between E ◦ D and Id. For
(E, θ, F il, φ, ι), let

D(E, θ, F il, φ, ι) = (G, η, F il0, · · · , F ilf−1, φ̃),

and

E(G, η, F il0, · · · , F ilf−1, φ̃) = (E ′, θ′, F il′, φ′, ι′).

By the construction, we get that (E ′, θ′) is equal to

(G, η)⊕GrFil0C−1
1 (G, η)⊕ · · · ⊕ (GrFilf−2

C−1
1 ) ◦ · · · ◦ (GrFil0C

−1
1 )(G, η).
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Let (E, θ) = (E0, θ0) ⊕ (E1, θ1) ⊕ · · · ⊕ (Ef−1, θf−1) be the eigen-decomposition
of (E, θ) under ι(ξ1). For 1 ≤ i ≤ f − 1, there is a natural isomorphism φi−1 ◦
(GrC−1)φi−2 ◦ · · · ◦ (GrC−1)i−1φ0 of graded Higgs modules between the factors:

(GrFili−1
C−1

1 ) ◦ (GrFili−2
C−1

1 ) · · · ◦ (GrFil0C
−1
1 )(G, η) ∼= (Ei, θi).

Thus Id⊕
⊕f−1

i=1 φi−1 ◦ (GrC−1)φi−2 ◦ · · · ◦ (GrC−1)i−1φ0 provides us an isomor-
phism of graded Higgs modules from (E ′, θ′) to (E, θ). It is easy to check that it
yields an isomorphism of τ(E, θ, F il, φ, ι) in the latter category. The functorial
property of τ is easily verified. �

This completes the Higgs correspondence in positive characteristic. In the follow-
ing we deduce from it some direct consequences.

Crystalline Fpf -representations.

Let X/W be a smooth proper scheme over W . An Fpf -representation of π1(XK)
is said to be crystalline if it is crystalline as an Fp-representation by restriction
of scalar. In other words, a crystalline Fpf -representation is a crystalline Fp-
representation V together with an embedding of Fp-algebras Fpf ↪→ Endπ1(XK)(V).
Similarly, one has the notion of crystalline Wn(Fpf )-representation for n ∈ N ∪
{∞}. The following corollary is immediate from Theorem 2.3 and Theorem 3.2.

Corollary 3.10. Let X/W be a smooth proper scheme. Assume w ≤ p − 2.
There is an equivalence of categories between the category of crystalline Fpf -
representations of π1(XK) with Hodge-Tate weight ≤ w and the category of f -
periodic Higgs-de Rham flows of level ≤ w over X1.

For an object (E, θ, F il0, · · · , F ilf−1, φ) ∈ HDFw,f (X2/W2), we define its shift
and lengthening as follows: note for (Ef , θf ) = GrFilf−1

(Hf−1,∇f−1), C−1
1 (φ)

induces the pullback filtration (C−1
1 (φ))∗Fil0 on C−1

1 (Ef , θf ) and an isomorphism
of graded Higgs modules GrC−1

1 (φ) on the gradings. Then it is easy to check that
the tuple

(E1, θ1, F il1, · · · , F ilf−1, C
−1
1 (φ)∗Fil0, GrC

−1
1 (φ))

is an object inHDFw,f (X2/W2), which we call the shift of (E, θ, F il0, · · · , F ilf−1, φ).
For any multiple lf, l ≥ 1, we can lengthen (E, θ, F il0, · · · , F ilf−1, φ) to an ob-
ject of HDFw,lf (X2/W2): similar to above, we can inductively define the induced
filtration on (Hj,∇j), f ≤ j ≤ lf − 1 from Filis via φ. One has the induced
isomorphism of graded Higgs modules

(GrC−1
1 )l

′f (φ) : (E(l′+1)f , θ(l′+1)f ) ∼= (El′f , θl′f ), 0 ≤ l′ ≤ l − 1.

The isomorphism φl : (Elf , θlf ) ∼= (E0, θ0) is defined to be the composite of them.
The obtained object (E, θ, F il0, · · · , F illf−1, φl) is called the l− 1-th lengthening
of (E, θ, F il0, · · · , F ilf−1, φ). The following result will be obvious from the proof
of Theorem 3.2.

Corollary 3.11. Notation as in Corollary 3.10. Let ρ be the corresponding crys-
talline Fpf -representation to (E, θ, F il0, · · · , F ilf−1, φ). Then the followings are
true:
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(i) The shift of (E, θ, F il0, · · · , F ilf−1, φ) corresponds to ρσ = ρ ⊗F
pf
,σ Fpf ,

the σ-conjugation of ρ. Here σ ∈ Gal(Fpf |Fp) is the Frobenius element.
(ii) For l ∈ N, the l − 1-th lengthening of (E, θ, F il0, · · · , F ilf−1, φ) corre-

sponds to the extension of scalar ρ⊗F
pf

Fplf .

Locally freeness of preperiodic Higgs modules.

In the following, we explain that a preperiodic Higgs module is locally free, a
posteriori property.

Proposition 3.12. Periodic Higgs module is locally free.

Proof. Let (E, θ) be a periodic Higgs module. Then a periodic Higgs-de Rham
flow with its leading term (E, θ) gives an object in the category HDFw,f (X2/W2)
for some f . Let (H,∇, F il,Φ, ι) be the corresponding object in MF∇[0,w],f (X2/W2)

after Theorem 3.2. The proof of [4, Theorem 2.1] (cf. page 32 loc. cit.) asserts
that Fil is a filtration of locally free subsheaves of H and locally split, which
implies that GrFilH is locally free. It follows immediately that (E, θ) is also
locally free. �

A. Langer [20, Proposition 1.1 §5.3] has obtained the following enhancement of
the previous result (notice however that the assumption that rank E ≤ p in the
cited statement on the Higgs module is in our case unnecessary due to a slightly
different definition of Higgs-de Rham flow).

Corollary 3.13 (Langer). Preperiodic Higgs module is locally free.

Proof. It follows from Corollary 3.12 and Lemma 3 [20]. �

Corollary 3.14. The Griffiths transverse filtrations in a preperiodic Higgs-de
Rham flow are filtrations by locally free subsheaves and locally split.

Proof. The periodic case has been explained in the proof of Proposition 3.12. But
it also follows from Corollary 3.13, by induction on the level of filtrations. So does
the preperiodic case. �

4. Inverse Cartier transform over a truncated Witt ring

The inverse Cartier transform of Ogus-Vologodsky [25] has played a pivotal role
in the notion of a (periodic) Higgs-de Rham flow in characteristic p. In order to
obtain the analogous notion of (periodic) Higgs-de Rham flow over a truncated
Witt ring, we need to construct a lifting of the inverse Cartier transform. In this
section, Xn is a smooth scheme over Wn and Xn+1 is a Wn+1-lifting of Xn.

An anonymous referee has kindly pointed to us that the work of A. Shiho [29]
is related to our construction below. Recall, for each n ∈ N, Sn = Spec Wn and
FSn : Sn → Sn the Frobenius automorphism. In [29] Shiho constructs a functor

from the category of quasi-nilpotent Higgs modules on X
(n)
n to the category of

quasi-nilpotent flat modules on Xn, where Xn is a smooth scheme over Wn and

X
(n)
n = Xn ×FnSn Sn, under the assumption that X

(m)
n = Xn ×FmSn Sn, 0 ≤ m ≤ n
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admits a smooth lifting X
(m)
n+1 to Sn+1 and the Frobenius liftings Fm

n+1 : X
(m−1)
n+1 →

X
(m)
n+1 over Sn+1 exist. The functor is a nice p-adic reincarnation of the notion of

λ-connection in complex differential geometry. However, the assumption on the
Frobenius lifting is very restrictive for a projective Wn-scheme, which is howev-
er the basic assumption to formulate the semistability for Higgs modules. For
example, a smooth projective curve over W2 admits no Frobenius lifting once
its genus is greater than one. Our construction was inspired by the fact that
Ogus-Vologodsky’s construction extends the theory of strict p-torsion Fontaine
modules (see §4 [25], see also [26], [13]). We have worked out a generalization
for sub strict pn-torsion Fontaine modules in [28] and the current construction
is then a further generalization (without assuming the existence of an ambient
strict pn-torsion Fontaine module).

Let us put X ′n = Xn ×FSn Sn. Then X ′n+1 is a smooth lifting of X ′n over Wn+1.
The mod pn−1 reduction Xn ⊗ Z/pn−1Z of Xn is denoted by Xn−1. Similarly for
X ′n−1. Let us introduce a category H(X ′n) of Higgs modules over X ′n as follows:
an object is given by a tuple

(E, θ, H̄, ∇̄, F il, ψ̄),

where (E, θ) is a graded Higgs module over X ′n of exponent ≤ p− 2, (H̄, ∇̄, F il)
a de Rham module over X ′n−1 with the level of Hodge filtration ≤ p− 2 and

ψ̄ : GrFil(H̄, ∇̄) ∼= (Ē, θ̄) := (E, θ)⊗ Z/pn−1Z

an isomorphism of graded Higgs modules over X ′n−1. The morphism in the cat-
egory is defined in the obvious way. For n = 1, the above tuple is reduced to a
nilpotent graded Higgs module over X ′1 of exponent ≤ p− 2. So H(X ′1) is a full
subcategory of HIGp−1(X ′1).

Theorem 4.1. Notation as above. There exists a functor C−1
n from the category

H(X ′n) to the category MIC(Xn) of flat modules over Xn such that C−1
n lifts

C−1
n−1 and such that C−1

1 agrees with the inverse Cartier transform C−1
X/S of Ogus-

Vologodsky [25] with (X ,S) = (X1/k,X
′
2/W2).

We shall also introduce an intermediate category M̃IC(X ′n) which we call the
category of twisted flat modules over X ′n. The construction of the functor C−1

n

consists of constructing the first functor Tn : H(X ′n)→ M̃IC(X ′n) and the second

functor Fn : M̃IC(X ′n) → MIC(Xn). The category M̃IC(X ′n) is closely related
to the category of quasi-nilpotent OX′n-modules with integrable p-connections of
Shiho [29] which we shall explain later. The motivation to introduce this new
category is mainly because of the necessity to make sense of p-powers in the de-
nominators appearing in the Taylor formula (4.16.1).

Let X be a smooth scheme over Sn. First recall that a Lie algebroid on X is a
locally free OX-module A equipped with a skew-symmetric OX-bilinear pairing

[·, ·]A : A×A → A
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satisfying the Jacobi identity and an action of A on OX by derivations (so-called
anchor map) which is given by an OX-linear morphism of Lie algebras

α : A → TX

subject to the compatibility condition (Leibniz rule)

[x, fy]A = α(x)(f)y + f [x, y]A.

Let us consider the following Lie algebroid (TX , α, {·, ·} := p[·, ·]), with the anchor
α = p · Id : TX → TX and {D1, D2} = p[D1, D2] for any local sections Di, i = 1, 2

of TX , where [·, ·] is the usual Lie bracket for the tangent sheaf. Let D(−1)
X denote

the sheaf of enveloping algebras of the Lie algebroid (TX , α, {·, ·}). Thus D(−1)
X is

generated by the algebra of functions OX and the OX-module of derivations TX ,
subject to the module and commutator relations

f ·D = fD, D · f − f ·D = pD(f), D ∈ TX , f ∈ OX ,

and the Lie algebroid relation

D1 ·D2 −D2 ·D1 = {D1, D2}, D1, D2 ∈ TX .

Next we introduce a sheaf of twisted differential operators on X as follows.

Definition 4.2. Notation as above. Let U ⊂ X be an open affine subset over

Sn. Set D̃X(U) to be the algebra generated over D(−1)
X (U) by symbols{

γm(D1, · · · , Dp−1+m)
∣∣∣ for m ∈ N, and any D1, · · ·Dp−1+m ∈ TX(U)

}
,

subject to the following six relations:

(1) pm · γm(D1, · · · , Dp−1+m) = D1 · · ·Dp−1+m;
(2) γm(D1, · · · , αDi + α′D′i, · · ·Dp−1+m) = α · γm(D1, · · · , Di, · · · , Dp−1+m)

+α′ · γm(D1, · · · , D′i, · · · , Dp−1+m), α, α′ ∈ Wn, Di, D
′
i ∈ TX(U);

(3) for m ≥ 1, γm(D1, · · · , Dp−1+m) · f = f · γm(D1, · · · , Dp−1+m)

+
∑p−2+m

i=1 γm−1(D1, · · · , Di−1, Di(f)Di+1, · · · , Dp−1+m)+
γm−1(D1, · · · , Dp−2+m) ·Dp−1+m(f);

(4) γm(D1, · · · , Di, Di+1, · · · , Dp−1+m) = γm(D1, · · · , Di+1, Di, · · · , Dp−1+m)
+γm−1(D1, · · · , Di−1, [Di, Di+1], Di+2, · · · , Dp−1+m);

(5) γm1(D1, · · · , Dp−1+m1) · γm2(Dp+m1 , · · · , D2p−2+m1+m2)
= pp−1γp−1+m1+m2(D1, · · · , D2p−2+m1+m2);

(6) γm(D1, · · · , Dp−1+m) ·Dp+m = D1 · γm(D2, · · · , Dp+m)
= p · γm+1(D1, · · · , Dp−1+m, Dp+m).

The sheaf of twisted differential operators D̃X is the associated sheaf to the

presheaf U 7→ D̃X(U).

The above definition is to legitimate the p-powers appearing in the denominators
of differential operators. In particular, one may regard γm(D1, · · · , Dp−1+m) as a

symbol for D1···Dp−1+m

pm
. Since D̃X contains OX as a subsheaf of algebras, it has a

natural left OX-module structure. Thus it contains TX as a left OX-submodule.
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Definition 4.3. A twisted connection on an OX-module H is a Wn-morphism
between sheaves of Wn-algebras

∇̃ : D̃X → EndWn(H)

extending the structural morphism OX → EndWn(H).

A coherent OX-module equipped with a twisted connection is said to a twisted

flat module. Let M̃IC(X) be the category of twisted flat modules over X. An
explanation of the relation with the notion of an OX-module with integrable
p-connection is in order. We cite the following definition from Shiho [29]:

Definition 4.4 ([29, Definition 1.1-1.2,1.5]). Notation as above. A p-connection
∇ on an OX-module H is an Wn-linear map ∇ : H → H ⊗ ΩX , such that

∇(fh) = p · df ⊗ h+ f∇(h), f ∈ OX , h ∈ H.

It is said to be integrable if ∇1 ◦ ∇ = 0, where

∇1 : H ⊗ ΩX → H ⊗ Ω2
X

is the Wn-linear map defined by via the formula

∇1(h⊗ ω) = ∇(h) ∧ ω + ph⊗ dω.

Moreover, an integrable p-connection (H,∇) is quasi-nilpotent if locally θa = 0
once |a| ≥ N for some natural number N where θ is the connection one-form
∇(e) =

∑
i θi(e)dti with respect to a set of étale local coordinates {t1, · · · , td} of

X and θa =
∏

i θ
ai
i for a multi-index a = (a1, · · · , ad) ∈ Nd and |a| =

∑
i ai.

In the above definition, the natural number N depends on the local expression of
a local section e. However, in Lemma 1.6 [29], an integrable p-connection ∇ on H
being quasi-nilpotent is shown to be independent of choices of local coordinates.
Let us denote the category of OX-modules with p-connections by MC(−1)(X) and
the integrable ones by MIC(−1)(X). To our purpose, we also need to introduce
a level structure on the quasi-nilpotency of an integrable p-connection.

Definition 4.5. Notation as above. Let (H,∇) be a quasi-nilpotent OX-module
with an integrable p-connection. It is said to be quasi-nilpotent of level ≤ m if

∇D1 ◦ · · · ◦ ∇Dm+1 = 0, for any D1, · · ·Dm+1 ∈ TX .

Denote the category of quasi-nilpotentOX-modules with an integrable p-connection

of level ≤ m by MIC
(−1)
m (X).

We shall point out that it is rather subtle to read the level structure in terms of

local coordinates. Now there is a functor from M̃IC(X) to MIC
(−1)
p−2+n(X): given

a twisted connection ∇̃ on H, one considers only the restriction to TX ⊂ D̃X
which yields a Wn-linear morphism

∇ := ∇̃|TX : H → H ⊗ ΩX .
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It follows directly from the definition that this is indeed an integrable p-connection
and quasi-nilpotent of level ≤ p − 2 + n. Notice that the integrability amounts
to the relation

∇(D1) ◦ ∇(D2)−∇(D2) ◦ ∇(D1) = ∇({D1, D2}), D1, D2 ∈ TX .

For m ≥ p, we may write

∇(D1) ◦ · · · ◦ ∇(Dm)

m!
=
pm+1−p

m!
· ∇̃(γm+1−p(D1, · · · , Dm)),

and as the factor pm+1−p

m!
converges to zero p-adically as m goes to the infinity,

∇(D1)◦···◦∇(Dm)
m!

→ 0 when m → ∞. This convergence property is crucial in the
construction of our second functor Fn. As a side remark, we do not know whether

the above functor from M̃IC(X) to MIC
(−1)
p−2+n(X) is essentially surjective (but

it is not faithful). Later, we shall come back to this point again.

Now we can proceed to the construction of our first functor Tn : H(X ′n) →
M̃IC(X ′n). We shall present two approaches in the following. The first approach,
which is our original approach, is a method of “local lifting-global gluing” which
may be more familiar to a reader whose background is in complex algebraic geom-
etry. The second approach is based on a beautiful construction suggested by the
referee who kindly allows us to reproduce his/her idea here. This direct approach
is much more transparent.

First approach.

Let X be a smooth scheme over Sn. Let X̄ := X ⊗ Z/pn−1Z be its reduction
mod pn−1. Since our arguments rely heavily on local calculations using a basis of
local sections of an OX-module, we will restrict ourselves in this approach to the
full subcategory Hlf (X) ⊂ H(X) consisting of locally free objects. However, this
restriction is caused mainly for simplicity in the local arguments. For a general
coherent object, we may use a set of minimal generators with possible relations
for a coherent object locally. Also, we need to introduce some other categories
which will be used only in this approach. The category Hni(X) (resp. Hni

lf (X)) is

a variant of H(X) (resp. Hlf (X)): its object is also a tuple (E, θ, H̄, ∇̄, F il, ψ̄);
but the integrabilities on θ and ∇̄ are not required. For brevity, an object in
H(X) or Hni(X) is written as (E, H̄). Second, let MCFp−2(X) be a category of
filtered OX-modules equipped with (not necessarily integrable) connections: its
object is a triple (H,∇, F il), where H is a locally free OX-module, ∇ is a Wn-
linear connection on H, and Fil a finite exhaustive decreasing filtration of locally
free OX-submodules on H of level ≤ p − 2 which is locally split and satisfies
Griffiths’ transversality. There is a diagram of these categories connected by
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natural functors:

MCFp−2(X)

H(X) Hni(X) MC(−1)(X) MIC
(−1)
p−3+n(X)

Rn
Gn

The functor Rn is the obvious one: to (H,∇, F il), one associates the graded
Higgs module (E, θ) = GrFil(H,∇), which is locally free by the assumption on
the filtration, and also (H̄, ∇̄, F il), its mod pn−1 reduction. One notices that
there is a natural isomorphism of graded Higgs modules

ψ̄ : GrFil(H̄, ∇̄) ∼= GrFil(H,∇)⊗ Z/pn−1Z.

The functor Gn is a variant of a construction due to Faltings [4, Ch.II], which orig-
inates from [7] in the case X = Sn. Given an object (H,∇, F il) ∈ MCFp−2(X),

the object (H̃, ∇̃) = Gn(H,∇, F il) is defined as follows: H̃ is the cokernel of the
first map of the following exact sequence

(4.5.1) ⊕iFili
[−1]−p·Id−−−−−→ ⊕iFili

ρ−−−→ H̃ → 0,

where [−1] := ⊕i(Fili ↪→ Fili−1), Id denotes the identity map, and ρ is the
natural projection map. Here we have extended the filtration so that

Fili = Fil0, i ≤ −1, F ilj = 0, j ≥ p.

Consider the Wn-linear map

∇′ := ⊕i∇|Fili , ∇|Fili : Fili → Fili−1 ⊗ ΩX .

The image ([−1]− p · Id)(⊕iFili) ⊂ ⊕i∇|Fili being preserved, ∇′ induces a Wn-
linear map

∇̃ : H̃ → H̃ ⊗ ΩX .

One checks immediately that ∇̃ is indeed a p-connection.

First, we show that the functor Rn is locally essentially surjective.

Lemma 4.6. Let X be a smooth affine scheme over Sn. Let (E, H̄) be an object in
Hni
lf (X). Suppose each component of E = ⊕kEk is a free OX-module. Then there

exists an object (H,∇, F il) ∈MCFp−2(X) such that Rn(H,∇, F il) = (E, H̄).

Proof. Write E = ⊕wk=0E
w−k,k, θ = ⊕w−1

k=0 θw, and for 0 ≤ k ≤ w take a set of basis
{ek} for the OX-module Ew−k,k. Under the basis, θk is expressed in terms of a
matrix of differential one-forms which we write again by θk. Put the bar over θk
as well as {ek} to mean their mod pn−1-reduction. Then take the basis {f ′k}0≤k≤w
of GrFil(H̄) such that

ψ̄(f ′k) = ēk.
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Also choose a basis {f̄k}0≤k≤w of H̄ such that its image in GrFil(H̄) is {f ′k}0≤k≤w.
By Griffiths’ transversality, the connection matrix (āij) representing the connec-
tion ∇̄ under the basis {f̄k}, i.e.,

∇̄(f̄i) =
∑
j

āij f̄j,

has the property āij = 0, j > i + 1. Now we take a matrix of differential one-
forms (aij) over X as follows: for i ≥ j, take any lift aij of āij; for j = i + 1,
take aij = θi; for j > i + 1, take aij = 0. Now let H be the free OX-module
generated by {fk}0≤k≤w whose mod pn−1 reduction are {f̄k}0≤k≤w and let Filw−k

be the submodule freely generated by the elements {fj}0≤j≤k, which gives the
filtration Fil on H. Then a connection ∇ on H is determined by the formula
∇(fi) =

∑
j aijfj. The so-constructed triple (H,∇, F il) is indeed an object in

MCFp−2(X) lifting (E, H̄), i.e., Rn(H,∇, F il) = (E, H̄) as required. �

Next we show the following

Lemma 4.7. If Rn(H,∇, F il) lies in the full subcategory Hlf (X) ⊂ Hni
lf (X), then

Gn(H,∇, F il) lies in the full subcategory MIC
(−1)
p−3+n(X).

Proof. Set (H̃, ∇̃) := Gn(H,∇, F il). Once the integrability of ∇̃ is verified, the
statement on quasi-nilpotency of level ≤ p− 3 + n follows directly from the def-
inition. As the integrability is a local property, we assume a set of étale local
coordinate {t1, · · · , td} of X and a filtered basis {fk}0≤k≤w of H. It suffices to

check that for 1 ≤ i, j ≤ d, ∇̃(∂ti) commutates with ∇̃(∂tj).

Let f̃k be the image of fk (elements of Filk) in H̃. Then {f̃k}0≤k≤w forms a basis

of H̃. As in Lemma (4.6), we may assume the matrix A := (aij) of ∇ under the
basis {fk}0≤k≤w has the property that aij = 0 for j > i + 1. Then the matrix of

∇̃ under the basis {f̃k}0≤k≤m is Ã = (ãij), with ãij = pi+1−jaij for j ≤ i+ 1, and

the rest are zero. Then ∇̃(∂ti) ◦ ∇̃(∂tj) under the basis {f̃k} is represented by
the matrix

p∂ti(∂tjÃ) + (∂tjÃ) · (∂tiÃ).

It remains to show the equality for all i, j:

p∂ti(∂tjÃ) + (∂tjÃ) · (∂tiÃ)− p∂tj(∂tiÃ)− (∂tiÃ) · (∂tjÃ) = 0,

For 0 ≤ r ≤ w − 2 with t = r + 1 and s = r + 2, the corresponding entry in the
above equality means

(∂tiart)(∂tjats)− (∂tjart)(∂tiats) = 0,

which is actually equivalent to the integrability of the Higgs field θ; For 0 ≤ r, s ≤
w with s ≤ r + 1, it means then

pr+2−s(∂ti ∧ ∂tj)(dars) = pr+2−s
w∑
t=0

[(∂tiart)(∂tjats)− (∂tjart)(∂tiats)] .
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As r + 2− s ≥ 1, the above equation is implied by the following equation, which
is equivalent to the integrability of ∇̄ :

(∂t̄i ∧ ∂t̄j)(dārs) =
w∑
t=0

[(∂t̄iārt)(∂t̄j āts)− (∂t̄j ārt)(∂t̄iāts)]

Here {t̄1, · · · , t̄d} means the induced set of étale local coordinates on X̄. �

We shall take a step further to land the object Gn(H,∇, F il) in the last lemma
in the category of twisted connections.

Lemma 4.8. Notation as above. Then the integrable p-connection of Gn(H,∇, F il)
can be extended to a twisted connection in a functorial way.

Proof. If (H,∇, F il) is the mod pn reduction of an object over W , then it is
clear how to extend ∇̃ to a twisted connection: for γm(D1, · · · , Dp−1+m) with

Di ∈ TX , one defines ∇̃(γm(D1, · · · , Dp−1+m)) to be
∇̃D1

◦···◦∇̃Dp−1+m

pm
, which is

defined by first lifting to W , then dividing pm and finally taking the reduction
modulo pn. The reason that ∇̃D1 ◦ · · · ◦ ∇̃Dp−1+m is divisible by pm is examined
as follows: by Griffiths’ transversality, it follows that

∇′Dm+1
◦ · · · ◦ ∇′Dp−1+m

: Fili → Fili+1−p.

As Filj = 0 for j ≥ w+1, and w ≤ p−2, one sees that the image of ∇′Dm+1
◦ · · · ◦

∇′Dp−1+m
lies in Fili with i ≤ −1. In the quotient H̃, for i ≤ −1, the image of each

element in Fili−1 is equal to p times the same element in Fili. Thus, since ∇′
always shifts the indices of direct factors of ⊕iFili by minus one, the restriction

of ∇̃ to the image F̄ il
−1

(which is isomorphic to H) of Fil−1 in H̃ is divisible
by p. On the other hand, this also gives us a way to extend ∇̃ to an twisted
connection in the general case. Indeed, we simply define ∇̃(γm(D1, · · · , Dp−1+m))

to be the composite
∇′D1

p
◦ · · · ◦ ∇

′
Dm

p
◦ ∇′Dm+1

◦ · · · ◦ ∇′Dp−1+m
, where the symbol

∇′Di
p

is defined to be the map ∇Di on F̄ il
−1 ⊂ H̃. One verifies directly that this

defines a twisted connection which extends ∇̃. �

We believe the truth of the following

Question 4.9. Can MIC
(−1)
p−3+n(X) be realized as a full subcategory of M̃IC(X)?

We shall also provide the gluing morphisms.

Lemma 4.10. Let (Hi,∇i, F ili) ∈ MCFp−2(X), i = 1, 2, 3. Suppose there are
isomorphisms for 1 ≤ i < j ≤ 3,

f̄ij : (H̄i, ∇̄i, F ili) ∼= (H̄j, ∇̄j, F ilj), fGij : GrFili(Hi,∇i) ∼= GrFilj(Hj,∇j),

satisfying
Gr(f̄ij) = fGij mod pn−1.

Then there are isomorphisms in the category of M̃IC(X) between the objects
(H̃i, ∇̃i) := Gn(Hi,∇i, F ili)

f̃ij : (H̃i, ∇̃i) ∼= (H̃j, ∇̃j).
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Moreover, if there are cocycle conditions

f̄13 = f̄23 ◦ f̄12, fG13 = fG23 ◦ fG12,

then {f̃ij}s also satisfy the cocycle condition

f̃13 = f̃23 ◦ f̃12.

Proof. For an s ∈ Filki \ Filk+1
i , we denote by s̃ (resp. ŝ, s̄) its image under

the natural map Filki → H̃i (resp. Filki → Filki /F il
k+1
i , Hi → H̄i). Consider

sections of Filkj whose images under the map Hj → H̄j are equal to f̄ij(s̄) and

under the map Filkj → Filkj /F il
k+1
j equal to fGij (ŝ) at the same time. As the

difference of any two such sections lies in pn−1Filk+1
j , they give rise to a unique

section f̃ij(s̃) ∈ H̃j. So we define f̃ij : H̃i → H̃j by sending s̃ to f̃ij(s̃). It is

straightforward to verify the well-definedness of f̃ij as well as the compatibility

with twisted connections. The cocycle condition for {f̃ij} follows directly from
the definition. �

Now we can give the construction of the first functor. One shall notice that it
does not require X to be Wn+1-liftable.

Proposition 4.11. Let X be a smooth scheme over Sn. Then there is a functor

Tn from the category Hlf (X) to the category M̃IC(X).

Proof. Let (E, H̄) be an object in Hlf (X). Take an open affine covering U =
{Ui}i∈I of X such that E and H̄ are free modules over each Ui. By Lemma
4.6, we can take an object (Hi,∇i, F ili) ∈ MCFp−2(Ui) for Ui ∈ U such that
Rn(Hi,∇i, F ili) = (E, H̄)|Ui (we call (Hi,∇i, F ili) a local lifting). Since over
Ui ∩Uj, the restrictions of (Hi,∇i, F ili) and (Hj,∇j, F ilj) are both local liftings
of (E, H̄)|Ui∩Uj , there are isomorphisms by Lemma 4.10

f̃ij : Gn(Hi,∇i, F ili)|Ui∩Uj ∼= Gn(Hj,∇j, F ilj)|Ui∩Uj
satisfying the cocycle condition on Ui ∩ Uj ∩ Uk. Thus gluing the local objects

{Gn(Hi,∇i, F ili)}Ui∈U in M̃IC(Ui) via the isomorphisms {f̃ij} yields an object

in M̃IC(X). We denote a so-constructed object by (H̃, ∇̃)U ,LU , where U denotes
for an open affine covering of X and LU consists of a local lifting of (E, H̄)
restricted to each U ∈ U . We need to show that this object is independent of
the choice of local liftings and the choice of open affine coverings up to canonical
isomorphism. For two sets of local liftings L1

U = {(H1
i ,∇1

i , F il
1
i )}i∈I and L2

U =
{(H2

i ,∇2
i , F il

2
i )}i∈I , Lemma 4.10 provides an isomorphism over each Ui ∈ U :

µi : Gn(H1
i ,∇1

i , F il
∗1
i ) ∼= Gn(H2

i ,∇2
i , F il

∗2
i )

and over Ui ∩ Uj, the equality f̃ 2
ij ◦ µi = µj ◦ f̃ 1

ij holds. So the set of local
isomorphisms {µi}i∈I glues into a global isomorphism

µ : (H̃, ∇̃)U ,LU
∼= (H̃, ∇̃)U ,L′U .

One can further show that for any three choices of local liftings, the so-obtained
isomorphisms satisfy the cocycle relation. So the object (H̃, ∇̃)U ,LU is independent
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of the choice of local liftings up to canonical isomorphism and therefore can be
denoted by (H̃, ∇̃)U . Next for any two choices U ,U ′ of open affine coverings of X,
we find a common refinement U ′′ of both. Again, by Lemma 4.10, one constructs
an isomorphism

νU ,U ′′ : (H̃, ∇̃)U ∼= (H̃, ∇̃)U ′′

and similarly νU ′,U ′′ . Then define the isomorphism

νU ,U ′ = ν−1
U ′,U ′′ ◦ νU ,U ′′ : (H̃, ∇̃)U ∼= (H̃, ∇̃)U ′

which satisfies also the cocycle relation for any three choices of open affine cov-
erings (another way to remove this independence is to take the direct limit with
respect to the directed set of all open affine coverings with the partial order given
by refinement). Thus, we get our functor Tn by associating (H̃, ∇̃) to (E, H̄) as
above which is defined up to canonical isomorphism. �

Second approach.

This approach is due to the referee, who gave us a global construction of the
functor from the whole category H(X) to MIC(−1)(X) in the weight one case.
We shall generalize his/her method in the following.

Notation as above. For an object (E, θ, H̄, ∇̄, F il, ψ̄) ∈ H(X), one notices that
the isomorphism of graded Higgs modules ψ̄ : GrFil(H̄, ∇̄) ∼= (Ē, θ̄) allows us to
define the following composite morphism:

j : Fil
i → Fil

i
/F il

i+1 ψ̄∼= Ēi.

Let η : Ei → Ēi be the natural projection by the reduction modulo pn−1. Let

Fil
i ×Ēi Ei denote the kernel of the morphism of OX-modules:

Fil
i ⊕ Ei −j+η−−−→ Ēi.

We are going to associate to (E, H̄) a twisted flat module (H],∇]). The OX-
module H] is defined to be the cokernel of the morphism

⊕i(Fil
i ×Ēi Ei)

ε−−−→ ⊕i(Fil
i ×Ēi Ei),

where for x× y ∈ Fili+1 ×Ēi+1 Ei+1,

ε(x× y) = (x× 0) + (−px×−py) ∈ (Fil
i ×Ēi Ei)⊕ (Fil

i+1 ×Ēi+1 Ei+1).

Let c : ⊕i(Fil
i ×Ēi Ei) → H] be the natural morphism. We define a Wn-linear

additive map (not a connection) as follows:

(4.11.1) ∇′′ : ⊕i(Fil
i ×Ēi Ei)→ ⊕i(Fil

i−1 ×Ēi−1 Ei−1)⊗ ΩX ,

which takes x× y ∈ Fili×Ēi Ei to ∇̄(x)× θ(y) ∈ (Fil
i−1×Ēi−1 Ei−1)⊗ΩX . Here

we have used the natural identification

(Fil
i−1 ⊗ ΩX̄)×(Ēi−1⊗ΩX̄) (Ei−1 ⊗ ΩX) ∼= (Fil

i−1 ×Ēi−1 Ei−1)⊗ ΩX .

We shall show that this map descends to a p-connection over H].
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Lemma 4.12. Let Ai be the image of Fil
i ×Ēi Ei under the map ε. Then

∇′′(Ai) ⊂ Ai−1 ⊗ ΩX

and the induced Wn-linear additive map ∇] : H] → H] ⊗ ΩX is an integrable
p-connection.

Proof. For x× y ∈ Fili ×Ēi Ei, one computes that

∇′′(ε(x× y)) = ∇̄(x)× 0 + ∇̄(−px)× θ(−py) = ε(∇̄(x)× θ(y)),

which lies in Ai−1⊗ΩX . Therefore, ∇′′ induces an additive Wn-linear map ∇] on
H]. It suffices to show ∇] is a p-connection, as the integrability follows directly

from the integrabilities of ∇̄ and θ. For f ∈ OX and x × y ∈ Fili ×Ēi Ei, it is
reduced to show the equality

∇](fc(x× y)) = f∇](c(x× y)) + pc(x× y)⊗ df.

Because

∇′′(f(x× y)) = ∇′′(f̄ · x× f · y) = ∇̄(f̄ · x)× θ(fy)

= (df̄ · x+ f̄∇̄(x))× fθ(y) = df̄ · x× 0 + f̄∇̄(x)× fθ(y)

= (x× 0)⊗ df + f∇′′(x× y),

where f̄ ∈ OX̄ is the mod pn−1-reduction of f , and because c(x×0) = c(p(x×y)),
the required equality follows. �

Lemma 4.13. Notation as above. The p-connection ∇] extends to a twisted
connection.

Proof. This step is similar to Lemma 4.8. Let D1, · · · , Dp−1+m ∈ TX for m ≥ 0.
Note that

∇′′Dm+1
◦ · · · ◦ ∇′′Dp−1+m

: Fil
i ×Ēi Ei → Fil

i+1−p ×Ēi+1−p Ei+1−p,

and as Fil
i

= 0, Ei = 0 for i ≥ w + 1 and w ≤ p− 2, the image of ∇′′Dm+1
◦ · · · ◦

∇′′Dp−1+m
lies in Fil

i×Ēi Ei for i ≤ −1. As Fil
i

= H̄ and Ēi = Ei = 0 for i ≤ −1,
one defines the map

∇′′

p
:= ∇̄ × 0 : Fil

i ×Ēi Ei → Fil
i ×Ēi Ei ⊗ ΩX , i ≤ −1.

Then the map

∇](γm(D1, · · · , Dp−1+m)) :=
∇′′D1

p
◦ · · · ◦

∇′′Dm
p
◦ ∇′′Dm+1

◦ · · · ◦ ∇′′Dp−1+m

gives rise to a twisted connection extending the p-connection ∇]. �

Equivalence.

Proposition 4.14. The functor T ]n , restricted to the subcategory Hlf (X), is nat-
urally equivalent to the functor Tn.
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Proof. Given an object (E, H̄) ∈ Hlf (X), we set

(H̃, ∇̃) := Tn(E, H̄), (H],∇]) := T ]n (E, H̄)

defined as above. We are going to exhibit a natural isomorphism

λ : (H],∇]) ∼= (H̃, ∇̃).

Without loss of generality, we may assume that there is an object (H,∇, F il) ∈
MCFp−2 such that Rn(H,∇, F il) = (E, H̄) and Gn(H,∇, F il) = (H̃, ∇̃). Con-
sider the following commutative diagram:

(4.14.1) ⊕iFili/pF ili
pn−1

tt

pn−1·[−1]
��

0

))⊕iFili
[−1]−p·Id

//

η×j ����
κ

**

⊕iFili
ρ // //

η×j����

H̃

⊕iFil
i ×Ēi Ei

[−1]×0−p·Id
// ⊕iFil

i ×Ēi Ei.

c̄

55 55

The middle row is (4.5.1), the exact sequence defining H̃. The middle column
is also an exact sequence because of locally free assumption, where the map η
denotes the reduction map by mod pn−1 and j the natural projection Fili →
Fili/F ili+1 = Ei. By the commutativity of left upper triangle, we see that the
map ρ factors through the surjective map c̄, so that there is an exact sequence

⊕iFili
κ−−−→ ⊕iFil

i ×Ēi Ei c̄−−−→ H̃ −−−→ 0.

By the commutativity of the left lower triangle and the surjectivity of the left
vertical map η × j, the above exact sequence is replaced by the following exact
sequence:

⊕iFil
i ×Ēi Ei [−1]×0−p·Id−−−−−−−→ ⊕iFil

i ×Ēi Ei c̄−−−→ H̃ −−−→ 0.

Thus there is a unique isomorphism λ : H] → H̃, to render the following diagram
commutative

⊕iFil
i ×Ēi Ei

[−1]×0−p·Id
// ⊕iFil

i ×Ēi Ei c̄ // //

c

)) ))

H̃

H]

o λ

OO .

The isomorphism λ is compatible with twisted connections. Indeed, the twisted
connection ∇̃ on H̃ is induced by the maps

∇′ : Fili → Fili−1 ⊗ ΩXn , i ≥ 0,

and
∇′

p
: Filj → Filj ⊗ ΩXn , j ≤ −1,

while ∇] on H] by the formula (4.11.1) and ∇
′′

p
in Lemma 4.13. Since the vertical

map η × j in the middle column of diagram (4.14.1) is compatible with the map
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∇′ on ⊕iFili and the map ∇′′ on ⊕iFil
i ×Ēi Ei, and it is also compatible with

the map ∇′
p

on ⊕j≤−1Fil
j and the map ∇′′

p
on ⊕j≤−1Fil

j ×Ēj Ej, it follows that

the map λ is compatible with ∇̃ on H̃ and ∇] on H]. �

This completes the construction of the first functor from H(X ′n) to M̃IC(X ′n),
by setting X = X ′n in the above two approaches.

Next, we are going to construct the second functor Fn : M̃IC(X ′n)→MIC(Xn).
In contrast to the first functor, it requires the Wn+1-liftability of X ′n and depends
on the choice of Wn+1-liftings. Again, the method of “local lifting-global gluing”
in the first approach of the former functor will be applied. Here “local lifting”
means a local lifting of the relative Frobenius and the gluing morphisms are
provided by the difference of two relative Frobenius liftings via the Taylor formula.
We shall remind that A. Shiho [29] has obtained the functor from the category
of quasi-nilpotent modules with integrable p-connections over X ′n to the category
of flat modules over Xn under the assumptions both on the existence of Wn+1-
liftings of X ′n, Xn and on the existence of the relative Frobenius lifting over
Wn+1. His construction is closely related to ours in the local case, but they were
independently obtained.

Proposition 4.15. Let X be a smooth scheme over Sn and X ′ = X ×FSn Sn.

Assume X ′ admits a smooth lifting X̃ ′ over Sn+1. Then there is a functor Fn
from the category of M̃IC(X ′) to the category MIC(X).

Proof. We divide the whole construction into several small steps.

Step 0. For convenience, let us introduce X̃ = X̃ ′×F−1
Sn+1

Sn+1, which lifts X and

will be used in Step 2. Let Ũ ′ = {Ũ ′i}i∈I be an open affine covering of X̃ ′ (assume
each member is flat over Sn+1). Then by the obvious base change, it induces an
open affine covering Ũ = {Ũi} of X̃, and by reduction modulo pn, open affine
coverings U ′ (resp. U) of X ′ (resp. X). For each i ∈ I, we take a morphism
F̃i : Ũi → Ũ ′i over Sn+1 lifting the relative Frobenius Ũ ⊗Z/pZ→ Ũ ′⊗Z/pZ over
k and denote F̃i ⊗ Z/pnZ by Fi. Given a twisted flat module (H̃, ∇̃) over X ′, its
restriction to U ′i is denoted by (H̃i, ∇̃i).

Step 1. Each F̃i defines a morphism over Sn:

dF̃i
p

: F ∗i ΩU ′i
→ ΩUi .

Put Hi := F ∗i H̃i. As discussed before (see the paragraph after Definition 4.5),
one can naturally regard ∇̃i as an integrable p-connection on H̃i. By doing so,
we can consider the following formula:

∇i(f ⊗ e) := df ⊗ e+ f · (dF̃i
p
⊗ 1)(1⊗ ∇̃i(e)), f ∈ OUi , e ∈ H̃i.(4.15.1)
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Claim 4.16. ∇i is well-defined and it defines an integrable connection on Hi.

Proof. One computes that

∇i(1⊗ fe) = (
dF̃i
p
⊗ 1)(1⊗ ∇̃i(fe)) = (

dF̃i
p
⊗ 1)(1⊗ pdf · e+ 1⊗ f · ∇̃i(e))

= d(F ∗i f)⊗ e+ F ∗i f · (
dF̃i
p
⊗ 1)(1⊗ ∇̃i(e)) = ∇i(F

∗
i f ⊗ e),

which shows the well-definedness. Let {t1, · · · td} be a set of étale local coordinates
of Ui and {t′α}1≤α≤d the corresponding one of U ′i . Note for 1 ≤ j, k ≤ d and any

e ∈ H̃i,

∇i(∂tj)(1⊗ e) =
d∑

α=1

(
∂tj

dF̃i
p

(1⊗ dt′α)

)
⊗ ∇̃(∂t′α)(e).

So one computes that

∇i(∂tk) ◦ ∇i(∂tj)(1⊗ e) =
∑d

α=1 ∂tk

(
∂tj

dF̃i
p

(1⊗ dt′α)
)
⊗ ∇̃(∂t′α)(e)

+
∑

1≤α,β≤d

(
∂tj

dF̃i
p

(1⊗ dt′α)
)
·
(
∂tk

dF̃i
p

(1⊗ dt′β)
)
⊗ ∇̃(∂t′β) ◦ ∇̃(∂t′α)(e)

=
∑d

α=1 ∂tj

(
∂tk

dF̃i
p

(1⊗ dt′α)
)
⊗ ∇̃(∂t′α)(e)

+
∑

1≤α,β≤d

(
∂tj

dF̃i
p

(1⊗ dt′α)
)
·
(
∂tk

dF̃i
p

(1⊗ dt′β)
)
⊗ ∇̃(∂t′α) ◦ ∇̃(∂t′β)(e)

= ∇i(∂tj) ◦ ∇i(∂tk)(1⊗ e).

In the above second equality we have used the integrability of ∇̃i, i.e., ∇̃i(∂t
′
α)

commutes with ∇̃i(∂t
′
β). Then for any f ∈ OUi and any e ∈ H̃i, one has

∇i(∂tk) ◦ ∇i(∂tj)(f ⊗ e)

= ∂2f
∂tk∂tj

⊗ e+ ∂f
∂tj
· ∇i(∂tk)(1⊗ e) + ∂f

∂tk
· ∇i(∂tj)(1⊗ e) + f · ∇i(∂tk)∇i(∂tj)(1⊗ e)

= ∂2f
∂tj∂tk

⊗ e+ ∂f
∂tj
· ∇i(∂tk)(1⊗ e) + ∂f

∂tk
· ∇i(∂tj)(1⊗ e) + f · ∇i(∂tj)∇i(∂tk)(1⊗ e)

= ∇i(∂tj) ◦ ∇i(∂tk)(f ⊗ e).

So ∇i(∂tk) commutes with ∇i(∂tj) for 1 ≤ k, j ≤ d, that is, ∇i is integrable as
claimed. �

Step 2. The previous step provides us a set of local flat modules {(Hi,∇i)}i∈I and
we want to glue them into one global flat module. The point is to use the Taylor
formula involving the difference of two relative Frobenius liftings to construct the
gluing morphisms. This is well-known if p is non-nilpotent in the base ring, and
we use the formalism of a twisted connection to make sense of the p-powers in
the denominators of the Taylor formula.

Let Ũi = Spec R̃i, i = 1, 2 be two smooth schemes over Sn+1, equipped with a
lifting of relative Frobenius F̃i : Ũi → Ũ ′i . Assume there is a set of étale local
coordinates {t̃i} for Ũ1 and suppose there is a morphism ι : Ũ2 → Ũ1 over Sn+1,
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which induces the morphism ι′ : Ũ ′2 → Ũ ′1. Let Ri = R̃i⊗Z/pnZ, Ui = Spec Ri and
Fi = F̃i⊗Z/pnZ. Let {t̃′i} (resp. {ti}) be the induced coordinate functions on Ũ ′1
(resp. U1). Given a twisted flat module (H̃, ∇̃) over U ′1, there is an isomorphism
of R2-modules G21 : F ∗2 ι

′∗H̃ ∼= ι∗F ∗1 H̃ given by the Taylor formula

(4.16.1) G21(e⊗ 1) =
∑
J

∇̃(∂)J

J !
(e)⊗ zJ , e ∈ H̃,

where J is a multi-index J := (j1, · · · , jd) with each component jl ≥ 0, J ! :=∏d
l=1 jl!, and

∇̃(∂)J

J !
:=

(∇̃(∂t′1))j1

j1!
◦ · · · ◦ (∇̃(∂t′d))

jd

jd!

with

zJ :=
d∏
l=1

zjll , zl :=
(F̃ ∗2 ι

′∗)(t̃′l)− (ι∗F̃ ∗1 )(t̃′l)

p
.

As already explained right after Definition 4.5, ∇̃(∂)J

J !
converges to zero p-adically

as |J | → ∞, the summation in the formula (4.16.1) is actually a finite sum. There
is the cocycle relation between the isomorphisms for three objects, namely the
equality G31 = G21 ◦ G32 holds. The proof is mostly formal: suppressing ιs in
the Taylor formula (4.16.1) and writing ẑ (resp. z̃) for the z-function appeared
in G32 (resp. G31). Then as z̃ = z + ẑ, one calculates that

G21 ◦G32(e⊗ 1) =
∑
I

∑
J

∇̃(∂)I+J

I!J !
(e)⊗ zJ · ẑI

=
∑
K

∇̃(∂)K

K!
(e)⊗

( ∑
I+J=K

K!

I!J !
· zJ · ẑI

)

=
∑
K

∇̃(∂)K

K!
(e)⊗ (z + ẑ)K

=
∑
K

∇̃(∂)K

K!
(e)⊗ z̃K

= G31(e⊗ 1).

The cocycle condition follows. Returning to our case, we shall apply the Taylor
formula in the following way: write Ũij = Ũi ∩ Ũj and take a relative Frobenius

lifting F̃ij : Ũij → Ũ ′ij. Let ι1 : Ũij → Ũi and ι2 : Ũij → Ũj be the natural
inclusions. Then we obtain the isomorphisms αi and αj in the following diagram:

F ∗ijH̃|U ′ij

Hi|Uij = F ∗i H̃|U ′ij F ∗j H̃|U ′ij = Hj|Uij

αj
∼=∼=

αi
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The we define the isomorphism Gij := αj ◦ α−1
i : Hi|Uij → Hj|Uij and the set of

isomorphisms {Gij} satisfies the cocycle condition. There is one more property
of Gij, namely, it is compatible with connections. For 1 ≤ l ≤ d, let us identify
l with the multiple index (0, · · · , 1, · · · , 0) with 1 at the l-th position. Then one
calculates that

(Id⊗Gij)(∇i(e⊗ 1)) =
∑
J

d∑
l=1

∇̃(∂)J+l

J !
(e)⊗ zJ · dF̃i

p
(dt′l),

and

∇j(Gij(e⊗ 1)) =
∑
J

d∑
l=1

∇̃(∂)J+l

J !
(e)⊗ zJ ·

(
dF̃j
p

(dt′l) + dzl

)
.

As

dzl =
dF̃i
p

(dt′l)−
dF̃j
p

(dt′l),

it follows that
(Id⊗Gij)(∇i(e⊗ 1)) = ∇j(Gij(e⊗ 1)).

Thus, we use the set {Gij} to glue the local flat modules {(Hi,∇i)} together and
obtain an object (H,∇) in MIC(X).

Step 3. We need to show the so-constructed object (H,∇) is independent of the
choice of relative Frobenius liftings and the choice of open affine coverings. But,
after our argument on a similar independence-type statement in Proposition 4.11,
this step becomes entirely formal. Therefore, to summarize the whole steps, we
construct a flat module (H,∇) over X up to canonical isomorphism from any
twisted flat module (H̃, ∇̃) over X ′, and this gives our second functor Fn. �

Remark 4.17. In above, a simplification can be made when a global lifting FX̃ of

the relative Frobenius over X̃ (a Wn+1-lifting of X) exists. Set FX = FX̃⊗Z/pnZ.

In this case, one has a globally defined morphism
dFX̃
p

: F ∗XΩX′ → ΩX . Then

H = F ∗XH̃ and ∇ is define by Formula (4.15.1) in which various local dF̃i
p

s are

replaced simply by
dFX̃
p

. The reason is as follows: in Step 0, we may take an

open affine covering Ũ = {Ũi} of X̃ (whose element is flat over Wn+1) such that
FX̃ : Ũi → Ũ ′i for all i and then take F̃i to be the restriction to FX̃ to Ũi. Then
it follows that the gluing functions Gijs are all identity.

Now we proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1. We define the functor C−1
n : H(X ′n) → MIC(Xn) to be

the composite of the functor Tn : H(X ′n) → M̃IC(X ′n) in Proposition 4.11 and

the functor Fn : M̃IC(X ′n) → MIC(Xn) in Proposition 4.15. From their very
constructions, the two functors Tn and Fn are compatible with the reduction
modulo pn−1. So is their composite. The equivalence of the functor C−1

1 over
W1 = k with the inverse Cartier transform of Ogus-Vologodsky [25] has been
verified in [13]. �
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5. Higgs correspondence in mixed characteristic

The section aims to establish the Higgs correspondence between the category of
strict pn-torsion Fontaine modules with endomorphism Wn(Fpf ) (Variant 2 §2)
and the category of periodic Higgs-de Rham flows over Xn, for n ≥ 2, so that it
lifts the one in positive characteristic and its limit, as n goes to infinity, yields
the Higgs correspondence in mixed characteristic.

We proceed first to the definition of a Higgs-de Rham flow over Xn. We use the
notation from §4. Let πn : X ′n → Xn be the natural morphism by base change,
which induces the obvious equivalence of categories π∗n : H(Xn) ∼= H(X ′n). We
define the functor

C−1
n := C−1

n ◦ π∗n : H(Xn)→MIC(Xn).

Definition 5.1. A Higgs-de Rham flow over Xn is a diagram of the following
form:

(H0,∇0)
GrFil0

%%

(H1,∇1)
GrFil1

$$(H̄−1, ∇̄−1)
GrF̄ il−1

''

(E0, θ0)

C−1
n

99

��

(E1, θ1)

C−1
n

99

. . . .

(Ē−1, θ̄−1)
φ̄∼= // (Ē0, θ̄0)

Here in the upper line (Hi,∇i) := C−1
n (Ei, θi) and Fili is a finite exhaustive

decreasing filtration of OXn-submodules on Hi satisfying Griffiths’ transversal-
ity with respect to ∇i; in the middle line each term (Ei, θi) is a graded Higgs
module over Xn and (H̄−1, ∇̄−1, F̄ il−1) is a de Rham module over Xn−1; in the
bottom line φ̄ is an isomorphism of graded Higgs modules from (Ē−1, θ̄−1) =
GrF̄ il−1

(H̄−1, ∇̄−1) to (Ē0, θ̄0), the mod pn−1 reduction of (E0, θ0).

We emphasize that, in the above definition, the filtrations Fili, i ≥ 0 and the
isomorphism φ̄ are part of the defining data of the flow. Also, an explanation of
the various inverse Cartier transforms in the flow is in order: C−1

n (E0, θ0) is the
abbreviation for

C−1
n (E0, θ0, H̄−1, ∇̄−1, F̄ il−1, φ̄),

and C−1
n (Ei, θi) for i ≥ 1 is the abbreviation for

C−1
n (Ei, θi, (C

−1
n (Ei−1, θi−1), F ili−1)⊗ Z/pn−1Z), Id).

Comparing with the notion of a periodic Higgs-de Rham flow over X1 (Definition
3.1), one finds that the extra data in the lower left corner in Definition 5.1 puts an
additional condition on (E0, θ0) when n ≥ 2. This is caused by the construction
of the functor C−1

n , n ≥ 2. It is interesting to characterize those graded Higgs
modules satisfying the condition, but more importantly, to know whether this
assumption made on C−1

n , n ≥ 2 could be relaxed after all.

Next, we turn to the central notion of a periodic Higgs-de Rham over Xn which
is defined in an inductive way. For a flat bundle (H,∇) over Xn, n ≥ 1, a finite
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exhaustive decreasing filtration on H is said to be a Hodge filtration, if it consists
of locally free subsheaves of H, is locally split, and obeys Griffiths’ transversality
with respect to ∇.

Definition 5.2. A periodic Higgs-de Rham flow over Xn, n ≥ 2 of period f ∈ N
consists of the following data:

(1) A periodic Higgs-de Rham flow (Ē, θ̄, F̄ il0, · · · , F̄ ilf−1, φ̄) ∈ HDFp−2,f (Xn/Wn);
(2) A graded Higgs bundle (E, θ) ∈ HIGp−2(Xn) lifting (Ē, θ̄);
(3) A Hodge filtration Fili of level ≤ p − 2 on C−1

n (Ei, θi) lifting the Hodge
filtration F̄ ili on C−1

n−1(Ēi, θ̄i);
(4) An isomorphism of graded Higgs modules over Xn

φ : GrFilf−1
(C−1

n (Ef−1, θf−1)) ∼= (E, θ)

lifting φ̄.

In the above definition, (E0, θ0) := (E, θ) and (C−1
n−1(Ēf−1, θ̄f−1), F̄ ilf−1, φ̄) to-

gether make an object in the category H(Xn) so that C−1
n (E0, θ0) is naturally

defined. Also, C−1
n (Ei, θi) for i ≥ 1 is naturally defined, which is simply

C−1
n (Ei, θi, C

−1
n−1(Ei−1, θi−1), F̄ ili−1).

By Corollary 3.14, the filtrations on a periodic Higgs-de Rham flow over X1 are
indeed Hodge filtrations.

Thus the data of a periodic Higgs-de Rham flow of period f over Xn, n ≥ 2 is
encoded in the following tuple

(E, θ, F il0, · · · , F ilf−1, φ, Ē, θ̄, F̄ il0, · · · , F̄ ilf−1, φ̄).

A morphism between two tuples is given by a pair (f, f̄), where f̄ is a morphism in
the category HDFp−2,f (Xn/Wn) and f is a morphism of graded Higgs modules
over Xn lifting f̄ and satisfying natural properties. Let us explain this in the
one-periodic case in detail. Let (Ei, θi, F ili, φi, Ēi, θ̄i, F̄ ili, φ̄i), i = 1, 2 be two
one-periodic flows over Xn. Then a morphism

(f, f̄) : (E1, θ1, F il1, φ1, Ē1, θ̄1, F̄ il1, φ̄1)→ (E2, θ2, F il2, φ2, Ē2, θ̄2, F̄ il2, φ̄2)

means the following: first,

f̄ : (Ē1, θ̄1, F̄ il1, φ̄1)→ (Ē2, θ̄2, F̄ il2, φ̄2)

is a morphism in HDFp−2,1(Xn/Wn); second, f : (E1, θ1) → (E1, θ2) is a mor-
phism of graded Higgs modules over Xn lifting

f̄ : (Ē1, θ̄1)→ (Ē2, θ̄2);

third, the morphism

C−1
n (f) : C−1

n (E1, θ1)→ C−1
n (E2, θ2),

which is naturally defined by the previous two properties, is compatible with
the Hodge filtrations and the induced morphism on graded Higgs modules is
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compatible with φs, that is, the following diagram commutes:

GrFil1C
−1
n (E1, θ1)

φ1−−−→ (E1, θ1)

GrC−1
n (f)

y yf
GrFil2C

−1
n (E2, θ2)

φ2−−−→ (E2, θ2).

Thus, the category HDFp−2,f (Xn+1/Wn+1) of periodic Higgs-de Rham flow of
period f over Xn is indeed inductively defined. Also, based upon the previous
two definitions, it is straightforward to define a preperiodic Higgs-de Rham flow
over Xn (the key is to assure the well-definedness of the inverse Cartier transform
of each Higgs term). Since this will be not used in the sequel, we leave this
task to the reader. Recall that MF∇[0,p−2],f (Xn+1/Wn+1) is the category of strict

pn-torsion Fontaine modules with extra endomorphism Wn(Fpf ). The following
theorem lifts Theorem 3.2 in characteristic p (but notice the stronger restriction
on the Hodge-Tate weight).

Theorem 5.3. Let Xn+1 be a smooth scheme over Wn+1. For f ∈ N, there is
an equivalence of categories between the category MF∇[0,p−2],f (Xn+1/Wn+1) and the

category HDFp−2,f (Xn+1/Wn+1).

Similar to the characteristic p case, the theorem will be reduced to the one-
periodic case. Let us introduce the category of one-periodic Higgs-de Rham
flows over Xn with endomorphism structure Wn(Fpf ). Its object is a tuple
(E, θ, F il, φ, ι, Ē, θ̄, F̄ il, φ̄), where (E, θ, F il, φ, Ē, θ̄, F̄ il, φ̄) is an object in the cat-
egory HDFn := HDFp−2,f (Xn+1/Wn+1) and

ι : Wn(Fpf ) ↪→ EndHDFn(E, θ, F il, φ, Ē, θ̄, F̄ il, φ̄)

is an embedding of Wn(Fp)-algebras. A morphism of this category is a morphism
of one-periodic Higgs-de Rham flows compatible with endomorphism structures.
Thus Theorem 5.3 follows from the next two propositions.

Proposition 5.4. There is an equivalence of categories between the category
MF∇[0,p−2],1(Xn+1/Wn+1) and the category HDFp−2,1(Xn+1/Wn+1).

This proposition is just the one-periodic case of Theorem 5.3, which implies imme-
diately that MF∇[0,p−2],f (Xn+1/Wn+1) is equivalent to the category of one-periodic

Higgs-de Rham flows over Xn with endomorphism structure Wn(Fpf ). We post-
pone its proof and show first the next

Proposition 5.5. There is an equivalence of categories between the category of
one-periodic Higgs-de Rham flows over Xn with endomorphism structure Wn(Fpf )
and the category HDFp−2,f (Xn+1/Wn+1).

Proof. Recall that we have chosen a primitive element ξ1 ∈ Fpf in the proof of
Lemma 3.8. Let ξ be the Teichmüller lift of ξ1 in W (Fpf ) and let ξn be the mod
pn reduction of ξ. Thus ξn is a generator of Wn(Fpf ) as Wn(Fp)-algebra. The
Frobenius automorphism ofWn = Wn(k) acts on ξn by the power pmap. We prove
by induction on n. The n = 1 case is Proposition 3.7, where we have constructed
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the functor E and its quasi-inverse D. Rewrite them into E1 and respectively D1.
As the induction hypothesis, we assume that we have constructed a sequence of
functors {Ei}1≤i≤n−1 and {Di}1≤i≤n−1 such that (i) Ei and Di are quasi-inverse to
each other and therefore give a equivalence of categories between the category of
one-periodic Higgs-de Rham flows over Xi with endomorphism structure Wi(Fpf )
and the category HDFp−2,f (Xi); (ii) Ei (resp. Di) lifts Ei−1 (resp. Di−1). Now
we proceed to show the case for n. Let us start with an object of HDFp−2,f (Xn):

(E, θ, F il0, · · · , F ilf−1, φ, Ē, θ̄, F̄ il0, · · · , F̄ ilf−1, φ̄).

Following the characteristic p case, we put

(G, η) :=

f−1⊕
i=0

(Ei, θi),

where (E0, θ0) = (E, θ) and (Ei, θi) = C−1
n (Ei−1, θi−1), i ≥ 1 are the remaining

Higgs terms defined inductively in the flow. The Hodge filtration Fil on C−1
n (G, η)

as well as the isomorphism φ̃ of graded Higgs modules over Xn are defined exactly
in the same way as the characteristic p case (see the paragraph before Lemma

3.8). Clearly, (G, θ) (resp. Fil and φ̃) lifts (Ḡ, θ̄) (resp. F̄ il and ¯̃φ) and therefore

(G, η, F il, φ̃, Ḡ, θ̄, F̄ il, ¯̃φ) is a one-periodic flow over Xn. Replacing ξ1 in the proof
of Lemma 3.8 with ξn, one equips this one-periodic flow with an endomorphism
structure Wn(Fpf ). This gives us a functor En. Conversely, to a one-periodic
Higgs-de Rham flow (G, η, F il, φ, ι, Ḡ, η̄, F̄ il, φ̄) over Xn with the endomorphism
structure Wn(Fpf ), we associate an f -periodic Higgs-de Rham flow over Xn as
follows: first, the induction hypothesis gives us an f -periodic flow over Xn−1 (by
abuse of notation we have omitted the part over Xn−1 in the following expression):

(Ē, θ̄,
¯̃

Fil0, · · · ,
¯̃

Filf−1,
¯̃φ).

Second, let (G, η) = ⊕f−1
i=0 (Gi, ηi) be the eigen-decomposition under the endo-

morphism ι(ξn). Then C−1
n (Gi, ηi) is naturally defined and one has the eigen-

decomposition under C−1
n (ξn):

(C−1
n (G, η), F il) =

f−1⊕
i=0

(C−1
n (Gi, ηi), F ili).

So we put (E, θ) = (G0, η0), and following strictly the constructions in the char-

acteristic p case (see Lemma 3.9), one obtains the filtrations F̃ ili, 0 ≤ i ≤ f − 1

and the isomorphism φ̃ of graded Higgs modules over Xn, so that the extended
tuple

(E, θ, F̃ il0, · · · , F̃ ilf−1, φ̃, Ē, θ̄,
¯̃

Fil0, · · · ,
¯̃

Filf−1,
¯̃φ)

is an object in HDFp−2,f (Xn). This give us the functor Dn in the reverse di-
rection. Given the proof of Proposition 3.7, the proof for that En and Dn give
an equivalence of categories becomes completely formal and is therefore omitted.
Finally, the lifting properties of En and Dn are direct consequences of our choice
of ξn at the beginning. �
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The remaining paragraphs are devoted to the proof of Proposition 5.4. In the fol-
lowing, we choose and then fix an open affine covering U = {Ui}i∈I of Xn+1/Wn+1

whose element is flat over Wn+1, and for each i, an absolute Frobenius lifting Fi
over Ui. First a lemma:

Lemma 5.6. Let (H,∇, F il,Φ) be a strict pn-torsion Fontaine module. Let
(H̄, ∇̄, F̄ il) be the mod pn−1 reduction of (H,∇, F il) and (E, θ) the associated
graded Higgs bundle. Then the relative Frobenius Φ naturally induces an isomor-
phism of flat bundles over Xn:

Φ̃ : C−1
n (E, θ) ∼= (H,∇).

Proof. The lemma follows from the strong p-divisibility and horizontality of Φ
(see §2) and the very construction of C−1

n . For n = 1, this is Proposition 1.4
[13]. For simplicity, let us ignore the issue of the obvious base change caused by
the Frobenius automorphism of the base ring Wn in the argument. By the first
approach of the functor Tn, it follows that

Tn(E, θ, H̄, ∇̄, F̄ il) = Gn(H,∇, F il).

Write it to be (H̃, ∇̃). Let Un = {Ui,n}i∈I be the induced open affine covering
of Xn, and let Fi,n be the induced absolute Frobenius lifting over Ui,n. Then the
evaluation Φi := Φ(Ui,n,Fi,n) of Φ is an isomorphism of local flat bundles:

Φi : (F ∗i,nH̃|Ui,n , F ∗i,n(∇̃|Ui,n)) ∼= (H,∇)|Ui,n ,

where the connection F ∗i (∇̃|Ui,n) is defined via the formula (4.15.1). The fact that
different evaluations of Φ are related via the Taylor formula means

Φi = Φj ◦ εij,(5.6.1)

where the εij is given by the formula (4.16.1) (replacing the indices 21 in that
formula with ij). Thus, the very construction of C−1

n means exactly that the local
isomorphisms Φis glue together into a global one Φ̃ from C−1

n (E, θ) to (H,∇). �

Proof of Proposition 5.4. We divide the whole proof into three steps, following
the one in the characteristic p case. The proof is by induction on n, where the
n = 1 case is Proposition 3.3. Rewrite the functors in the proof of Proposition
3.3 by GR1 := GR and IC1 := IC. As the induction hypothesis, we assume then
the existence of functors GRi : MF∇[0,p−2],1(Xi+1/Wi+1)→ HDFp−2,1(Xi+1/Wi+1)

and ICi in the opposite direction for 1 ≤ i ≤ n− 1 such that (i) GRi and ICi are
quasi-inverse to each other, and (2) GRi (resp. ICi) lifts GRi−1 (resp. ICi−1).
In the following, we construct a lifting GRn (resp. ICn) of GRn−1 (resp. ICn−1)
such that GRn and ICn are quasi-inverse to each other.

From Fontaine module to one-periodic Higgs-de Rham flow: Let (H,∇, F il,Φ)
be a strict pn-torsion Fontaine module over Xn+1/Wn+1. Its reduction mod pn−1

(H̄, ∇̄, F̄ il, Φ̄) is a strict pn−1-torsion Fontaine module. Let

(Ē, θ̄, F̄ ilexp, φ̄,
¯̄E, ¯̄θ, ¯̄Filexp,

¯̄φ)



42 GUITANG LAN, MAO SHENG, AND KANG ZUO

be the corresponding one-periodic flow over Xn−1 to (H̄, ∇̄, F̄ il, Φ̄) via the functor
GRn−1. Set (E, θ) = GrFil(H,∇). By Lemma 5.6, we define Filexp on C−1

n (E, θ)

to be the pull-back of Fil on H via the isomorphism Φ̃. Thus, we obtain also an
isomorphism of graded Higgs modules over Xn:

φ := Gr(Φ̃) : GrFilexp(C
−1
n (E, θ)) ∼= GrFil(H,∇) = (E, θ).

The lifting property of the inverse Cartier transform in Theorem 4.1 implies that
the so-obtained tuple (E, θ, F ilexp, φ) lifts (Ē, θ̄, F̄ ilexp, φ̄), so that

GRn(H,∇, F il,Φ) := (E, θ, F ilexp, φ, Ē, θ̄, F̄ ilexp, φ̄)

is a one-periodic Higgs-de Rham flow over Xn. Clearly, the functor GRn lifts
GRn−1.

From one-periodic Higgs-de Rham flow to Fontaine module: From a given object
(E, θ, F il, φ, Ē, θ̄, F̄ il, φ̄) ∈ HDFp−2,1(Xn), one derives immediately the de Rham
module

(H,∇, F il) := (C−1
n (E, θ), F il).

In order to complete it into a Fontaine module, it remains to put a relative
Frobenius Φ on it. Let (H̄, ∇̄) be the mod pn−1 reduction of (H,∇) which is
equal to C−1

n−1(Ē, θ̄). Set (E1, θ1) = GrFil(H,∇). Then we have two objects in
the category H(Xn): (E, θ, H̄, ∇̄, F̄ il, φ̄) and (E1, θ1, H̄, ∇̄, F̄ il, Id). Then φ :
(E1, θ1) ∼= (E, θ) and the identity map on (H̄, ∇̄, F̄ il) give rise to an isomorphism

φ : (E1, θ1, H̄, ∇̄, F̄ il, Id) ∼= (E, θ, H̄, ∇̄, F̄ il, φ̄).

and therefore an isomorphism φ̃ := Tn(φ) of twisted flat modules after Proposition
4.11:

(H̃, ∇̃) := Tn(E1, θ1, H̄, ∇̄, F̄ il, Id) ∼= Tn(E, θ, H̄, ∇̄, F̄ il, φ̄) := (H̃−1, ∇̃−1).

Note the isomorphism T1(φ) for n = 1 is nothing but the original isomorphism
φ between graded Higgs bundles. Then for an open affine covering of Xn+1 and
the set of Frobenius liftings as given in Lemma 5.6, following the method in the
characteristic p case, we define simply an OUi-isomorphism by

Φi = F ∗i,n(φ̃) : F ∗i,nH̃
∼= F ∗i,n(H̃−1),

where the latter module is just H|Ui,n = C−1
n (E, θ)|Ui,n . At this point, the triple

(H|Ui,n , F il|Ui,n ,Φi) is a local p-torsion Fontaine module without connection (i.e.
it is an object in the local category MF (Ri,n) with Ri,n = Γ(Ui,n,OUi,n) as given
in Page 31 [4]). By Theorem 2.1 [4] ii), one knows that H is a locally free
OXn-module. Moreover, by the construction of the functor Fn, Φi is indeed an
isomorphism of flat modules:

Φi : (F ∗i,nH̃|Ui,n , F ∗i,n∇̃|Ui,n) ∼= (H,∇)|Ui,n .

This gives the horizontal property as required by an evaluation of the relative
Frobenius (see Variant 1 §2). It remains to explain Φis are related via the Taylor
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formula (5.6.1). Let e be a local section of H̃ over Ui,n. Then one computes that
over Uij,n := Ui,n ∩ Uj,n,

Gij ◦ Φi(e⊗ 1) =
∑
J

∇̃−1(∂)J(φ̃(e))

J !
⊗ zJ

=
∑
J

φ̃(∇̃(∂)J(e))

J !
⊗ zJ

= Φj(
∑
J

∇̃(∂)J(e)

J !
⊗ zJ) = Φj ◦ εij(e⊗ 1).

The second equality follows from the property that φ̃ respects the twisted con-
nections, and the last equality follows from the transition over Uij,n of a local

section of H̃ over Ui,n to a local section of H̃ over Uj,n. So we obtain a relative
Frobenius Φ from local Φis and thus a strict pn-torsion Fontaine module over Xn:

ICn(E, θ, F il, φ, Ē, θ̄, F̄ il, φ̄) := (H,∇, F il,Φ).

That the functor ICn lifts ICn follows from the lifting property of the inverse
Cartier transform and the construction of the relative Frobenius.

Equivalence of categories: This is done by induction on n and the constructions
of the natural transformations in the proof of Proposition 3.3. �

At this point, we have completed our theory on the Higgs correspondence in
positive and mixed characteristic (§3-§5). In [12] (see also [11, Remark 5.5]), N.
Katz established the following result.

Theorem 5.7 (Proposition 4.1.1 [12]). Let Xn/Wn be an irreducible smooth affine
scheme over Wn, equipped with an absolute Frobenius lifting FXn. Then there is
an equivalence of categories between the category of Wn(Fpf )-representations of
π1(Xn) and the category of pairs (E, φ) consisting of a locally free sheaf of finite

rank E over Xn together with an isomorphism φ : F ∗fXn(E)→ E.

The Katz’s correspondence has been further developed in the work [3] of Emerton-
Kisin, where the role of unit F -crystals is emphasized. A pair (E, φ) in Theo-
rem 5.7 is called a Frobenius-periodic vector bundle over Xn. This is the pro-
totype of the notion of perodic Higgs-de Rham flow. Indeed, to a Frobenius-
perodic vector bundle (E, φ), one associates the perodic Higgs-de Rham flow
(E, 0, F iltr, · · · , F iltr, φ) over Xn of level zero, and this association is an equiva-
lence of categories. Take an arbitrary W -lifting X = Spec R of Xn and Γ (resp.
Γur) the Galois group of the maximal extension of R étale over R[1/p] (resp.
over R) (Ch. II [4]). Then, one may show that the corresponding Wn(Fpf )-
representation of Γ to (E, 0, F iltr, · · · , F iltr, φ) over Xn after Theorem 5.3 and
Theorem 2.6 [4] factors through the natural quotient Γ→ Γur = π1(Xn), and the
resulting representation of π1(Xn) coincides with the representation correspond-
ing to (E, φ) after Theorem 5.7. Moreover, our theory extends to the case where
only the existence of Wn+1-lifting of Xn is assumed. Namely, one may show that,
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given a Wn+1-lifting Xn+1 of Xn, there is an equivalence of categories between the
category of f -periodic Higgs-de Rham flow over Xn of level zero and the category
of Wn(Fpf )-representations of π1(Xn).

To demonstrate the usage of the theory in a higher Hodge-Tate weight situation,
we provide an immediate construction of a p-divisible group over a geometric base
over W whose Kodaira-Spencer map is an isomorphism.

Example 5.8. Let A1 be any ordinary abelian variety defined over k of dimen-
sion g. By Serre-Tate theory, it has the canonical lifting A over W (k) with the
Frobenius lifting F : A → A. Consider the following Higgs bundle (E, θ) over
A/W :

E1,0 ⊕ E0,1 = ΩA ⊕OA, θ1,0 = Id : ΩA → OA ⊗ ΩA.

In the following we show that this Higgs bundle is one-periodic. We set (En, θn) :=
(E, θ)⊗Z/pnZ, and Fn = F ⊗Z/pnZ. First we construct a one-periodic Higgs-de
Rham flow on A1: since A2 has the global Frobenius lifting F2, it follows that

C−1
1 (E1, θ1) := (H1,∇1),

with

H1 := F ∗1E1 and ∇1 = ∇can +
dF2

p
(F ∗1 θ1).

A Hodge filtration of level one on (H1,∇1) is defined by Fil11 = F ∗1 ΩA1 = ΩA1 .
Set

(E ′1, θ
′
1) := GrFil1(H1,∇1).

Then

E ′1 = ΩA1 ⊕OA1 , θ′1,01 =
dF2

p
(F ∗1 θ1).

Because of the ordinariness of A1, the Hasse-Witt map

dF2

p
: H0(A1,ΩA1)→ H0(A1,ΩA1)

is bijective. So θ′1,01 has to be an isomorphism. Then we proceed to show (E ′1, θ
′
1)

is isomorphic to (E1, θ1). Indeed, there is one natural choice ψ1 : E ′1 → E1 of iso-
morphisms described as follows: its (0, 1)-component mapping OA1 to itself is the
identity, and its (1, 0)-component mapping ΩA1 to itself is the unique isomorphis-
m commuting with the Higgs fields. Therefore, we have obtained a one-periodic
flow over A1 as claimed:

(H1,∇1)
GrFil1

%%
(E1, θ1)

C−1
1

99

(E ′1, θ
′
1)

ψ1∼=

gg
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Next we proceed to the W2-level. Using the fact that A3 has the Frobenius lifting
F3, one computes that H̃−1,2 = ΩA2⊕OA2 , and ∇̃−1,2 = p∇can+θ2. Using Remark
4.17, it follows that

C−1
2 (E2, θ2) = (H2,∇2)

with H2 = F ∗2E2 = ΩA2 ⊕OA2 and ∇2 is the connection defined by the formula

∇2(f ⊗ e) = df ⊗ e+ f · (dF3

p
⊗ 1)(1⊗ ∇̃−1,2(e)),

where f (resp. e) is a local section of OA2 (resp. H̃−1,2) (see Claim 4.16). Now
we take the filtration Fil12 = ΩA2 , which lifts Fil11. Then the associated graded
Higgs bundle is

E ′2 = ΩA2 ⊕OA2 , θ
′1,0
2 =

dF3

p
(F ∗2 θ2)

which lifts (E ′1, θ
′
1). Again there is an obvious isomorphism

ψ2 : (E ′2, θ
′
2)→ (E2, θ2)

which lifts ψ1 and whose (0, 1)-component is the identity map. So we obtain a
one-periodic flow over A2:

(H2,∇2)
GrFil2

%%
(E2, θ2)

C−1
2

99

(E ′2, θ
′
2)

ψ2∼=

gg

Then one continues and constructs inductively a one-periodic flow over An, n ≥ 1:

(Hn,∇n)
GrFiln

&&
(En, θn)

C−1
n

88

(E ′n, θ
′
n)

ψn∼=

gg

Passing to the limit, one obtains therefore a one-periodic Higgs-de Rham flow
over A/W , and hence a rank g + 1 crystalline Zp-representation of Hodge-Tate
weight one of the generic fiber A0 of A/W which by [4, Theorem 7.1] corresponds
to a p-divisible group over A/W .

6. Strongly semistable Higgs modules

Let X/k be a smooth projective variety over k, equipped with an ample divisor
Z. The semistability in this section means the µZ-slope semistability. Recall that
a vector bundle over X is said to be strongly semistable if the bundle as well as
its pullback under any power of Frobenius are semistable. The relation between
strongly semistable bundles with trivial Chern classes and representations of the
algebraic fundamental group was firstly revealed by Lange-Stuhler in the curve



46 GUITANG LAN, MAO SHENG, AND KANG ZUO

case (see [21, §1]). It asserts that a semistable vector bundle E of degree zero
over a curve can be trivialized after a finite morphism if and only if it is strongly
semistable ([21, Satz 1.9]). Note that E being strongly semistable of degree zero is
equivalent to the condition that there is a pair (e, f) of integers with nonnegative
e and positive f such that

F ∗e+fX (E) ∼= F ∗eX (E),

where FX : X → X denotes the absolute Frobenius morphism as usual. It cor-
responds to a representation of π1(X) into GL(k) if and only if e in the above
isomorphism can be taken to be zero ([21, Proposition 1.2, Satz 1.4]). The result
of Lange-Stuhler has been generalized to a singular curve by Deninger-Werner
(see [2, Theorem 18]) and this generalization played a key role in their partial
p-adic analogue of the Narasimhan-Seshadri theory. Besides the intimate relation
with the representation of π1, the notion of strongly semistability is also useful
in other situation, for example, in Langer’s proof of boundedness of semistable
sheaves and Bogomolov’s inequality in positive characteristic [17]. Therefore, it
is a natural question to generalize this notion to Higgs modules. Interesting-
ly enough, it turns out that our generalization (especially Theorem 6.5 below)
has played a key role in the very recent result, due to A. Langer [20], on the
Bogomolov-Gieseker inequality for semistable Higgs bundles and Miyaoka-Yau
inequality for surfaces in positive characteristic.

The key of the generalization is to replace the Frobenius pullback with the inverse
Cartier transform of Ogus-Vologodsky [25], as seen in the following

Definition 6.1. Let X be a smooth projective variety over k together with a
fixed W2-lifting of X. A Higgs module (E, θ) is called strongly semistable if it
appears in the initial term of a semistable Higgs-de Rham flow, that is, all Higgs
terms (Ei, θi)s in the flow are semistable and defined over a common finite subfield
of k.1

A torsion Higgs module is by definition automatically semistable, which is how-
ever uninteresting to study in the current setting. Therefore, a semistable Higgs
module is taciturnly assumed to be torsion free in this paper. Clearly, a strongly
semistable vector bundle E is strongly Higgs semistable: one takes simply the
following Higgs-de Rham flow

(F ∗XE,∇can)
GrFiltr

''

(F ∗2X E,∇can)
GrFiltr

%%(E, 0)

F ∗X
88

(F ∗XE, 0)

F ∗X
77

. . .

where ∇can is the canonical connection in the theorem of Cartier descent and
Filtr stands for the trivial filtration as before.

1This definition corrects the error in [14, Definition 2.1].
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The first result on the Higgs semistability of the graded Higgs module associated
to a strict p-torsion Fontaine module is due to Ogus-Vologodsky [25, Proposition
4.19].

Proposition 6.2 (Ogus-Vologodsky). Let X/k be a smooth projective curve of
genus g. Let (H,∇, F il,Φ) be a strict p-torsion Fontaine module (with respect to
some W2-lifting of X). Assume that

n(rankH − 1) max{2g − 2, 1} < p− 1.

Then GrFil(H,∇) is a semistable Higgs bundle.

Their result can be generalized as follows (see [26, Proposition 0.2] for a general-
ization in the geometric case as given in Example 2.2 and see also [28, Proposition
3.7]):

Proposition 6.3. Let X/k be a smooth projective variety. Let (H,∇, F il,Φ) be
a strict p-torsion Fontaine module (with respect to some W2-lifting of X). Then
the graded Higgs bundle (E, θ) := GrFil(H,∇) is Higgs semistable. Moreover,
any Higgs subsheaf (G, θ) ⊂ (E, θ) of slope zero is strongly semistable.

Proof. Let us first recall that we have proven that there is a natural isomorphism

Φ̃ : C−1
1 (E, θ) ∼= (H,∇).

See [13, Proposition 1.4]. Therefore, one obtains a natural isomorphism GrFil ◦
C−1

1 (E, θ) ∼= (E, θ). It implies that pµ(E) = µ(E), and thus µ(E) = 0. For the
first statement, we prove by contradiction. Let (F, θ) be the maximal destabilizing
Higgs subsheaf of (E, θ) with positive slope µ(F ). Then GrFil ◦ C−1

1 (F, θ) is
naturally a Higgs subsheaf of slope pµ(F ) > µ(F ). A contradiction. For the
second statement, let us first notice that a Higgs subsheaf (G, θ) of slope zero is
automatically semistable, as firstly observed by C. Seshadri. Now that GrFil ◦
C−1

1 (G, θ) is naturally a Higgs subsheaf of (E, θ) which is again of slope zero and
hence semistable, (G, θ) is strongly semistable. �

It is surprising to have the following

Proposition 6.4. Notation as above. Any rank two nilpotent semistable Higgs
module is strongly semistable.

Proof. Let (E, θ) be a rank two nilpotent semistable Higgs module overX. For the
reason of rank, θ is nilpotent of exponent ≤ 1. Denote (H,∇) for C−1

1 (E, θ), and
HN the Harder-Narasimhan filtration on H. We need to show that the graded
Higgs moduleGrHN(H,∇) is again semistable. IfH is semistable, there is nothing
to prove: in this case, the HN is trivial and hence the induced Higgs field is zero,
and GrHN(H,∇) = (H, 0) is Higgs semistable. Denote otherwise L1 ⊂ H for the
invertible subsheaf of maximal slope and L2 = H/L1 the quotient sheaf. Then L1

cannot be ∇-invariant. Indeed, (H,∇) is ∇-semistable as a general property: say
M ⊂ H any ∇-invariant subsheaf. Then (F, θ|F ) := C1(M,∇|M) ⊂ C1(H,∇) =
(E, θ) is a Higgs subsheaf of slope µ(F ) = µ(M)/p, where C1 is the Cartier
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transform of Ogus-Vologodsky (see also [13]). As (E, θ) is Higgs semistable, it
follows that

µ(M) = pµ(F ) ≤ pµ(E) = µ(H).

So the natural map
θ′ = GrHN∇ : L1 → L2 ⊗ ΩX1

is nonzero. A nontrivial proper Higgs subsheaf L ⊂ GrHN(H,∇) is simply an
invertible subsheaf with θ′(L) = 0. So L ⊂ L2 and

µ(L) ≤ µ(L2) < µ(H) = µ(GrHNH).

In this case, GrHN(H,∇) is actually Higgs stable. �

Motivated by Proposition 6.4, we proposed a conjecture on strongly semistability
of a nilpotent semistable Higgs module of higher rank in the first version of the
paper (see [14, Conjecture 2.8]). The conjecture was proven by A. Langer in
[19] in the case of small rank, which is quite crucial to his algebraic proof of
Bogomolov-Gieseker inequality and Miyaoka-Yau inequality. In Appendix A, we
shall provide an independent proof of the conjecture in the case of small rank.

Theorem 6.5 (Theorem A.1, [19, Theorem 5.1]). Notation as above. Any nilpo-
tent semistable Higgs module of rank ≤ p over X is strongly semistable.

After establishing the notion of strongly semistability and exhibiting ample exam-
ples, we shall concentrate on those strongly semistable Higgs modules with trivial
Chern classes, as guided by the theorem of Lange-Stuhler in the beginning. It
turns out they are quite close to be periodic.

Theorem 6.6. Let X/k be a smooth projective variety together with a fixed W2-
lifting of X. A preperiodic Higgs module is strongly semistable with trivial Chern
classes. Conversely, a strongly semistable Higgs module with trivial Chern classes
is preperiodic.

Proof. For a Higgs module (E, θ) ∈ HIGp−1(X), let (H,∇) = C−1
1 (E, θ) be the

corresponding flat module. It follows from the proof of [25, Theorem 4.17] that

cl(H) = plcl(E), l ≥ 0.

Since for any Griffiths transverse filtration Fil on (H,∇) the associated graded
Higgs module (E ′, θ′) = GrFil ◦ C−1

1 (E, θ) has the same Chern classes as H, it
follows that

cl(E
′) = plcl(E), l ≥ 0.

Therefore, in a Higgs-de Rham flow, one has for i ≥ 0

cl(Ei+1) = plcl(Ei), l ≥ 0.

This forces the Chern classes of a preperiodic Higgs module to be trivial. Also,
a slope λ Higgs subsheaf in (Ei, θi) gives rise to a slope pλ Higgs subsheaf in
(Ei+1, θi+1). This implies that, in a preperiodic Higgs-de Rham flow, each Higgs
term (Ei, θi) contains no Higgs subsheaf of positive degree. So each (Ei, θi) is
semistable. This shows the first statement. Conversely, let (E, θ) be a strongly
semistable Higgs module with trivial Chern classes, and let (Ei, θi)i≥0 be the Higgs
terms appearing in a semistable Higgs-de Rham flow with the initial term (E, θ).
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As discussed above, each (Ei, θi) has trivial Chern classes (and the same rank as
E). By [20, Lemma 5] and [19, Theorem 4.4], the moduli space of semistable Higgs
modules with trivial Chern classes over X/k is bounded and defined over k. Let
k′ ⊂ k be the common finite subfield for the infinite sequence {(Ei, θi)}i≥0. Since
any scheme of finite type over k has only finitely many k′-rational points, there
must exist a pair of integers (e, f) ∈ Z≥0 × N such that there is an isomorphism
(over k) of Higgs modules (Ee+f , θe+f ) ∼= (Ee, θe). Certainly, one can make the
above isomorphism into an isomorphism of graded Higgs modules by adjusting
one of their gradings. Therefore, (E, θ) is preperiodic. �

Using the notion of strongly semistable Higgs module as bridge, we can produce
crystalline k-representations (up to isomorphism) from semistable nilpotent Higgs
bundles (of small rank) with trivial Chern classes.

Theorem 6.7. Let X/W be a smooth projective scheme. Then for any rank r ≤
p− 1 semistable nilpotent Higgs bundle (E, θ) over Xk with trivial Chern classes,
one associates a unique r-dimensional crystalline k-representation of π1(XK) up
to isomorphism.

The proof relies on the next result which follows directly from Theorem 6.5 and
Theorem 6.6.

Corollary 6.8. Notation as Theorem 6.7. Then any rank r ≤ p semistable
nilpotent Higgs bundle over Xk with trivial Chern classes is preperiodic.

It is a nontrivial problem to decide when a small rank semistable graded Higgs
bundle with trivial Chern classes is periodic (and its period when it is indeed the
case), albeit always preperiodic by the corollary. We shall discuss this problem
as well as the basic properties of representations constructed in Theorem 6.7 on
a later occasion.

More preparations are needed before we can prove Theorem 6.7. A (pre)peridoic
Higgs bundle may lead more than one (pre)periodic Higgs-de Rham flows. How-
ever, in the setting of Corollary 6.8, there is a natural choice of filtrations in a
preperiodic Higgs-de Rham flow.

Proposition 6.9 (Theorem A.4, Remark A.9; [19, Theorem 5.5]). Let (H,∇) be
a ∇-semistable flat bundle over Xk. Then there exists a uniquely defined reduced
gr-semistable filtration on (H,∇) which is preserved by any automorphism of
(H,∇).

The reader is referred to the appendix for the definition of a gr-semistable (resp.
reduced) filtration. We shall call the filtration in the above result the Simpson
filtration and denote it by FilS. Note that the Simpson filtration in the rank two
case is nothing but the Harder-Narasimhan filtration on H, and it may well differ
from the Harder-Narasimhan filtration for higher ranks. A periodic Higgs-de
Rham flow whose each de Rham term is equipped with the Simpson filtration is
unique up to lengthening, as proven below. The unicity is shared more generally
by a periodic Higgs-de Rham flow with the following
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Assumption 6.10. Let (E, θ, F il0, · · · , F ilf−1, ϕ) be a periodic Higgs-de Rham
flow over Xk. Assume that, for each 0 ≤ i ≤ f − 1, the filtration Fili on Hi is
preserved by any automorphism of (Hi,∇i).

Recall in the definition of the lengthening, one has the following isomorphisms of
graded Higgs modules induced by ϕ : (Ef , θf ) ∼= (E0, θ0):

(GrC−1
1 )nf (ϕ) : (E(n+1)f , θ(n+1)f ) ∼= (Enf , θnf ), n ∈ N.

Set, for −1 ≤ i < j,

ϕj,i = (GrC−1
1 )(i+1)f (ϕ)◦· · ·◦(GrC−1

1 )jf (ϕ) : (E(j+1)f , θ(j+1)f ) ∼= (E(i+1)f , θ(i+1)f ).

Note ϕj,−1 is just the isomorphism ϕj in the j-th lengthening of the starting
periodic flow.

Lemma 6.11. Let φ : (Ef , θf ) ∼= (E0, θ0) be another isomorphism of graded Higgs
modules. Then there exists a pair (i, j) with 0 ≤ i < j such that φj,i ◦ ϕ−1

j,i = Id.

Proof. If we denote τs = φs ◦ ϕ−1
s , then τs is an automorphism of (E0, θ0). More-

over, each element in the set {τs}s∈N is defined over the same finite field in k.
As this is a finite set, there are j > i ≥ 0 such that τj = τi. So the lemma
follows. �

Proposition 6.12. Assume Assumption 6.10. Let (i, j) be a pair given by Lemma
6.11 for two given isomorphisms ϕ, φ : (Ef , θf ) ∼= (E0, θ0). Then there is an
isomorphism in HDFn,(j−i)f (X2/W2):

(E, θ, F il0, · · · , F il(j−i)f−1, ϕj−i−1) ∼= (E, θ, F il0, · · · , F il(j−i)f−1, φj−i−1),

where both sides of the isomorphism are obtained by j − i− 1-th lengthening.

Proof. Put β = φi ◦ ϕ−1
i : (E0, θ0) ∼= (E0, θ0). We shall check that it induces an

isomorphism in HDFn,(j−i)f (X2/W2). By Assumption 6.10, C−1
1 (GrC−1

1 )m(β) for
m ≥ 0 always respects the filtrations. We need only to check that β is compatible
with φj−i−1 as well as ϕj−i−1. So it suffices to show that the following diagram is
commutative:

E(j−i)f
ϕj−i−1- E0

E(j+1)f

ϕ−1
j,j−i−1

?
E(i+1)f

ϕ−1
i

?

E(j−i)f

φj,j−i−1

?
φj−i−1- E0.

φi

?
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Clearly, it is equivalent to show the commutativity of the following diagram:

E(j−i)f �
ϕ−1
j−i−1

E0

E(j+1)f

ϕ−1
j,j−i−1

?
E(i+1)f

ϕ−1
i

?

E(j−i)f

φj,j−i−1

?
φj−i−1- E0.

φi

?

In the above diagram, the anti-clockwise direction is

φj−i−1 ◦ φj,j−i−1 ◦ ϕ−1
j,j−i−1 ◦ ϕ−1

j−i−1 = φj ◦ ϕ−1
j = φi ◦ (φj,i ◦ ϕ−1

j,i ) ◦ ϕi.

By the requirement for (i, j), we have φj,i ◦ ϕ−1
j,i = Id, so the anti-clockwise

direction is φi ◦ ϕi, which is exactly the clockwise direction. So β is shown to be
compatible with φj−i−1 and ϕj−i−1. �

Now we proceed to the proof of Theorem 6.7.

Proof. It is to assemble the previous results. First, by Theorem 6.8, there exists
a preperiodic flow with the initial term (E, θ). But there are several choices. In
order to make a unique choice, we shall apply Proposition 6.9 at each step, that
is, we use the Simpson filtration FilS on each flat bundle and then we obtain the
uniqueness on the filtrations in the flow. Now let e ∈ N0 be the minimal number
such that (GrFilS ◦C−1

1 )e(E, θ) is periodic and let f ∈ N be its period. Thus from
(E, θ) we have obtained an periodic Higgs-de Rham flow

((GrFilS ◦ C−1
1 )e(E, θ), F il0 = FilS, · · · , F ilf−1 = FilS, φ),

unique up to the choice of φ. Fix one choice of φ and let ρ be the corresponding
representation after Corollary 3.10. As FilSs satisfy Assumption 6.10, it follows
from Proposition 6.12 and Corollary 3.11 (ii) that the isomorphism class of ρ⊗ k
is independent of the choice of φ. Finally, the rank condition ≤ p − 1 allows us
to apply Theorem 2.3, to conclude the theorem. �

7. Rigidity theorem for Fontaine modules

Let X/W be a smooth and projective scheme, equipped with a W -ample divisor
Z. To a (p-torsion) Fontaine module (H,∇, F il,Φ), one associates naturally the
graded Higgs bundle (E, θ) := GrFil(H,∇) by taking the grading of (H,∇) with
respect to the filtration Fil. In this section, we show that the gr-functor is faith-
ful over those mod p-stable objects (with respect to the µZ1-slope).

For a Griffiths transverse filtration Fil of level w, we extend Fili = Fil0 for
−i ∈ N and Filw+j = 0 for j ∈ N.
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Lemma 7.1. Let Y be a smooth projective variety over an algebraically closed
field k and let (V,∇) be a flat bundle over Y . If there exists a Griffiths transverse
filtration Fil on (V,∇) such that the associated graded Higgs module (E, θ) is
stable, then it is unique up to a shift of index.

Proof. Suppose on the contrary that there is another gr-semistable filtration
F̄ il on V which differs from Fil after arbitrary index shifting. Set (Ē, θ̄) :=
GrF̄ il(V,∇).

Case 1: Suppose that there exists an integer N , such that for every i, Fili ⊂
F̄ il

i+N
. Also, we can assume N is so chosen that for some i0, Fili0 ( F̄ il

i0+N+1
.

Then the inclusion induces a natural morphism of Higgs bundles

f : (E, θ)→ (Ē, θ̄).

Clearly, the morphism f cannot be injective at each closed point. Otherwise, it

implies that Fili = F̄ il
i+N

for all i which contradicts the assumption that the two
previous filtrations are nonequal. So f is not injective. Neither is f zero, since,

otherwise, it would imply that Fili ⊂ F̄ il
i+N+1

for all i which contradicts the
assumption on N . Therefore, on the one hand, as Im(f) is a quotient of (E, θ),
µ(Im(f)) > µ(E) = µ(V ); on the other hand, Im(f) is also a subobject of (Ē, θ̄),
µ(Im(f)) ≤ µ(Ē) = µ(V ). A contradiction.

Case 2: Otherwise, let a be the largest integer such that Fila is not contained in

F̄ il
a
, and b the largest integer such that Fila−i is contained in F̄ il

b−i
for all i ≥ 0.

Certainly a > b. Then we define a morphism of Higgs bundles f : (E, θ)→ (Ē, θ̄)
as follows: for i > 0, f |Ea+i = 0, and for j ≥ 0, f |Ea−j is given by

Ea−j = Fila−j/F ila−j+1 → F̄ il
b−j
/F̄ il

b−j+1
.

This is well defined as Fila+1 ⊂ F̄ il
a+1 ⊂ F̄ il

b+1
and Fila−j ⊂ F̄ il

b−j
for j ≥ 0.

Clearly f cannot be injective. Also, f cannot be zero. Otherwise, one would get

the relation Fila−j ⊂ F̄ il
b+1−j

for all j ≥ 0, which contradicts the maximality of
b. The remaining argument goes exactly as Case 1. �

The above statement, true for any characteristic, has the following nice conse-
quence in the current setting.

Proposition 7.2. Let (E, θ) be a Higgs bundle over X1. Suppose (E, θ) is stable
and one-periodic. Then there is a unique one-periodic Higgs-de Rham flow with
the initial term (E, θ) up to isomorphism.

Proof. Let (E, θ, F il, φ) be a one-periodic Higgs-de Rham flow. First, because
of the stability assumption on (E, θ), it follows from Lemma 7.1 that the Hodge
filtration Fil on C−1

1 (E, θ) is unique up to a possible shift of index. However, φ
is an isomorphism of graded Higgs modules, Fil has to be unique. Second, for
any other choice ϕ making (E, θ, F il, ϕ) periodic, the composite ϕ ◦ φ−1 is an
automorphism of (E, θ). Since it is stable, one must have ϕ = λφ for a nonzero



53

constant λ ∈ k. And there is an obvious isomorphism in the category HDF :

(E, θ, F il, φ) ∼= (E, θ, F il, λφ),

the proposition follows. �

An Fp-representation ρ of π1(XK) is said to be absolutely irreducible if the k-
representation ρ ⊗ k is irreducible. A direct consequence of the previous propo-
sition is the following

Corollary 7.3. Notation as above. There is a natural equivalence of categories
between the category of absolutely irreducible crystalline Fp-representations of
π1(XK) with Hodge-Tate weights ≤ p− 2 and the category of one-periodic stable
Higgs bundles in HIGp−2(X1).

Proof. Proposition 7.2 embeds the category of one-periodic stable Higgs bundles
over X1 into the category of one-periodic Higgs-de Rham flows over X1 as a ful-
l subcategory. Under the Higgs correspondence and Fontaine-Laffaille-Faltings
correspondence (Proposition 3.3 and Theorem 2.3), the category of one-periodic
stable Higgs bundles in HIGp−2(X1) corresponds to a full subcategory of crys-
talline Fp-representations of π1(XK). The image is characterized by the absolute-
ly irreducibility of the associated Fp-representations, as shown by [28, Theorem
1.3]. �

Remark 7.4. Over C, the gr-functor is an equivalence of categories between the
category of irreducible complex polarized variations of Hodge structure and the
category of stable graded Higgs bundles. The above corollary is a characteris-
tic p-analogue of this equivalence. However, compared with the transcendental
nature of the quasi-inverse functor in the complex case, the one in the charac-
teristic p case is much more constructive: indeed, it has already been noticed
by Ogus-Vologodsky (see [25, Definition 4.16] and the paragraph thereafter) that
the flat bundle (H,∇) of a strict p-torsion Fontaine module is reconstructed by
C−1

1 (E, θ), no matter whether (E, θ) stable or not (but it is at least semistable as
explained in Proposition 6.3). This point has also been explicitly emphasized in
§4 [13]. Furthermore, in Theorem A.4 Appendix A, we show how to construct a
gr-semistable filtration on (H,∇). By the proof of Lemma 7.1, it has to coincide
with the Hodge filtration Fil by a possible shift of index, which is also uniquely
determined by the gradings in E. The construction of the relative Frobenius from
an isomorphism GrFil(H,∇) ∼= (E, θ) is the major content of the functor C−1 in
the proof of Proposition 3.3.

The above results may be lifted to Wn for n arbitrary.

Proposition 7.5. Let (E, θ) be the initial term of a one-periodic Higgs-de Rham
flow over Xn. If the mod p reduction of (E, θ) is stable over X1, then there is a
unique one-periodic Higgs-de Rham flow for (E, θ) up to isomorphism.

Proof. We prove by induction on n. The n = 1 case is Proposition 7.2. We show
make the induction hypothesis as follows: let (Ē, θ̄) be the mod pn−1-reduction of
(E, θ), and (Ē, θ̄, F̄ il, ψ̄) be a one-periodic Higgs-de Rham flow over Xn−1. Then
F̄ il is the unique lifting of the Hodge filtration in the characteristic p and ψ̄ is
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the unique lifting of the isomorphism in characteristic p up to a scalar in Wn−1.
Now let (E, θ, F ili, ψi), i = 1, 2 be two one-periodic Higgs-de Rham flow over Xn

lifting (Ē, θ̄, F̄ il, ψ̄) over Xn−1. It suffices to show the following claims:

(i) Fil1 = Fil2;
(ii) ψ1 = λψ2, λ ∈ Wn.

Without loss of generality, we may assume that F̄ il is reduced. Assume the con-
trary of the statement (i). Let a be the largest integer such that Fila1 differs from
Fila2 , and then b be the largest integer such that Fila−i1 ⊆ Filb−i2 for each i ≥ 0.

Case 1. b > a. Then as

Fila1 ⊂ Filb2 ⊂ Fila+1
2 = Fila+1

1

and Fila+1
1 ⊂ Fila1 , we get Fila+1

1 = Fila1 , and in particular, F̄ il
a+1

= F̄ il
a
. A

contradiction.

Case 2. b = a. As Fila1 ⊂ Fila2 and Fila1 = Fila2 mod pn−1, it follows that
Fila1 = Fila2 . A contradiction.

Case 3. b < a. Let (H,∇) = C−1
n (E, θ). We define a morphism

f : GrFil1(H,∇)→ GrFil2(H,∇)

as follows: for i > 0, f on the factor Fila+i
1 /F ila+i+1

1 is simply zero; for i ≤ 0,
f : Fila+i

1 /F ila+i+1
1 → Filb+i2 /F ilb+i+1

2 is the natural morphism. It is easy to
check that this gives a morphism of Higgs bundles. Because of the choice of b,
f is nonzero. As its mod pn−1 reduction is clearly the zero map, we obtain a
nonzero morphism f

[pn−1]
on the mod p-reductions of both sides of the morphism

f , which are isomorphic to the stable Higgs bundle (E, θ)1 in characteristic p.
Clearly, it is neither an isomorphism. A contradiction. Therefore, Fil1 = Fil2,
and GrFil1(H,∇) = GrFil2(H,∇). We continue to show the statement (ii). For
this, we consider the composite

φ := ψ1 ◦ ψ−1
2 : (E, θ) ∼= (E, θ).

By the induction hypothesis, φ mod pn−1 = λ̄ ∈ Wn−1. Take any lifting λ ∈ Wn

of λ̄ and consider the endomorphism φ′ := φ− λ of (E, η). As φ′ mod pn−1 = 0,
we get an endomorphism of the stable Higgs bundle in characteristic p:

φ′

[pn−1]
: (E, θ)1 → (E, θ)1,

which has to be a scalar µ ∈ k. So we get φ = λ+pn−1µ ∈ Wn, and the statement
(ii) follows. �

The following rigidity theorem for Fontaine modules follows immediately from
the previous proposition and the Higgs correspondence.

Corollary 7.6. Let (Hi,∇i, F ili,Φi), i = 1, 2 be two Fontaine modules (torsion
free or not) over X/W , and (Ei, θi) the associated graded Higgs bundles. If
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(E1, θ1) is isomorphic to (E2, θ2) and mod p Higgs stable, then (Hi,∇i, F ili,Φi), i =
1, 2 are isomorphic.

Combining Proposition 7.5 with Theorem 5.3 and Corollary 7.3, we obtain the
following

Corollary 7.7. There is a natural equivalence of categories between the catego-
ry of crystalline Zp (resp. Wn(Fp)) representations of π1(XK) with Hodge-Tate
weight ≤ p−2 whose mod p reduction is absolutely irreducible and the category of
one-periodic Higgs bundles over X/W (resp. Xn/Wn) whose exponent is ≤ p− 2
and mod p reduction is stable.

Appendix A. Semistable Higgs bundles of small ranks are
strongly Higgs semistable

Guitang Lan, Mao Sheng, Yanhong Yang and Kang Zuo

In this appendix, we shall prove the following result.

Theorem A.1. Let (E, θ) be a nilpotent semistable Higgs module over a smooth
projective variety X defined over F̄p. If rank E ≤ p, then (E, θ) is strongly
semistable.

This same result has also been obtained by A. Langer independently. See [19,
Theorem 5.12]. In the early version of the manuscript [14], we have proposed the
following conjecture which inspired the above theorem.

Conjecture A.2. [14, Conjecture 2.8] A nilpotent semistable Higgs module of
exponent ≤ p is strongly Higgs semistable.

We had shown the rank two case in [14]. See [14, Theorem 2.6] which is just
Proposition 6.4 in the current version. Shortly after the appearance of [14], Ling-
guang Li [22] has verified the conjecture in the rank three case. The conjecture
requires modification in order to be true in the higher rank case.

The key step in the proof is Theorem A.4, a positive characteristic generalization
of Simpson’s result [33, Theorem 2.5], which states that over a complex smooth
projective curve, every vector bundle with an integrable holomorphic connection
admits a Griffiths transverse filtration, such that the associated-graded Higgs
bundle is semistable. This generalization is proved similarly as in [33, Theorem
2.5].

Throughout the appendix, we assume that Y is a smooth projective variety over
an algebraically closed field k, H is an ample divisor of Y , Higgs modules as well
as flat modules are torsion free, and the semistability is referred to the µ = µH-
semistability.

Definition A.3. A flat module (V,∇) is called ∇-semistable if for every sub-
module V1 ⊂ V with ∇(V1) ⊂ V1 ⊗OY ΩY , µ(V1) ≤ µ(V ) holds.

The goal of this section is to prove the following theorem.
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Theorem A.4. Let (V,∇) be a ∇-semistable flat module over a smooth projective
variety Y over an algebraically closed field k. Then there exists a Griffiths trans-
verse filtration Fil such that the associated-graded Higgs module to (V,∇, F il) is
semistable.

A Griffiths transverse filtration on (H,∇) with semistable graded Higgs module
is said to be gr-semistable.

Remark A.5. By [34], every holomorphic vector bundle that admits a connection
is of degree 0, thus in this case every flat bundle (V,∇) is automatically ∇-
semistable. So the above result generalizes [33, Theorem 2.5]. On the other hand,
the ∇-semistability condition in the statement is indeed necessary for its truth
over a general field. Let k be a field of characteristic p ≥ 3 and V = O ⊕ O(p)
be the rank two vector bundle over P1

k, equipped with the canonical connection
∇can of the Cartier descent theorem. Then (V,∇can) admits no gr-semistable
filtration.

To prove the above theorem, we need some lemmas.

Lemma A.6. Let (E, θ) be a graded Higgs module on Y . If (E, θ) is unstable as
a Higgs module, then its maximal destabilizing subsheaf I ⊂ E is saturated, and
it is a sub graded Higgs module, that is I = ⊕ni=0I

i with I i := I ∩ Ei.

Proof. The saturated property of the Higgs subsheaf I ⊂ E follows from the
maximality. To show the second property, one chooses t ∈ k such that ti 6= 1
for 0 < i ≤ n. Note that there is an isomorphism f : (E, θ) → (E, 1

t
θ) given by

f |Ei = tiId. Because of the uniqueness of the maximal destabilizing subobject,
we see that f(I) = I. Let s be any local section of I. Write s as

∑n
i=0 s

i, where
si is a local section of Ei. Then for j ≥ 0,

f j(s) =
n∑
i=0

tjisi ∈ I.

Consider 
s

f(s)
...

fn(s)

 =


1 1 1 · · · 1
1 t t2 · · · tn

...
...

...
. . .

...

1 tn t2n · · · tn
2

 ·

s0

s1

...
sn

 .

By assumption on t, the coefficient matrix is invertible; thus all si’s are local
sections of I and I = ⊕ni=0I ∩ Ei. �

Let (V,∇) be a flat module over Y . Start with an arbitrary Griffiths transverse
filtration Fil of level n and consider the associated Higgs module (GrFil(V ), θ).
If (GrFil(V ), θ) is unstable, let IFil be its maximal destabilizing subobject. By
Lemma A.6,

IFil = ⊕ni=0I
i
F il, I iF il ⊂ Fili/F ili+1 ⊂ V/Fili+1.(A.6.1)

Following the construction of Simpson (see §3 [33]), we define an operation ξ on
the set of Griffiths transverse filtrations. The new filtration ξ(Fil) of V is given
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by

ξ(Fil)i+1 := Ker(V → V/Fili+1

I iF il
), for 0 ≤ i ≤ n; ξ(Fil)0 = V.(A.6.2)

Note that Fili ⊃ ξ(Fil)i+1 ⊃ Fili+1, and there is a short exact sequence:

0→ GriF il(V )/I iF il → Griξ(Fil)(V )→ I i−1
Fil → 0, for 0 ≤ i ≤ n+ 1.(A.6.3)

Adding altogether, we obtain a short exact sequence of graded Higgs modules:

0→ GrFil(V )/IFil → Grξ(Fil)(V )
h→ I

[1]
Fil → 0,(A.6.4)

where E[k] denotes for the graded Higgs module E with index shifted so that
(E[k])i = Ei−k. If (E, θ) is unstable, let µmax(E) and rmax(E) denote respectively
the slope and rank of the maximal destabilizing subobject of E; otherwise, let
µmax(E) = µ(E) and rmax(E) = rk(E). By (A.6.4), we have

Lemma A.7. The following statements hold:

(1) µmax(Grξ(Fil)(V )) ≤ µmax(GrFil(V )).
(2) If µmax(Grξ(Fil)(V )) = µmax(GrFil(V )), then

rmax(Grξ(Fil)(V )) ≤ rmax(GrFil(V )).

(3) Furthermore, if rmax(Grξ(Fil)(V )) = rmax(GrFil(V )), then the composite

map Iξ(Fil) → Grξ(Fil)(V ) → I
[1]
Fil is injective and is an isomorphism out-

side a codimension two closed subset of Y , where Iξ(Fil) is the maximal
destabilizing subobject of Grξ(Fil)(V ).

Proof. The proof follows from the following exact sequence:

0→ Ker(h) ∩ Iξ(Fil) → Iξ(Fil) → h(Iξ(Fil))→ 0,(A.7.1)

which is induced from (A.6.4), and where h(Iξ(Fil)) is a subsheaf of I
[1]
Fil. �

The following lemma is the key to our theorem.

Lemma A.8. Let Fil be a Griffiths transverse filtration of level n on a flat
module (V,∇). Assume (V,∇) to be ∇-semistable. Then if the associated-graded
Higgs module (GrFil(V ), θ) is unstable, then at least one of the following two strict
inequalities holds:

µmax(Grξn+1(Fil)(V )) < µmax(GrFil(V )); rmax(Grξn+1(Fil)(V )) < rmax(GrFil(V )).

Proof. Put µk = µmax(Grξk(Fil)(V )) and rk = rmax(Grξk(Fil)(V )) for k ≥ 0. By
Lemma A.7 (1)-(2), (µk, rk) decreases in the lexicographic ordering when k grows.
Argue by contradiction. Suppose on the contrary that µn+1 = µ0 and rn+1 = r0.
Then, for 0 ≤ k ≤ n, µk+1 = µk and rk+1 = rk, and, by Lemma A.7 (3),

Iξk+1(Fil) ⊆ I
[1]

ξk(Fil)
⊆ I

[k+1]
Fil , which are locally free and coincide with each other

away from a codimension two closed subset Z ⊂ Y . Hence they have the same
slope.
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A direct calculation on the short exact sequences (A.6.4) for Grξk+1(Fil)(V ), for k
running from 0 to n, reveals the following fact: the short exact sequence (A.6.4)
of graded Higgs modules for Grξn+1(Fil)(V ) takes a special form:

0→ ⊕ni=0E
i → ⊕2n+1

i=0 Ei → ⊕2n+1
i=n+1E

i → 0,(A.8.1)

where
Grξn+1(Fil)(V ) = Grξn+1(Fil)(V ) = ⊕2n+1

i=0 Ei,

and Grξn(Fil)(V )/Iξn(Fil) = ⊕ni=0E
i and I

[1]
ξn(Fil) = ⊕2n+1

i=n+1E
i. Since over the open

subset U = Y − Z,

I
[1]
ξn(Fil)|U = Iξn+1(Fil)|U ⊂ Grξn+1(Fil)(V )|U ,

it follows that the sequence (A.6.4) splits over U as graded Higgs modules. Thus,
one has

θ|U(En+1|U) = 0.

Hence, θ is indeed zero on En+1, which means nothing but V ′ := (ξn+1(Fil))n+1

is ∇-invariant. On the other hand, one has the relation that

µ(V ′) = µ(Grξn+1(Fil)(V
′)) = µ(I

[1]
ξn(Fil)) = µ(I

[n+1]
Fil ) = µ(IFil) > µ(V ).

The strict inequality contradicts the ∇-semistability of (V,∇). This completes
the lemma. �

Proof of Theorem A.4. One takes an arbitrary Griffiths transverse filtration Fil
of (V,∇) (e.g. the trivial filtration), and then applies consecutively the operator ξ
on Fil. The meanings of µk and rk for k ≥ 0 are the same as those in the previous
lemma. Lemma A.7 says that pairs (µk, rk), k ≥ 0 decrease in the lexicographic
ordering as k grows. So for certain k0 ≥ 0, the sequence {(µk, rk)}k≥k0 becomes
constant. Then Lemma A.8 asserts that ξk0(Fil) has to be a gr-semistable filtra-
tion of (V,∇). �

Remark A.9. In the proof of Theorem A.4, if we start with the trivial filtration
V = Fil0 ⊃ Fil1 = 0, the resulting gr-semistable filtration has the extra property
that it is invariant under any automorphism and hence has the same definition
field as (V,∇). In a Griffiths transverse filtration Fil : V = Fil0 ⊇ Fil1 ⊇ · · ·
on (V,∇), we call a term Fili, i ≥ 1 redundant if Fili−1 = Fili. One can remove
all redundant terms from the filtration and shift the indices correspondingly so
that the resulting filtration is a strictly decreasing filtration of form Filred : V =
Fil0 ) Fil1 ) Fil2 ) · · · . We call this operation the reduction of a filtration,
and a filtration reduced if it is equal to its reduction. It is not hard to observe
that GrFil(V,∇) and GrFilred(V,∇) are isomorphic as Higgs modules. Thus, the
reduction of a gr-semistable filtration on (V,∇) is again gr-semistable.

Proof of Theorem A.1. Note first that the inverse Cartier transform (V,∇) of a
Higgs module (E, θ) is ∇-semistable if and only if E is θ-semistable. This is a
direct consequence of the equivalence theorem of the (inverse) Cartier transform
of Ogus-Vologodsky [25]. So for a nilpotent semistable Higgs module of rank
≤ p, its inverse Cartier transform is a ∇-semistable flat module of rank ≤ p.
By Theorem A.4 and Remark A.9, there exists a Griffiths transverse filtration
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Fil on (V,∇) (of level ≤ p − 1 for the reason of rank) such that GrFil(V,∇)
is nilpotent semistable of the same rank ≤ p and defined over the same ground
field of (E, θ). Therefore, we can obtain a semistable Higgs-de Rham flow with
the leading term (E, θ) by applying the previous construction inductively. This
completes the proof. �
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