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1. Introduction

Among all moduli spaces of algebraic varieties, the moduli spaces of hyperplane ar-
rangements in a projective space make a classical object of study (see [13] for a nice 
account from the point of view of GIT). The simplest nontrivial example of this class is 
the moduli space of four points in P1, that is well-known to be identified with the moduli 
space of elliptic curves with level two structure. An elliptic curve is obtained by taking 
the double cover of P1 branched at four distinct points and, via this construction, the 
variation of the four points in P1 is reflected into the variation of the Hodge structures 
attached to elliptic curves. The notion of variation of Hodge structure (or equivalently 
period map from the analytic point of view) as introduced by P. Griffiths in general has 
proven to be quite effective in several important geometric questions on moduli spaces 
of algebraic varieties. It is well known that the period map associating the normalized 
period of the corresponding elliptic curve to the cross ratio of a four pointed set in P1 is a 
modular form. This fascinating idea is very successful in showing some (partial compact-
ifications of) moduli spaces are Shimura varieties (see e.g. [2,11,12,22,23]). The current 
paper concerns the following

Conjecture 1.1. (See I. Dolgachev [3].) The period space of a family of CY n-folds which 
is obtained by a resolution of double covers of Pn branched along 2n + 2 hyperplanes 
in general position is the complement of a Γ = GL(2n, Z[i])-automorphic form on the 
type A tube domain DI

n,n.

This conjecture is naturally connected with the geometric realization problem posed 
by B. Gross in Section 8 of [20] on the canonical polarized variation of Hodge structure 
(abbreviated as PVHS) over a tube domain. Let MAR be the coarse moduli space of 
ordered 2n + 2 hyperplane arrangements in Pn in general position and X̃AR

f̃−→ MAR
be the family of CY n-folds which is obtained by a resolution of double covers of Pn

branched along 2n + 2 hyperplanes in general position. This family gives a weight n
Q-PVHS ṼAR = (Rnf̃∗Q)pr over MAR. Let Vcan be the canonical C-PVHS over the 
type A tube domain DI

n,n. Then we disprove Conjecture 1.1 in n ≥ 3 cases by showing 
the following

Theorem 1.2. If n ≥ 3, ṼAR does not factor through Vcan.

By this we mean that there does not exist a nonempty analytically open subset U ⊂
MAR and a holomorphic map j : U → DI

n,n, such that ṼAR⊗C|U � j∗Vcan as C-PVHS.
The n = 1 case is the classical modular family of elliptic curves and the n = 2

case is treated in [24], where it was shown among other things that the weight two 
PVHS, modulo the constant part, factors through Vcan canonically. The n = 3 case is 
the turning point of Conjecture 1.1 which was shown to be false in [17]. The idea is 
to compare the characteristic subvarieties associated to ṼAR and Vcan. However, the 
required information on the characteristic subvariety of ṼAR was attained only with the 



M. Sheng et al. / Advances in Mathematics 272 (2015) 699–742 701
aid of a computational commutative algebra program. This obvious drawback prevented 
us from proceeding further in the general case. One valuable computation made in the 
current paper is that the characteristic subvariety of ṼAR can be determined by hand at 
the generic point of the underlying moduli space. See Section 7.2 for details.

Surprisingly, building upon Theorem 1.2, we can conclude further that the monodromy 
group of ṼAR is actually Zariski dense. Take an s ∈ MAR to be the base point and let

ρ : π1(MAR, s) → Aut(V,Q)

be the monodromy representation associated to ṼAR, where V = ṼAR,s is the fiber of 
ṼAR over s, and Q is the bilinear form on V induced by the natural polarization. We 
denote the Zariski closure of the image of ρ by Mon. Let Mon0 and Aut0(V, Q) be the 
identity component of Mon and Aut(V, Q) respectively. We will prove

Theorem 1.3. If n ≥ 3, then Mon0 = Aut0(V, Q). That is, the monodromy group of ṼAR
is Zariski dense in Aut0(V, Q).

Using results of C. Schoen and P. Deligne the above theorem implies:

Corollary 1.4. Let Mn,2n+2 be the coarse moduli space of the CY n-folds obtained by a 
resolution of double covers of Pn branched along 2n + 2 hyperplanes in general position. 
Then for n ≥ 3 the special Mumford–Tate group of a general member in Mn,2n+2 is 
Aut0(V, Q).

This result will imply in turn that any good family for the moduli space Mn,2n+2 has 
the Zariski dense monodromy group.

As a consequence of Theorem 1.3, we can actually show that the fundamental group 
of the coarse moduli space Mn,m, m ≥ n + 3 of m ordered hyperplanes in Pn in general 
position is large. More precisely, we have

Corollary 1.5. The fundamental group π1(Mn,m, s) is large, that is, there is a homo-
morphism of π1(Mn,m, s) to a noncompact semisimple real algebraic group which has 
Zariski-dense image.

Proof. One can deduce easily from Theorem 5.4 that the real monodromy representation 
ρR : π1(MAR, s) → Aut(V ⊗ R, Q) has Zariski-dense image, and Aut0(V ⊗ R, Q) is 
a noncompact semisimple real algebraic group. Hence π1(Mn,2n+2, s) = π1(MAR, s) is 
large.

If m ≥ 2n + 2, we consider the configuration space X(n, m) := {(H1, . . . , Hm) ∈
(P̂n)m | H1, . . . , Hm are in general position}, where P̂n is the dual projective space of 
Pn. Obviously Mn,m = X(n, m)/PGL(n, C) and the quotient map X(n, m) πn,m−−−−→ Mn,m

is a PGL(n, C) principle bundle. Since m ≥ 2n + 2, we can define the natural forgetful 
map f̃ : X(n, m) → X(n, 2n + 2), which sends an ordered hyperplane (H1, . . . , Hm) to 
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(H1, . . . , H2n+2). It can be seen easily that f̃ descends to a forgetful map f : Mn,m →
Mn,2n+2 and we have a commutative diagram

X(n,m)
f̃

πn,m

X(n, 2n + 2)

πn,2n+2

Mn,m

f
Mn,2n+2

By [39, Corollary 5.6], f̃ induces a surjective homomorphism from the fundamental group 
of X(n, m) to the fundamental group of X(n, 2n + 2). Since X(n, 2n + 2) is a principle 
PGL(n, C) bundle over Mn,2n+2, the map πn,2n+2 also induces a surjective map between 
fundamental groups. Then we deduce the map π1(Mn,m, s) f∗−−→ π1(Mn,2n+2, f(s)) is 
surjective, and π1(Mn,m, f(s)) is large because of the largeness of π1(Mn,2n+2, s).

If m ≤ 2n + 2, then m ≥ 2(m − n − 2) + 2. We have the association isomorphism 
(Ch. III of [13]): Mn,m � Mm−n−2,m. Then the largeness of π1(Mn,m, s) follows from 
the largeness of π1(Mm−n−2,m, s), which has been verified in the last paragraph. �

Large groups are infinite and, moreover, always contain a free group of rank two. 
This corollary can be viewed as a degenerate case of a result of Carlson and Toledo 
in [5], where they considered the fundamental groups of parameter spaces of hypersur-
faces in projective spaces, and showed that except several obvious cases, the kernels of 
monodromy representations are always large.

A remark on the methodology of the paper before explaining our strategy in detail: 
A usual method to show the Zariski-density of the monodromy group of a family of 
algebraic varieties is to show the existence of enough Lefschetz degenerations, which is 
based on the work of Deligne (see Proposition 5.3, Theorem 5.4 in [8, I] and Lemma 4.4.2 
in [8, II]). Instead of seeking for such degenerations towards the boundary of the moduli 
space,1 we work on an invariant of the infinitesimal variation of Hodge structure (abbre-
viated as IVHS), more precisely the first characteristic subvariety introduced in [33], at 
a general interior point of the moduli space. The general notion of the IVHS was first 
introduced by P. Griffiths and his collaborators as a surrogate of the theta divisor in a 
Jacobian (see [4,18] and also Ch. III in [19] for a nice exposition); though related, our 
first characteristic subvariety however does not belong to the collection of the Griffiths
determinantal varieties (see Section 5 of [18]). The idea of IVHS has been proven to be 
very successful in establishing Torelli-type results for algebraic varieties (see e.g. Ch. XII 
of [19], [37]). The result of this paper shows that one can also use IVHS to obtain some 
important topological assertion on a moduli space of algebraic varieties. In particular, 
our method can be used to show also the Zariski-density of monodromy groups of good 
families for moduli spaces of smooth hypersurfaces in projective spaces. Now we proceed 

1 We conjecture that the moduli space Mn,2n+2, n ≥ 3 admits no Lefschetz degeneration at all.
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to explain the strategy of the proof of our main result Theorem 1.3 in the following three 
steps.

Step 1: We show that the moduli space Mhp of ordered 2n + 2 distinct points on P1

can be embedded into MAR, and under this embedding, the induced VHS ṼAR|Mhp
by 

restriction is isomorphic to the n-th wedge product of the weight one Q-PVHS VC asso-
ciated to a good family of hyperelliptic curves over Mhp. Then we have a commutative 
diagram of monodromy representations

π1(Mhp, s)
τ Aut(VC,s, Q)

ρ∧n

π1(MAR, s)
ρ

Aut(V,Q)

where ρ∧n is the homomorphism induced by the n-th wedge product of the standard 
representation of Aut(VC,s, Q) = Sp(2n, Q).

By Theorem 1 of [1], τ(π1(Mhp, s)) is Zariski dense in Sp(2n, Q). So we get the 
commutative diagram of homomorphisms

Sp(2n,Q)
ρ∧n

Aut(V,Q)

Mon

Step 2: Define the complex simple Lie algebra:

gn =
{
sp(2n

n

)C, n odd;
so(2n

n

)C, n even.

Then we argue that the following classification result can be applied to the commutative 
diagram of homomorphisms in Step 1, so that we get either Mon0 = Aut0(V, Q), or (after 
a possible finite étale base change) there exists a local system of complex vector spaces 
of rank 2n over MAR, saying W, such that we have an isomorphism of local systems 
ṼAR ⊗ C �

∧nW.

Proposition 1.6. The n-th wedge product V =
∧nC2n of the standard representation 

of sp2nC induces an embedding sp2nC ↪→ gn. Suppose g is a complex semi-simple Lie 
algebra lying between sp2nC and gn such that the induced representation of g on V is 
irreducible, then g is one of the following:

(1) gn,
(2) sl2nC, in which case the induced representation of g on V is isomorphic to the n-th 

wedge product of the standard representation on C2n.
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Step 3: This is the essential step which proves particularly Theorem 1.2. Indeed, 
assuming the case ṼAR ⊗C �

∧nW, the next proposition will imply this isomorphism is 
in fact an isomorphism of C-PVHS, for a suitable C-PVHS structure on W, and this would 
imply that ṼAR factors through Vcan over DI

n,n. A contradiction with Theorem 1.2. So 
the only possibility is Mon0 = Aut0(V, Q) after Proposition 1.6, and we are done. As 
already explained above, Theorem 1.2 will be achieved by showing that the characteristic 
subvarieties attached to ṼAR and Vcan are non-isomorphic.

Proposition 1.7. Let S̄ denote a projective manifold, Z a simple divisor with normal 
crossing and S = S̄\Z. Let V denote an irreducible C-PVHS over S with quasi-unipotent 
local monodromy around each component of Z. Suppose W is a rank 2n local system over 
S and we have an isomorphism of local systems V �

∧nW, then W admits the structure 
of a C-PVHS such that the induced C-PVHS on the wedge product 

∧nW coincides with 
the given C-PVHS on V.

2. Calabi–Yau manifolds coming from hyperplane arrangements

Throughout this paper we use the following notation:
Let M be a C-linear space, or a sheaf of C-linear spaces on a scheme, on which the 

group Z/rZ = 〈σ〉 acts. Let ζ be a primitive r-th root of unit. For i ∈ Z/rZ we write 
M(i) := {x ∈ M | σ(x) = ζix}, which in the sheaf case has to be interpreted on the level 
of local sections. We refer to M(i) as the i-eigenspace of M . We have M =

⊕
i∈Z/rZ M(i).

An ordered arrangement A = (H1, . . . , H2n+2) of 2n + 2 hyperplanes in Pn can be 
given by a matrix A ∈ M((n + 1) × (2n + 2), C), the j-th column corresponding to the 
defining equation

n∑
i=0

aijxi = 0

of the hyperplane Hj . Here [x0 : · · · : xn] are the homogeneous coordinates on Pn. We 
say that A is in general position if no n + 1 of the hyperplanes intersect in a point. In 
terms of the matrix A this means that each (n + 1) × (n + 1)-minor is non-zero.

2.1. The double cover of Pn and its crepant resolution

The hyperplanes of the arrangement A determine a divisor H =
∑2n+2

i=1 Hi on Pn. 
As the degree of H is even and the Picard group of Pn has no torsion, there exists a 
unique double cover π : X → Pn that ramifies over R. By a direct computation using 
the adjunction formula, the canonical line bundle of X is trivial. The singular locus of 
such a double cover X is precisely the preimage of the singular locus of H. Fix an order 
of irreducible components of singularities of H, say Z1, . . . , ZN . The canonical resolution 
of X according to that order is the following commutative diagram:
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X

π

= X0

π0

X1
τ1

π1

· · ·
τ2

XN

τN

πN

= X̃

π̃

Pn = P0 P1
σ1 · · ·

σ2
PN

σN = P̃n

Here, inductively on i, Pi
σi−−→ Pi−1 is the blow-up of Pi−1 along the smooth center 

(σi−1 ◦ · · · ◦ σ1)−1(Zi), and Xi is the normalization of the fiber product of Xi−1 and Pi

over Pi−1.

Lemma 2.1. The space of infinitesimal deformations of X̃ is naturally isomorphic to the 
space of infinitesimal deformations of A.

Proof. For the n = 3 case, see Lemma 2.1 in [17], whose proof is based on [6]. This proof 
goes through in general case verbatim. �
Proposition 2.2. Let X and X̃ be as above. Then

dimHp,q
prim(X̃) =

(
n

p

)2

, p + q = n.

The proof of this proposition is postponed to Section 7.1.
Throughout this paper except Section 6 MAR is denoted for the coarse moduli space 

of ordered arrangements of 2n + 2 hyperplanes in Pn in general position. Let Mn,2n+2

denote the coarse moduli space of X̃ and call Mn,2n+2 the Dolgachev moduli spaces.
Let A be an ordered arrangement in general position. It is easy to verify that under 

the automorphism group of Pn one can transform in a unique way the ordered first n +2
hyperplanes (H1, . . . , Hn+2) of A into the ordered n +2 hyperplanes in Pn, that are given 
by the first n + 2 columns in the following matrix A. Hence the moduli point of A in 
MAR can be uniquely represented by the matrix A of the form:

⎛
⎜⎜⎜⎝

1 0 · · · 0 1 1 · · · 1
0 1 0 1 a11 · · · a1n
...

. . .
...

...
...

...
0 1 1 an1 · · · ann

⎞
⎟⎟⎟⎠ .

Conversely a matrix A in the above form whose all (n +1) × (n +1)-minors are non-zero 
represents an arrangement A in general position. Thus MAR can be realized as an open 
subvariety of the affine space Cn2 and it admits a natural family f : XAR → MAR, where 
each fiber f−1(A) is the double cover of Pn branched along the hyperplane arrangement 
A ∈ MAR. It is easy to see the canonical resolution gives rise to a simultaneous resolution 
X̃AR → XAR, and the family f̃ : X̃AR → MAR is a smooth family of CY manifolds.
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2.2. The Kummer cover

Let a = (aij) denote an n ×n-matrix associated with a hyperplane arrangement A as 
described above. We let Y denote the complete intersection of the n + 1 hypersurfaces 
in P2n+1 defined by the n + 1 equations:

y2
n+1 −

(
y2
0 + · · · + y2

n

)
= 0;

y2
n+i+1 −

(
y2
0 + a1iy

2
1 + · · · + aniy

2
n

)
= 0, 1 ≤ i ≤ n.

Here [y0 : · · · : y2n+1] are the homogeneous coordinates on P2n+1. In case A is in general 
position, the space Y is smooth (see Proposition 3.1.2 in [37]).

Let N =
⊕2n+1

j=0 F2, where F2 = Z/2Z. Consider the following group

N1 := Ker(N → F2)

(aj) �→
2n+1∑
j=0

aj .

We define a natural action of N on Y . ∀g = (a0, . . . , a2n+1) ∈ N , the action of g on Y
is induced by

g · yj := (−1)ajyj , ∀0 ≤ j ≤ 2n + 1.

Then for a given arrangement A in general position, we have the following relations 
between the double cover X and the Kummer cover Y :

Proposition 2.3.

(1) The map π1 : Y → Pn, [y0 : · · · : y2n+1] �→ [y2
0 : · · · : y2

n] defines a cover of degree 
22n+1.

(2) X � Y/N1.
(3) There exists a natural isomorphism of rational Hodge structures Hn(X, Q) �

Hn(Y, Q)N1 , where Hn(Y, Q)N1 denotes the subspace of invariants under N1. In 
particular, the natural mixed Hodge structure on Hn(X, Q) is in fact a pure one.

(4) Via the identification Hn(X, Q) = Hn(Y, Q)N1 , we have Hn(X, Q)(1) ⊂ Hn(Y, Q)pr .

Proof. For (1), (2), (3), see Lemma 2.4, Proposition 2.5 and Proposition 2.6 in [17].
(4) Since the isomorphism X � Y/N1 is compatible with the F2-action, we know 

Hn−2(X, Q)(1) = Hn−2(Y, Q)N1
(1), where the F2-action on Y/N1 is induced by the iden-

tification F2 = N/N1. Since Y is a complete intersection in P2n+1, Lefschetz Hyper-
plane Theorem implies that Hn−2(Y, Q) = Hn−2(P2n+1, Q), hence Hn−2(X, Q)(1) =
Hn−2(Y, Q)N1 = 0. Since the Lefschetz operator
(1)
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Hn−2(X,Q) L−→ Hn(X,Q)

preserves the F2-action, we get L(Hn−2(X, Q)) ∩ Hn(X, Q)(1) = 0. This shows 
Hn(X, Q)(1) ⊂ Hn(Y, Q)pr . �
2.3. Hyperelliptic locus

There is an interesting locus in MAR where the Hodge structure of X comes from a 
hyperelliptic curve.

Note that there exists a natural Galois covering with Galois group Sn, the permutation 
group of n letters:

γ :
(
P1)n → Symn

(
P1) = Pn.

Here the identification attaches to a divisor of degree n the ray of its equation in 
H0(P1, O(n)).

Lemma 2.4. Let (p1, . . . , p2n+2) be a collection of 2n + 2 distinct points on P1, and put 
Hi = γ({pi} × P1 × · · · × P1). Then (H1, . . . , H2n+2) is an arrangement of hyperplanes 
in general position.

Proof. The divisors of degree n in P1 containing a given point form a hyperplane and, 
as a divisor of degree n cannot contain n +1 distinct points, no n +1 hyperplanes in the 
arrangement do meet. �

Let C be the double cover of P1 branched at p1, . . . , p2n+2, and let XC be the double 
cover of Pn branched along H1, . . . , H2n+2. Then the double covering structures induce 
natural actions of the cyclic group F2 = Z/2Z on C and X.

The group Fn
2 and the permutation group Sn act naturally on the product Cn. These 

actions induce an action of the semi-direct product Fn
2 �Sn on Cn. Let N ′ be the kernel 

of the summation homomorphism:

Fn
2 → F2

(ai) �→
n∑

i=1
ai.

Then we have:

Lemma 2.5. There exists a natural isomorphism: XC � Cn/N2, where N2 := N ′ � Sn.

Proof. Let p : C → P1 be the covering map. The n-fold product

h : Cn pn

−−→
(
P1)n γ−→ Pn
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is a Galois cover with Galois group Fn
2 � Sn. Similar to [17, Lemma 2.8], one checks 

that the natural map Cn/N2 → Pn induced by h is a double cover and its branch locus 
is exactly H1 + · · · + H2n+2. As the Picard group of a projective space has no torsion, 
one concludes that Cn/N2 is isomorphic to the double cover XC of Pn branched along ∑

i Hi. �
The following lemma is well known

Lemma 2.6. dimH1(C, C)(0) = 0, dimH1,0(C)(1) = dimH0,1(C)(1) = n.

Proof. See [26, (2.7)]. �
We can get some information about the Hodge structure of XC from C.

Proposition 2.7.

Hn(XC ,C)(1) �
∧n

H1(C,C).

Proof. Lemma 2.5 gives an identification

Hn(XC ,C) = Hn
(
Cn,C

)N2
.

Taking into account the action of F2, the Künneth formula gives

Hn
(
Cn,C

)N2

(1) =
(

n⊗
i=1

H1(C,C)
)N2

.

Then it is easy to see the following map is an isomorphism

∧n
H1(C,C) ∼−−→

(
n⊗

i=1
H1(C,C)

)N2

= Hn(XC ,C)(1)

α1 ∧ · · · ∧ αn �→
∑
ν∈Sn

(−1)Sign(ν)αν(1) ⊗ · · · ⊗ αν(n)

and this gives the desired isomorphism. �
Let Mhp ⊂ MAR be the moduli space of ordered distinct 2n + 2 points on P1 and 

g : C → Mhp be the natural universal family of hyperelliptic curves. Recall that f : XAR →
MAR is the natural family of double covers of Pn branched along 2n + 2 hyperplanes 
in general position and f̃ : X̃AR → MAR is the simultaneous crepant resolution of f . 
Consider the Q-VHS (rational variation of Hodge structures) V := Rnf∗Q. Since F2
acts naturally on V, we have a decomposition of Q-VHS: V = V(0) ⊕ V(1). Similarly, let 
ṼAR := (Rnf̃∗Q)pr be the Q-PVHS of primitive cohomologies. Then we have
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Proposition 2.8. There are isomorphisms of Q-PVHS:

(1) ṼAR � V(1), whose Hodge numbers are:

hp,n−p =
(
n

p

)2

, ∀0 ≤ p ≤ n.

(2) V(1)|Mhp
�

∧nVC , where VC := R1g∗Q is the weight one Q-PVHS associated to 
g : C → Mhp.

Proof. (1) By Proposition 2.3, we can see that the simultaneous crepant resolution gives 
a natural morphism V(1) → ṼAR of Q-PVHS. Theorem 5.41 in [30] shows that this 
morphism is injective. It is easy to see the isomorphism in Proposition 2.7 preserves the 
Hodge filtrations. Then Proposition 2.2 and Lemma 2.6 show that ṼAR and V(1) have 
the same Hodge numbers. So the natural morphism V(1) → ṼAR is an isomorphism of 
Q-PVHS.

(2) follows directly from Proposition 2.7. �
3. Type A canonical variation and characteristic subvariety

In order to compare two C-PVHSs over S, besides using the obvious Hodge num-
bers as invariants, we can also use another important series of invariants: characteristic 
subvarieties, which are contained in the projectivized tangent bundle P(TS). The basic 
theory of characteristic subvarieties is developed in [33]. We recall the definition.

Definition 3.1. Let W be a C-PVHS of weight n over S and (E, θ) the associated Higgs 
bundle. For every q with 1 ≤ q ≤ n, the q-th iterated Higgs field

En,0 θn,0−−−→ En−1,1 ⊗ΩS
θn−1,1−−−−−→ · · · θn−q+1,q−1−−−−−−−−→ En−q,q ⊗ SqΩS

defines a morphism

θq : Symq(TS) → Hom
(
En,0, En−q,q

)
.

Then ∀s ∈ S, the q-th characteristic subvariety of W at s is

Cq,s =
{
[v] ∈ P(TS,s)

∣∣ vq+1 ∈ ker
(
θq+1)}.

Moreover, we call W of Calabi–Yau type (CY-type) if rank En,0 = 1 and θn,0 : TS →
Hom(En,0, En−1,1) is an isomorphism at the generic point.

Remark 3.2. Our definition of characteristic variety is slightly different with that in [33]. 
Here we only need the reduced subvariety. See Lemma 4.3 in [17].
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As an example, we can compute the first characteristic subvariety of the type A canon-
ical C-PVHS explicitly. We recall the following description of the canonical C-PVHS Vcan
over DI

n,n from [33].
Let V = C2n be a complex vector space equipped with a Hermitian symmetric bilinear 

form h of signature (n, n). Then DI
n,n parameterizes the dimension n complex subspaces 

U ⊂ V such that

h|U : U × U → C

is positive definite. This forms the tautological subbundle S ⊂ V ×DI
n,n of rank n and 

denote by Q the tautological quotient bundle of rank n. We have the natural isomorphism 
of holomorphic vector bundles

TDI
n,n

� Hom(S,Q).

The standard representation V of SU (n, n) gives rise to a weight one C-PVHS W over 
DI

n,n, and its associated Higgs bundle

F = F 1,0 ⊕ F 0,1, η = η1,0 ⊕ η0,1

is determined by

F 1,0 = S, F 0,1 = Q, η0,1 = 0,

and η1,0 is defined by the above isomorphism. The canonical C-PVHS is

Vcan =
∧nW

and its associated system of Higgs bundle (Ecan, θcan) is then

(Ecan, θcan) =
∧n(F, η).

Proposition 3.3.

(1) The Hodge numbers of the type A canonical C-PVHS Vcan over DI
n,n are

hp,n−p =
(
n

p

)2

, ∀0 ≤ p ≤ n.

(2) The first characteristic subvarieties of the type A canonical C-PVHS Vcan over DI
n,n

are

C1,s � Pn−1 × Pn−1, ∀s ∈ DI
n,n.
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Proof. From the description of Vcan above, ∀0 ≤ p ≤ n, Ep,n−p
can can be identified with 

the subspace of 
∧n

F linearly spanned by the following set:

{
e1 ∧ · · · ∧ ep ∧ ẽ1 ∧ · · · ∧ ẽn−p

∣∣ ei ∈ F 1,0, 1 ≤ i ≤ p; ẽj ∈ F 0,1, 1 ≤ j ≤ n− p
}
.

From this we get (1). Moreover, with this identification, ∀v ∈ TDI
n,n

, if e1, . . . , en ∈ F 1,0, 
then

θn,0can,v(e1 ∧ · · · ∧ en) =
n∑

i=1
(−1)i−1η1,0

v (ei) ∧ e1 ∧ · · · ∧ êi ∧ · · · ∧ en,

where êi means deleting the term ei.
Similarly, if e1, . . . , en−1 ∈ F 1,0, ẽ1 ∈ F 0,1, then

θn−1,1
can,v (e1 ∧ · · · ∧ en−1 ∧ ẽ1) =

n−1∑
i=1

(−1)i−1η1,0
v (ei) ∧ e1 ∧ · · · ∧ êi ∧ · · · ∧ en−1 ∧ ẽ1.

Since η1,0 is defined by the identification TDI
n,n

= Hom(F 1,0, F 0,1), we can see that 
∀s ∈ DI

n,n,

C1,s =
{
v ∈ TDI

n,n,s

∣∣ θn−1,1
can,v ◦ θn,0can,v = 0

}
�
{
A ∈ M(n× n,C)

∣∣ rank(A) = 1
}

� Pn−1 × Pn−1.

This proves (2). �
4. Characteristic subvariety and nonfactorization

4.1. Nonfactorization of the period map

There is an upper bound of the dimension of the first characteristic variety of the 
Q-PVHS V(1).

Proposition 4.1. If n ≥ 3, then for a generic a ∈ MAR, the first characteristic variety of 
V(1) has dimension dimC1,a ≤ 2.

Proof. This theorem follows from Proposition 7.16, whose proof we postpone to the 
Section 7.2. �

As over a coarse moduli space M of a polarized algebraic variety usually does not 
exist a universal family, we use the following weaker notion. We say that a proper smooth 
morphism f : X → S over a smooth connected base is a good family for M, if the moduli 
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map S → M is dominant and generically finite. With this definition, our main theorem 
is

Theorem 4.2. If n ≥ 3, then:

(1) X̃AR
f̃−→ MAR is a good family for the coarse moduli space Mn,2n+2;

(2) Let f : X → S be a good family of Mn,2n+2 and W = (Rnf∗Q)pr be the associated 
weight n Q-PVHS. Then W does not factor through the C-PVHS Vcan over the 
type A symmetric domain DI

n,n.

Proof. (1) follows directly from Lemma 2.1.
(2) Assume the contrary. By Proposition 3.3, for any s ∈ S away from the ramification 

locus of the moduli map S → Mn,2n+2, the first characteristic variety C1,s is isomor-
phic to Pn−1 × Pn−1. In particular, the dimension of C1,s has dimension 2n − 2 ≥ 4. 
On the other hand, by Proposition 2.8, Proposition 4.1 and (1), for a generic s ∈ X , 
the dimension of the first characteristic variety C1,s has dimension ≤ 2. This gives a 
contradiction. �
5. Zariski density of monodromy group

In this section, we will use the notation as given in [16] for representations of Lie 
algebras. We are mainly concerned with representations of sp2nC. Following the notation
in Section 16.1 in [16], it is well known that the weight lattice of sp2nC is the lattice 
of integral linear combinations of L1, . . . , Ln ∈ h∗, where h ⊂ sp2nC is the Cartan 
subalgebra as defined in Section 16.1 in [16], and after fixing a positive direction, the 
corresponding closed Weyl chamber is

{a1L1 + a2L2 + · · · + anLn: a1 ≥ a2 ≥ · · · ≥ an ≥ 0}.

We have the following

Lemma 5.1. Suppose W is a nontrivial finite dimensional complex representation of sp2nC
and Q is an sp2nC-invariant bilinear form on W . Given a partition λ = (λ1, . . . , λk) of 
an integer d with k ≤ dimW − 1, then there exist k linearly independent weight vectors 
v1, . . . , vk ∈ W such that if we define vλ ∈ W⊗d as follows:

v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸
λ1

⊗ · · · ⊗ vk ⊗ · · · ⊗ vk︸ ︷︷ ︸
λk

then vλ ·cλ ∈ SλW is a nonzero weight vector, and the weight a1L1 + · · ·+anLn of vλ ·cλ
satisfies a1 ≥ λ1. Here cλ is the Young symmetrizer. Moreover, if k ≤ [dim W

2 ], then the 
weight vectors v1, . . . , vk ∈ W above can be chosen such that they satisfy the additional 
condition: ∀1 ≤ i, j ≤ k, Q(vi, vj) = 0.
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Proof. From the definition of the Young symmetrizer, vλ · cλ ∈ SλW is nonzero as long 
as v1, . . . , vk ∈ W are linearly independent. Suppose

W =
⊕
α∈h∗

Wα

is the weight space decomposition of W . It follows from the basic representation theory 
of sp2nC that dimWα = dimW−α, ∀α ∈ h∗. So we can write

W =
l⊕

i=1
(Wαi

⊕W−αi
) ⊕ U

such that

(1) U is a trivial representation of sp2nC;
(2) ∀1 ≤ i ≤ l, Wαi

�= 0;
(3) if αi = ai1L1 + · · · + ainLn, then there exists an integer ki between 1 and n, with 

aiki
> 0 and ai1 = ai2 = · · · = ai,ki−1 = 0.

Since Q is sp2nC-invariant, the spaces U and 
⊕l

i=1(Wαi
⊕W−αi

) are orthogonal under Q, 
and Q|⊕l

i=1 Wαi
= 0. It is easy to see that if vi ∈ Wβi

, i = 1, . . . , k, then vλ ·cλ is a weight 
vector of SλW with weight 

∑k
i=1 βi. From these and since at least one ai1 is a positive 

integer, it is not difficult to see that we can choose linearly independent weight vectors 
v1, . . . , vk ∈ W such that the weight of vλ · cλ satisfies the required condition. Moreover, 
if k ≤ [dim W

2 ], since Q|⊕l
i=1 Wαi

= 0 and U ⊥
⊕l

i=1 Wαi
under Q, we can choose weight 

vectors v1, . . . , vk from the spaces U and 
⊕l

i=1 Wαi
such that they satisfy the additional 

condition: ∀1 ≤ i, j ≤ k, Q(vi, vj) = 0. �
Recall the definition of the complex Lie algebra gn in Section 1.

Proposition 5.2. The n-th wedge product V =
∧nC2n of the standard representation 

of sp2nC induces an embedding sp2nC ↪→ gn. Suppose g is a complex semi-simple Lie 
algebra lying between sp2nC and gn such that the induced representation of g on V is 
irreducible, then g is one of the following:

(1) gn,
(2) sl2nC, in which case the induced representation of g on V is isomorphic to the n-th 

wedge product of the standard representation on C2n.

Proof. We first show that g is simple. Since g is semi-simple, we can write g =
⊕m

i=1 gi
into a direct sum of simple Lie algebras. By Schur’s lemma and since V is an irreducible 
g-module, we have the tensor decomposition of V =

⊗m
i=1 Vi, where each Vi is an irre-

ducible gi-module. Since sp2nC is simple, ∀1 ≤ i ≤ m, the composition
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sp2nC ↪→ g =
m⊕
i=1

gi → gi

is either an embedding or a zero map. So 
∧nC2n = V =

⊗m
i=1 Vi is also a tensor 

decomposition of the sp2nC-module 
∧nC2n. A direct computation of highest weights 

shows that m = 1, which implies g is simple. So the only possibilities of g are exceptional 
Lie algebras, of type A, type B, type C or type D.

Exceptional cases: Since V is an irreducible g-module, by checking the dimensions of 
irreducible representations, we can exclude the exceptional Lie algebra cases.

Case A: Suppose g � slmC is a simple Lie algebra of type A, then by Weyl’s construc-
tion, there exists a partition λ = (λ1, . . . , λk) of a positive integer d with k ≤ m −1, such 
that V � SλW as slmC-modules, where W = Cm is the standard representation of slmC
(cf. Proposition 15.15 in [16]). By Lemma 5.1, we can always choose k linearly indepen-
dent vectors v1, . . . , vk ∈ W such that vλ · cλ ∈ SλW is a nonzero weight vector of sp2nC
and its weight a1L1 + · · · + anLn satisfies a1 ≥ λ1. Since V � SλW as sp2nC-modules 
and the highest weight of V is L1 + · · · + Ln, we deduce that λ1 = 1. So the partition 
λ = (1, . . . , 1) and SλW =

∧d
W . Then it is easy to see that the only possibility is d = n, 

and m = 2n. This gives case (2).
Case B: Suppose g � so2m+1C is a simple Lie algebra of type B. Following Section 18.1 

in [16], we choose the basis L′
1, . . . , L

′
m of the dual space of a Cartan subalgebra (note 

we add a ‘′’ to distinguish with the weights of sp2nC). We have two cases to discuss.
B1: If the highest weight of the irreducible so2m+1C-representation V is a1L

′
1 +

· · · + amL′
m, with each ai an integer, then by Weyl’s construction, there exists a par-

tition λ = (λ1, . . . , λk) of a positive integer d with k ≤ m, such that V � S[λ]W as 
so2m+1C-modules. Here W = C2m+1 is the standard representation of so2m+1C (cf. 
Theorem 19.22 in [16]). By Lemma 5.1, we can choose k linearly independent vectors 
v1, . . . , vk ∈ W such that vλ·cλ ∈ S[λ]W is a nonzero weight vector of sp2nC and its weight 
b1L1 + · · · + bnLn satisfies b1 ≥ λ1. Since V � SλW as sp2nC-modules and the highest 
weight of V is L1 + · · ·+Ln, we deduce that λ1 = 1. So the partition λ = (1, . . . , 1) and 
V = S[(1,...,1)]W . Then it is easy to see that the only possibility is d = 1, 2m + 1 =

(2n
n

)
, 

and g = gn. This gives case (1).
B2: If the highest weight of the irreducible so2m+1C-representation V is a1L

′
1 + · · ·+

amL′
m, with each ai a nonzero half integer, then consider the representation Sym2V , and 

let V1 be the irreducible so2m+1C-submodule of Sym2V with highest weight 2a1L
′
1+· · ·+

2amL′
m. By Weyl’s construction, there exists a partition λ = (λ1, . . . , λk) of a positive 

integer d with k ≤ m, such that V1 � S[λ]W as so2m+1C-modules. Here W = C2m+1

is the standard representation of so2m+1C. Then arguing in the same way as the B1
case, we find λ1 ≤ 2. Since as a representation of so2m+1C, the highest weight of S[λ]W

is λ1L
′
1 + · · · + λkL

′
k, we see that 2a1 = λ1 ≤ 2. Hence a1 = 1

2 and the irreducible 
so2m+1C-representation V is the fundamental spin representation. Then the dimension 
dimV =

(2n
n

)
must be a power of 2. It is elementary to see that this can never happen 

if n ≥ 2. So we can exclude this case.
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Case C: Suppose g � sp2mC is of type C. By Weyl’s construction, there exists a 
partition λ = (λ1, . . . , λk) of a positive integer d with k ≤ m, such that V � S〈λ〉W
as sp2mC-modules. Here W = C2m is the standard representation of sp2mC (cf. Theo-
rem 17.11 in [16]). By Lemma 5.1 and arguing in the same way as the B1 case, we find 
λ1 = 1 and V = S〈(1,...,1)〉W as sp2mC-modules. Then it is easy to see that the only 
possibility is d = 1, 2m =

(2n
n

)
and g = gn. This gives case (1).

Case D: Suppose g � so2mC is of type D. Following Section 18.1 in [16], we choose the 
basis L′

1, . . . , L
′
m of the dual space of a Cartan subalgebra (note we add a ′ to distinguish 

with the weights of sp2nC). We have three cases to discuss.
D1: If the highest weight of the irreducible so2mC-representation V is a1L

′
1 + · · · +

am−1L
′
m−1, with each ai an integer, then by Weyl’s construction, there exists a par-

tition λ = (λ1, . . . , λk) of a positive integer d with k ≤ m − 1, such that V � S[λ]W

as so2mC-modules. Here W = C2m is the standard representation of so2mC (cf. Theo-
rem 19.22 in [16]). By Lemma 5.1 and arguing in the same way as the B1 case, we find 
λ1 = 1 and V = S[(1,...,1)]W as so2mC-modules. Then it is easy to see that the only 
possibility is d = 1, 2m =

(2n
n

)
and g = gn. This gives case (1).

D2: Suppose the highest weight of the irreducible so2mC-representation V is λ1L
′
1 +

· · · + λmL′
m, with each λi an integer and λm �= 0. Let λ = (λ1, . . . , λm−1, |λm|) be the 

partition of d =
∑m−1

i=1 λi + |λm|. The standard representation W = C2m of so2mC can 
also be viewed as a representation of the complex Lie group SO2mC. By Theorem 19.22 
in [16], S[λ]W is an irreducible representation of the complex Lie group O2mC and as 
a representation of SO2mC, we have S[λ]W = V ⊕ V ′, where V ′ is conjugate to V . In 
particular, for any σ ∈ O2mC, if detσ = −1, then V ′ = σV . As a representation of 
sp2nC, consider the weight space decomposition of W :

W =
⊕
α∈h∗

Wα.

Since W is a nontrivial representation of sp2nC, we can choose a weight α1 = a2L2 +
· · ·+anLn with Wα1 �= 0. Let W1 = Wα1 ⊕W−α1 , and let W2 be the direct sum of other 
nonzero weight spaces of W . Then W = W1 ⊕ W2 and W1 ⊥ W2 under the standard 
so2mC-invariant symmetric form Q, since Q is also invariant under sp2nC and the sum 
of weights of any two nonzero weight vectors from W1 and W2 respectively is not zero. 
Since Q is non-degenerate, we can choose a basis e1, . . . , el of Wα1 and a basis e′1, . . . , e′l
of W−α1 , such that

Q(ei, ei) = Q
(
e′i, e

′
i

)
= 0, ∀1 ≤ i ≤ l,

and ∀1 ≤ i, j ≤ l,

Q
(
ei, e

′
j

)
=
{ 1, i = j;
0, i �= j.
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Define a linear transformation σ of W by σ|W2 = id, σ(ei) = ei, σ(e′i) = e′i, ∀1 ≤ i ≤ l−1, 
and σ interchanges el and e′l. Then obviously σ ∈ O2mC and detσ = −1. By the proof 
of Lemma 5.1 and the definition of σ, we can find m linearly independent weight vectors 
v1, . . . , vm = el of sp2nC such that

(1) σ(vi) = vi, ∀1 ≤ i ≤ m − 1;
(2) both vλ · cλ ∈ S[λ]W and σ(vλ · cλ) ∈ S[λ]W are nonzero;
(3) the weight of vλ · cλ is b1L1 + · · · + bnLn, with b1 ≥ λ1.

By the construction, we see the weight of σ(vλ ·cλ) is b′1L1+· · ·+b′nLn with b′1 = b1 ≥ λ1. 
From this, we deduce that in V , there always exists a nonzero weight vector of sp2nC
with weight c1L1 + · · · + cnLn, c1 ≥ λ1. Then arguing as before, we get λ1 = 1, hence 
λ1 = · · · = λm−1 = 1, λm = ±1. Then it is not difficult to see that this cannot happen. 
So this case is excluded.

D3: If the highest weight of the irreducible so2mC-representation V is a1L
′
1 +

· · · + amL′
m, with each ai a nonzero half integer, then consider the representation 

Sym2V , and let V1 be the irreducible so2mC-submodule of Sym2V with highest weight 
2a1L

′
1 + · · · + 2amL′

m. By the discussion of case D2, if we define the partition λ =
(2a1, . . . , 2am−1, 2|am|), then as so2mC-modules, V1 is a direct summand of S[λ]W , where 
W = C2m is the standard representation of so2mC, and there exists a nonzero weight 
vector of sp2nC in V1 with weight c1L1 + · · ·+cnLn, c1 ≥ 2a1. Since as an sp2nC-module, 
V1 is a direct summand of Sym2(

∧nC2n), we find easily that 2a1 ≤ 2. So a1 = 1
2 and 

V is a fundamental spin representation of so2mC. Then the dimension of V is a power 
of 2. On the other hand, dimV =

(2n
n

)
, which can never be a power of 2 if n ≥ 2. So we 

can exclude this case. �
Proposition 5.3. Let V be an absolutely irreducible C-PVHS over a quasi-projective vari-
ety S with quasi-unipotent local monodromy around each component of D = S̄ − S and 
W be a rank 2n local system of complex vector spaces over S. Suppose V �

∧nW as 
local systems. Then W admits a C-PVHS structure such that the induced C-PVHS on 
the wedge product 

∧nW coincides with the given C-PVHS on V.

Proof. Assume first D = ∅ to illustrate the idea. By the result of Simpson (cf. [35]), 
a complex local system admits a C-PVHS structure if and only if it is fixed by the 
C∗-action on the moduli space of semisimple representations of π1. Now the wedge n
product of C2n induces a homomorphism GL(2n) ρ∧n−−−→ GL(

(2n
n

)
), which has a finite 

kernel. This homomorphism induces the morphism

φ∧n : M
(
π1(S),GL(2n)

)ss → M

(
π1(S),GL

((
2n
n

)))ss

between the corresponding moduli spaces of semi-simple representations. By Corol-
lary 9.18 in [36], the morphism φ∧n is finite. Note C∗ acts on both moduli spaces 



M. Sheng et al. / Advances in Mathematics 272 (2015) 699–742 717
continuously via the Hermitian Yang–Mills metric on the corresponding polystable Higgs 
bundles, and this action is compatible with φ∧n . Thus since [V =

∧nW] is fixed by the 
C∗-action, it follows that [W] itself is fixed by the C∗-action. Thus W admits a C-PVHS 
structure such that it induces a C-PVHS structure on 

∧nW. By Deligne’s uniqueness 
theorem of C-PVHS structures on an irreducible local system, it coincides with the given 
one on V.

Consider the general case. First we show W has also quasi-unipotent local monodromy. 
Let γ ∈ π1(S) be a loop around a component of D = S̄ − S and T be the corresponding 
local monodromy of W. Then 

∧n
T is quasi-unipotent. Since T = TsTu, where Ts (Tu) 

is the semisimple (unipotent) part of T , we can assume the eigenvalues of 
∧n

T are 
all one. Let λ1, . . . , λ2n be the eigenvalues of T . Then {λi1 · · ·λin , 1 ≤ i1 < · · · <

in ≤ 2n} are all one. It implies that λ1 = · · · = λ2n = ±1. Thus T is quasi-unipotent. 
After a finite base change, we assume that the local monodromies are unipotent. By the 
result of Jost–Zuo [21], there exists a harmonic metric on the flat bundle W with finite 
energy which makes W into a Higgs bundle (F, η) on S. T. Mochizuki [25] has further 
analyzed the singularity of this harmonic metric and in particular shown that (F, η)
admits a logarithmic extension (F̄ , η̄) with logarithmic poles of Higgs field along D. By 
the uniqueness of such harmonic metrics, the induced metric 

∧nW coincides with the 
Hodge metric given by the C-PVHS V.

Let C ⊂ S̄ be a general complete intersection curve of a very ample divisor of S̄. Set 
C0 = C−C∩D. Taking the restrictions, we obtain [W|C0 ] ∈ M(π1(C0), Gl(n))ss such that 
[
∧nW|C0 ] ∈ M(π1(C0), Gl(

(2n
n

)
))ss. By Simpson [34], there exists Hermitian–Yang–Mills 

metrics on polystable Higgs bundles on C with logarithmic poles of Higgs field along 
C ∩ D. The C∗-action can be defined on both spaces of semisimple representations on 
C0 via a Hermitian–Yang–Mills metric on (F̄ , tη̄), t ∈ C∗. By the same arguments as 
above, we show that the restriction of (F̄ , η̄) to C0 is a fixed point of the C∗-action. If 
we choose C0 sufficiently ample, then (F̄ , η̄) is also a fixed point of the C∗-action. Again 
by Simpson [35], W admits a C-PVHS structure. This concludes the proof. �

Now we consider the monodromy representation associated to ṼAR:

ρ : π1(MAR, s) → Aut(V,Q).

Here and in the following part of this section we keep the notation as in Section 1.

Theorem 5.4. If n ≥ 3, then Mon0 = Aut0(V, Q). That is, the monodromy group of ṼAR
is Zariski dense in Aut0(V, Q).

Proof. We first show the monodromy representation is absolutely irreducible. For oth-
erwise there would exist local systems V1, V2 of complex linear spaces over MAR, such 
that ṼAR ⊗ C = V1 ⊕ V2. Then by a result of P. Deligne (cf. [9]), there exist C-PVHS 
structures on V1 and V2 such that ṼAR ⊗C = V1 ⊕V2 as C-PVHS. So the Higgs bundle 
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(E, θ) = (
⊕

Ep,q, 
⊕

θp,q) associated to ṼAR⊗C admits a direct sum decomposition. On 
the other hand, Proposition 7.11 and Proposition 7.13 show that ∀1 ≤ q ≤ n, the Higgs 
map

SymqTMAR
θq−−→ Hom

(
En,0, En−q,q

)
= En−q,q

is surjective. This is a contradiction with the decomposition of (E, θ). So we get the 
monodromy representation is absolutely irreducible.

Consider the universal family of hyperelliptic curves g : C → Mhp. By Proposition 2.8, 
we have an inclusion Mhp ⊂ MAR and ṼAR|Mhp

=
∧nVC , where VC is the weight one 

Q-PVHS associated to g. Suppose the base point s ∈ Mhp. Denote the monodromy 
representation of g by

τ : π1(Mhp, s) → Sp(2n,Q).

Then we have a commutative diagram

π1(Mhp, s)
τ Sp(2n,Q)

ρ∧n

π1(MAR, s)
ρ

Aut(V,Q)

where ρ∧n is the homomorphism induced by the n-th wedge product of the standard 
representation of Sp(2n, Q).

By Theorem 1 of [1], τ(π1(Mhp, s)) is Zariski dense in Sp(2n, Q). So we get the 
commutative diagram

Sp(2n,Q)
ρ∧n

Aut(V,Q)

Mon

Note the complexification

Aut0(V,Q)C =
{

Sp(
(2n
n

)
,C), n odd;

SO(
(2n
n

)
,C), n even.

By a result of Deligne (cf. Corollary 4.2.9 in [7]), Mon is semi-simple. Then apply Propo-
sition 5.2 to the Lie algebra version of the commutative diagram above, we get either 
Mon0 = Aut0(V, Q) or (after a possible finite étale base change) there exists a local 
system W over MAR such that ṼAR ⊗ C =

∧nW. In the latter case, Proposition 5.3
implies that there exists a C-PVHS structure on W such that ṼAR ⊗ C =

∧nW as 
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C-PVHS over MAR. This would imply ṼAR factors through the C-PVHS Vcan over the 
type A symmetric domain DI

n,n. But this can not happen by Theorem 4.2. So we get 
Mon0 = Aut0(V, Q). �
Corollary 5.5. If n ≥ 3, then the special Mumford–Tate group of a general member X in 
Mn,2n+2 is Aut0(V, Q).

Proof. Consider the good family f̃ : X̃AR → MAR and the associated weight n Q-PVHS 
ṼAR. By Deligne and Schoen (see for example Lemma 2.4 in [40]), the identity com-
ponent of the Q-Zariski closure of the monodromy group is a normal subgroup of the 
special Mumford–Tate group Hg(ṼAR) of ṼAR, which is equal to the special Mumford–
Tate group of a general closed fiber of f̃ . We can easily deduce from Theorem 5.4 that 
Mon0 = Hg(ṼAR) = Aut0(V, Q). Then the corollary follows since the moduli map of f̃
is dominant. �
Corollary 5.6. Let f : X → S be a good family of Mn,2n+2 and W be the associated 
weight n Q-PVHS. Let s ∈ S be a base point and let

ρ : π1(S, s) → Aut(V,Q)

be the monodromy representation associated to W, where V = Ws and Q is the bilinear 
form on V induced by the cup product. If n ≥ 3, then the image of ρ is Zariski dense in 
Aut0(V, Q).

Proof. By Corollary 5.5 and the results of Deligne and Schoen we used above, the identity 
component of the Q-Zariski closure of the monodromy group is a normal subgroup of 
Aut0(V, Q). Then the corollary follows from the fact that Aut0(V, Q) is an almost simple 
algebraic group. �
6. Gross’s geometric realization problem

Motivated by Theorem 4.2, we consider a particular subclass of moduli spaces of 
hyperplane arrangements in projective spaces, namely those related to the CY varieties, 
and ask whether their (sub) VHSs will realize the canonical PVHSs over type A bounded 
symmetric domains. More precisely, the question of Gross in this setting is described as 
follows.

Question 6.1. (See B. Gross [20].) Let D = GR/K be an irreducible type A bounded 
symmetric domain and Vcan be the canonical C-PVHS of CY type over D. Does there 
exist a good family of CY manifolds f : X → S which is obtained from a crepant 
resolution of cyclic covers of Pn branched along m hyperplanes in general position, where 
S = D/Γ with Γ ⊂ GQ an arithmetic subgroup, such that Vcan is the pull back to D of 
any sub C-PVHS of the Q-PVHS VX attached to f?
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Gross stated his question only for the tube domain case. However, it is equally in-
teresting to consider other cases, e.g. the complex ball. Then one has to extend the 
construction of Gross of Vcan (in this case and only in this case it is an R-PVHS) to the 
remaining cases. This was done in [33]. A recent work of Friedmann–Laza [15] showed 
that C-PVHS of CY types over bounded symmetric domains come basically from the 
Vcan of Gross and Sheng–Zuo. Note that, in the tube domain case, the affirmative an-
swer to the above question is in fact a weaker reformulation of Dolgachev’s conjecture. 
What we intend to do in this section is to make a definite and complete answer to the 
geometric realization problem for type A domains with moduli spaces of CY manifolds 
coming hyperplane arrangements as potential candidate in mind. In fact, we will prove 
results analogous to Theorem 4.2 and Theorem 5.4. Let us fix the following notation
throughout this section.

• m, n, k, r are positive integers such that m = kr and n = m − k − 1.
• ζ = exp(2πi

r ) is a primitive r-root of unit.

We call an ordered arrangement A = (H1, . . . , Hm) of m hyperplanes in Pn in general 
position if no n + 1 of the hyperplanes intersect in a point. The hyperplanes of the 
arrangement A determine a divisor H =

∑m
i=1 Hi on Pn. As the same as the r = 2 case, 

this divisor determines a unique r-fold cyclic cover π : X → Pn that ramifies over H
and the canonical line bundle of X is trivial. In the same way as Section 2.2, we can 
construct the Kummer cover of X which is smooth projective, so the Hodge structure on 
Hn(X, Q) is a weight n pure Q-Hodge structure. In our earlier work [32], we constructed 
a crepant resolution X̃ of X. Thus the projective variety X̃ is a smooth CY manifold.

Lemma 6.2. The crepant resolution ψ : X̃ → X induces isomorphisms:

(1) Hp,q(X, C) ∼−−→ Hp,q(X̃, C), ∀p + q = n, p �= q.
(2) ψ∗ : Hn(X, C)(i) ∼−−→ Hn(X̃, C)(i), ∀1 ≤ i ≤ r − 1.

Proof. (1) is just Proposition 2.8 in [32].
(2) can be proved in the same way as Proposition 2.8 in [32], by replacing everything 

by its i-eigenspace, and noting that by induction, at every blow-up step, ∀1 ≤ i ≤ r− 1, 
Hn(E)(i) = 0, where E is the exceptional divisor. �

Let MAR denote the coarse moduli space of ordered arrangements of m hyperplanes 
in Pn in general position, and let Mn,m denote the coarse moduli space of X̃. In the same 
way as the r = 2 case, MAR can be realized as an open subvariety of the affine space 
Cn(k−1) and it admits a natural family f : XAR → MAR, where each fiber f−1(A) is the 
r-fold cyclic cover of Pn branched along the hyperplane arrangement A. It is easy to see 
the crepant resolution in [32] gives a simultaneous crepant resolution π : X̃AR → XAR for 
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the family f . We denote this smooth projective family of CY manifolds by f̃ : X̃AR →
MAR.

Let MC be the moduli space of ordered distinct m points on P1 and g : C → MC be 
the universal family of r-fold cyclic covers of P1 branched at m distinct points.

We consider the Q-VHS attached to the three families f , f̃ , g:

V := Rnf∗Q, Ṽ :=
(
Rnf̃∗Q

)
pr , VC := R1g∗Q.

Since Z/rZ acts naturally on the three families, we have a decomposition of the three 
Q-VHS into eigen–sub C-VHS:

V⊗ C =
r−1⊕
i=0

V(i), Ṽ⊗ C =
r−1⊕
i=0

Ṽ(i), VC ⊗ C =
r−1⊕
i=0

VC(i).

Proposition 6.3. ∀1 ≤ i ≤ r − 1, we have:

(1) the crepant resolution induces an isomorphism of C-PVHS: Ṽ(i) � V(i);
(2) there is an embedding MC ↪→ MAR such that V(i)|MC

�
∧nVC(i);

(3) as a C-PVHS of weight n, the Hodge numbers of V(1) are:

hn−q,q =
{(

n
q

)(
k−1
q

)
, 0 ≤ q ≤ k − 1;

0, k ≤ q ≤ n.

Proof. (1) follows from Lemma 6.2.
The proof of (2) and (3) is similar to that of Proposition 2.8. �
Analogous to the r = 2 case, for any 2 ≤ k ≤ n + 1, on the type A symmetric domain 

DI
n,k−1 = SU(n,k−1)

S(U(n)×U(k−1)) , there is a canonical C-PVHS Vcan, which has the same Hodge 
numbers as V(1). For details of the construction, one can see [33]. From the construction, 
one can deduce in the same way as Proposition 3.3 that

Proposition 6.4. The first characteristic variety of Vcan is C1,s � Pn−1 × Pk−2, ∀s ∈
DI

n,k−1.

In order to calculate the characteristic varieties of V, we use the same method as the 
r = 2 case and reduce the situation to a calculation in a Jacobian ring. The construction 
and properties of Jacobian rings are similar to the r = 2 case. So we only summarize 
and state the results we need.

For each parameter a ∈ Cn(k−1), there is a bi-graded C-algebra R =
⊕

p,q≥0 R(p,q) and 

the group N =
⊕m−1

j=0 Z/rZ acts on R, preserving the grading. Consider the summation 

homomorphism 
⊕m−1

j=0 Z/rZ 
∑
−−→ Z/rZ and let N1 be the kernel of this homomorphism. 

Define RN1 =
⊕

p,q≥0 R
N1 to be the N1-invariant part of R, then the cyclic group 
(p,q)
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Z/rZ = N/N1 = 〈σ〉 acts on RN1 . Let RN1
(p,q)(i) = {α ∈ RN1

(p,q) | σ(α) = ζiα} be the i-th 

eigenspace of RN1
(p,q) under the action of Z/rZ. Then analogous to Proposition 7.11, we 

have

Proposition 6.5.

(1) ∀1 ≤ i ≤ r − 1, ∀0 ≤ q ≤ n, Hn−q,q(X)(i) � RN1
(q,qr)(i−1), where X is the cyclic 

cover of Pn corresponding to the parameter a ∈ MAR ⊂ Cn(k−1). In particular, 
Hn−q,q(X)(1) � RN1

(q,qr)(0) = RN
(q,qr);

(2) ∀1 ≤ i ≤ r − 1, ∀0 ≤ q ≤ n, we have a commutative diagram

TMAR,a ⊗Hn−q,q(X)(i)
θn−q,q

�

Hn−q−1,q+1(X)(i)

�

RN
(1,r) ⊗RN1

(q,qr)(i−1) RN1
(q+1,qr+r)(i−1)

Here the lower horizontal arrow is the ring multiplication map.

For a parameter a ∈ Cn(k−1), we define a subvariety in the projective space P(RN
(1,r))

as follows

C ′
1,a :=

{
[α] ∈ P

(
RN

(1,r)
) ∣∣ α2 = 0 ∈ RN

(2,2r)
}
.

We have the following upper bound of the dimension of C ′
1,a.

Proposition 6.6. If n ≥ 3, k ≥ 3, then for generic a ∈ Cn(k−1), dimC ′
1,a ≤ 2.

For the proof of this proposition, one can follow the proof of Proposition 7.16 without 
any difficulty.

The following theorem is a generalization of Theorem 4.2.

Theorem 6.7. If n ≥ 3, k ≥ 3, then:

(1) X̃AR
f̃−→ MAR is a good family for the coarse moduli space Mn,m;

(2) Let f : X → S be a good family of Mn,m and W = (Rnf∗Q)pr be the associated 
weight n Q-PVHS. Then any sub C-VHS W̃ of Calabi–Yau type in W ⊗ C does 
not factor through the C-PVHS Vcan over the type A symmetric domain DI

n,k−1. In 
particular, the first eigenspace Ṽ(1) of Ṽ associated to the family f̃ in (1) does not 
factor through Vcan over DI

n,k−1.

Proof. (1) For each fiber X̃ of the family f̃ , by Lemma 6.2 and Proposition 6.5, we can 
identify Hn−1,1(X̃, C) with the Jacobian ring RN and the Higgs map
(1,r)
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TMAR,s ⊗Hn,0(X̃,C) θn,0−−−→ Hn−1,1(X̃,C)

can be identified with the multiplication map

RN
(1,r) ⊗RN

(0,0) → RN
(1,r)

which is obviously an isomorphism. By the local Torelli theorem for CY manifolds, we 
get the Kodaira–Spencer map of f̃ is an isomorphism at each point s ∈ MAR. This shows 
f̃ is a good family.

(2) It suffices to prove the statement for the good family X̃AR
f̃−→ MAR. Recall that for 

this good family, there is a decomposition of the associated C-VHS: Ṽ⊗C =
⊕r−1

i=0 Ṽ(i). 
Suppose we have a sub C-VHS W̃ of Ṽ, a nonempty (analytically) open subset U ⊂ S

and a holomorphic map j : U → DI
n,k−1, such that W̃ is of Calabi–Yau type, and 

W̃|U � j∗Vcan as C-VHS. Since both W̃ and Vcan are of Calabi–Yau type, j is a local 
isomorphism, so we can assume j is an open embedding of complex manifolds. Let 
(Ẽ, θ̃) and (Ecan, θcan) be the Higgs bundles corresponding to W̃ and Vcan respectively, 
then under the embedding j, (Ẽ, θ̃)|U = (Ecan, θcan)|U . It can be seen easily from the 
description of (Ecan, θcan) (cf. Section 4.1 in [33]) that ∀s ∈ DI

n,k−1, ∀q ≥ 0, the map 
θq : SymqTDI

n,k−1,s
⊗En,0

can → En−q,q
can is surjective. Moreover, by Proposition 6.4, the first 

characteristic variety of Vcan at each point of DI
n,k−1 is isomorphic to Pn−1 × Pk−2. So 

the Higgs bundle Ẽ also satisfies the following two properties:

(1) ∀s ∈ U , ∀q ≥ 0, the map θq : SymqTU,s ⊗ Ẽn,0 → Ẽn−q,q is surjective.
(2) ∀s ∈ U , the first characteristic variety of W̃ at s is isomorphic to Pn−1 × Pk−2.

Since the Z/rZ-invariant part Ṽ(0) of Ṽ is obviously a constant C-VHS, (1) implies 
that we must have W̃ ⊂

⊕r−1
i=1 Ṽ(i). Then by Proposition 6.5 and taking into account 

the Hodge numbers of Vcan, we can translate the properties of Ẽ above to the following 
properties of the Jacobian ring R: there exists a nonempty open subset U of the parameter 
space Cn(k−1), and for any parameter a ∈ U , there is an element β ∈ RN1 , such that:

(1)′ ∀0 ≤ q ≤ k − 1, the dimension of the linear space Jq := {β · γ ∈ RN1 | γ ∈
SymqRN

(1,r)} is 
(
n
q

)(
k−1
q

)
;

(2)′ the variety C̃1,a := {α ∈ P(RN
(1,r)) | β · α2 = 0} is isomorphic to Pn−1 × Pk−2.

It is easy to see from the definition of Jacobian ring that

Jq =
{
β · γ ∈ RN1

∣∣ γ ∈ SymqRN
(1,r)

}
=
{
β · γ ∈ RN1

∣∣ γ ∈ RN
(q,qr)

}
.

Note also by Proposition 6.5, the dimension of the linear space RN
(q,qr) is 

(
n
q

)(
k−1
q

)
, equal 

to that of Jq. So we get the map of multiplication by β:

RN
(q,qr)

·β−−→ Jq
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is a linear isomorphism. From this by taking q = 2 we deduce that

C̃1,a =
{
α ∈ P

(
RN

(1,r)
) ∣∣ β · α2 = 0

}
=
{
α ∈ P

(
RN

(1,r)
) ∣∣ α2 = 0

}
= C ′

1,a.

Then (2)′ implies the dimension of C ′
1,a is n + k − 3 ≥ 3, and this contradicts with 

Proposition 6.6. So we finally get that any sub C-VHS W of Calabi–Yau type in V does 
not factor through Vcan. �

The above theorem leaves tiny possibilities for a positive answer of Gross’s question, 
since for simple reasons, it is easy to exclude any other type A domain but DI

n,m−n−2
for Mn,m. Indeed, we can list each of the remaining cases as follows:

M1,4: This is the starting point.
M2,6: This is a four dimensional family of K3 surfaces with generic Picard number 16. 

A detailed study of this family was done in Matsumoto–Sasaki–Yoshida [24]. The connec-
tion of the weight two Hodge structure of such a K3 surface with the weight one Hodge 
structure of an abelian variety in view of Kuga–Satake construction was geometrically 
realized by K. Paranjape [29].

M3,6, M5,8, M9,12: These are only cases with n ≥ 3 and m − n = 3 which can realize 
the problem of Gross (the partial compactification issue however remains to be done). 
Our earlier work [32] studied the series Mn,n+3, n ≥ 3, and related the Hodge structure 
with that in Deligne–Mostow [10]. Besides [10], the classification was obtained thanks 
to the works of Mostow [27,28] on discrete subgroups of the automorphism group of a 
complex ball.

Now we study the monodromy representation of the family X̃AR
f̃−→ MAR. Suppose 

r ≥ 3, then there is a weight n R-VHS ṼR,(1) such that

ṼR,(1) ⊗ C = Ṽ(1) ⊕ Ṽ(r−1)

and the polarization on Ṽ induces a parallel hermitian form h on Ṽ(1) of signature (p, q). 
Here by Proposition 6.3

p =
[ k−1

2 ]∑
i=0

(
n

2i

)(
k − 1

2i

)
, q =

[ k2 ]−1∑
i=0

(
n

2i + 1

)(
k − 1
2i + 1

)
.

Take a base point s ∈ MAR and consider the real monodromy representation

ρ : π1(MAR, s) → GL(V )

where V is the fiber of ṼR,(1) over s. Let MonR be the Zariski closure of ρ(π1(MAR, s))
in the real algebraic group GL(V ). The following theorem is parallel to Theorem 5.4.

Theorem 6.8. Suppose r ≥ 3 and k ≥ 3, then the identity component Mon0
R of MonR is 

isomorphic to SU (p, q).
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Before starting the proof of this theorem, we state two propositions parallel to Propo-
sition 5.2 and Proposition 5.3.

Proposition 6.9. The n-th wedge product V =
∧nCn+k−1 of the standard representa-

tion of sln+k−1C induces an embedding sln+k−1C ↪→ slp+q. Suppose k ≥ 3 and g is a 
complex semi-simple Lie algebra lying between sln+k−1C and slp+q such that the induced 
representation of g on V is irreducible, then g is one of the following:

(1) slp+q,
(2) sln+k−1C, in which case the induced representation of g on V is isomorphic to the 

n-th wedge product of the standard representation on Cn+k−1.

Proof. The proof of Proposition 5.2 goes through without difficulty. �
Proposition 6.10. Let V be a C-PVHS over a quasi-projective variety S with quasi-
unipotent local monodromy around each component of D = S̄−S and W be a rank n +k−1
local system of complex vector spaces over S. Suppose V �

∧nW as local systems and 
k ≥ 3. Then W admits a C-PVHS structure such that the induced C-PVHS on the wedge 
product 

∧nW coincides with the given C-PVHS on V.

Proof. The proof of Proposition 5.3 goes through without difficulty. �
Now we can proceed to the proof of Theorem 6.8.

Proof of Theorem 6.8. Consider the family of curves g : C → MC and assume the base 
point s ∈ MC ↪→ MAR. Let C and X be the fibers over s of the families C g−→ MC and 
XAR

f−→ MAR respectively. By Proposition 6.3,

Hn(X,C)(1) =
∧n

H1(C,C)(1).

The embedding R ↪→ C allows to consider H1(C, C)(1) and Hn(X, C)(1) as R-vector 
spaces. Consider the monodromy representation of the family XAR

f−→ MAR:

τ : π1(MAR, s) → GLR

(
Hn(X,C)(1)

)
.

Since Ṽ(1) = V(1), and ṼR,(1) � Ṽ(1) as R-local systems, we can identify MonR with the 
Zariski closure of τ(π1(MAR, s)) in GLR(Hn(X, C)(1)). By Theorem 5.1.1 in [31], for the 
family g : C → MC , the identity component of the Zariski closure of the monodromy 
representation

π1(MC , s) → GLR

(
H1(C,C)(1)

)
is SU (n, k− 1). So similar to the proof of Theorem 5.4 we have a commutative diagram
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SU (n, k − 1)
ρ∧n

Aut(Hn(X,C)(1), h) = U(p, q)

Mon0
R

where the homomorphism ρ∧n is induced by the n-th wedge product of the standard 
representation of SU (n, k−1). Note that there exists a parallel Z[ζ]-lattice Hn(X, Z[ζ])(1)
inside Hn(X, C)(1). From this one can deduce that Mon0

R ⊂ SU (p, q). Arguing in the 
same way as the proof of Theorem 5.4, we can show the complex representation of 
Mon0

R on Hn(X, C)(1) is irreducible. Since MonR is semi-simple by a result of Deligne 
(cf. Corollary 4.2.9 in [7]), by taking the complexification and using Proposition 6.9, 
Proposition 6.10 in the same way as Theorem 5.4, we get Mon0

R = SU (p, q). �
7. Two calculations

In this section, we do two concrete calculations, one is for the primitive Hodge numbers 
of the CY manifold X̃, and the other is for the dimension of the characteristic variety C1,a.

7.1. Calculation of Hodge numbers

Let us keep the notation as in Section 2.1. We will calculate the primitive Hodge 
numbers of X̃ and complete the proof of Proposition 2.2. Let σ : P̃n → Pn be the 
composite of all blow-ups and H̃ the strict transform of H. Let L̃ be a line bundle on X̃
such that L̃2 = OX̃(H̃). As

π̃∗Ω
p

X̃
= Ωp

P̃n ⊕Ωp

P̃n(log H̃) ⊗ L̃−1,

it follows that

Hp,q
prim(X̃) = Hq

(
P̃n, Ωp

P̃n(log H̃) ⊗ L̃−1).
Claim 7.1. For all k �= q, Hk(Ωp

P̃n(log H̃) ⊗ L̃−1) = 0. Therefore,

χ
(
Ωp

P̃n(log H̃) ⊗ L̃−1) = (−1)q dimHq
(
Ωp

P̃n(log H̃) ⊗ L̃−1).
Proof. This is a direct application of the vanishing result [14, Proposition 6.1]. �

Next, we show that the Euler characteristic keep unchanged under resolution. Namely, 
we have the following

Claim 7.2. Put L = OPn(n + 1). It holds that

χ
(
Pn, Ωp

Pn(logH) ⊗ L−1) = χ
(
P̃n, Ωp

P̃n(log H̃) ⊗ L̃−1).
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The claim follows from a general consideration, which we postpone after stating the 
last

Claim 7.3. One has the following formula:

χ
(
Pn, Ωp

Pn(logH) ⊗ L−1) = (−1)q
(
n

p

)2

.

It is clear that the above claims imply Proposition 2.2.

Proof of Claim 7.2. Let X be an n-dimensional smooth projective variety, DX ⊂ X an
SNCD(simple normal crossing divisor). Let Z ⊂ DX be a smooth irreducible component 
of the singularities of DX . Let σ : Y σ−→ X be the blow-up of X along Z and E be the 
exceptional divisor. Put DY := σ∗DX − 2E.

Proposition 7.4. Notation as above. Let LX be an ample invertible sheaf on X. Put 
LY := σ∗LX − E. Then it holds that

χ
(
X,Ωp

X(logDX) ⊗ L−1
X

)
= χ

(
Y,Ωp

Y (logDY ) ⊗ L−1
Y

)
.

Proof. For p ≥ 1, the residue exact sequence reads (cf. [14, Properties 2.3]):

0 → Ωp
Y (logDY ) → σ∗Ωp

X(logDX) = Ωp
X

(
log σ∗DX

) res−−→ Ωp−1
E (logDY · E) → 0.

We shall tensor the above short exact sequence with σ∗L−1
X ⊗OY (E) and take the Euler 

characteristic of the resulting exact sequence. First, applying the Leray spectral sequence
to the morphism σ, it follows that

χ
(
σ∗Ωp

X(logDX) ⊗ σ∗L−1
X ⊗OY (E)

)
= χ

(
Ωp

X(logDX) ⊗ L−1
X

)
.

Furthermore, as LX is ample, one has

Ωp−1
E (logDY · E) ⊗ σ∗L−1

X ⊗OE(E) = Ωp−1
E (logDY · E) ⊗OE(−1).

Thus we get

χ
(
Ωp

X(logDX) ⊗ L−1
X

)
= χ

(
Ωp

Y (logDY ) ⊗ L−1
Y

)
+ χ

(
Ωp−1

E (logDY · E)(−1)
)
.

It is to show χ(Ωp
E(logDY · E)(−1)) = 0 for all p ≥ 0. We proceed by induction on p. 

Write D = DY · E = S1 + S2 + F1 + · · · + Fk, where Si, i = 1, 2, are two sections of 
σ : E → Z and Fi

σ−→ Hi ⊂ Z are P1-bundles over hypersurfaces in Z for i = 1, . . . , k. 
Then the residue sequence reads:
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0 → ΩE → ΩE(logD) res−−→
2⊕

i=1
OSi

⊕
k⊕

j=1
OFj

→ 0.

Write N := NZ/X = OZ(D1) ⊕OZ(D2). Then E = Proj(N ∗). For i = 1, 2, we assume 
the quotient invertible sheaf OZ(−Di) of N ∗ gives the section map si : Z → E and the 
image of si is just Si. Then

OSi
⊗OE(−1) = si∗

(
OZ ⊗ si∗OE(−1)

)
= si∗

(
OZ ⊗OZ(Di)

)
= si∗

(
OZ(Di)

)
.

Thus

χ

(
E,

2⊕
i=1

OSi
⊗OE(−1)

)
=

2∑
i=1

χ
(
E, si∗

(
OZ(Di)

))

=
2∑

i=1
χ
(
Z,OZ(Di)

)
= χ(Z,N ).

And obviously, OFi
⊗ OE(−1) = OFi

(−1). Now we shall compute χ(ΩE ⊗ OE(−1)). 
Recall the following exact sequence:

0 → σ∗ΩZ → ΩE → ΩE/Z → 0.

Tensoring with OE(−1) and taking the Euler characteristic, we obtain

χ
(
ΩE ⊗OE(−1)

)
= χ

(
σ∗ΩZ ⊗OE(−1)

)
+ χ

(
ΩE/Z ⊗OE(−1)

)
.

For Riσ∗(OE(−1)) = 0 for all i, χ(σ∗ΩZ ⊗OE(−1)) = 0. And since

Riσ∗
(
ΩE/Z ⊗OE(−1)

)
=
{ 0 i = 0,
NZ/X i = 1,

one computes that

χ
(
ΩE/Z ⊗OE(−1)

)
=
∑
i,j

(−1)i+j dimHi
(
Z,Rjσ∗ΩE/Z ⊗OE(−1)

)
= −

∑
i

(−1)i dimHi(Z,N )

= −χ(Z,N ).
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Therefore, it follows that

χ
(
ΩE(logD) ⊗OE(−1)

)
= χ

(
ΩE ⊗OE(−1)

)
+

2∑
i=1

χ
(
OSi

⊗OE(−1)
)

+
k∑

j=1
χ
(
OFi

⊗OE(−1)
)

= −χ(Z,N ) + χ(Z,N )

= 0.

This shows the p = 1 case. Consider the residue sequence along Fk,

0 → Ωp
E(logD − Fk) → Ωp

E(logD) → Ωp−1
Fk

(
log(D − Fk) · Fk

)
→ 0.

By the induction hypothesis, we have that

χ
(
Ωp

E(logD) ⊗OE(−1)
)

= χ
(
Ωp

E(logD − Fk) ⊗OE(−1)
)
,

and then

χ
(
Ωp

E(logD) ⊗OE(−1)
)

= χ
(
Ωp

E(S1 + S2) ⊗OE(−1)
)
.

Consider the following three short exact sequences:

0 → Ωp
E(logS1) → Ωp

E(logS1 + S2) → Ωp−1
S2

→ 0,

0 → Ωp
E → Ωp

E(logS1) → Ωp−1
S1

→ 0,

0 → σ∗Ωp
Z → Ωp

E → σ∗Ωp−1
Z ⊗ΩE/Z → 0.

From the last sequence, it follows that

χ
(
Ωp

E ⊗OE(−1)
)

= χ
(
σ∗Ωp−1

Z ⊗ΩE/Z ⊗OE(−1)
)

=
∑
i,j

(−1)i+j dimHi
(
Z,Ωp−1

Z ⊗ Rjσ∗
(
ΩE/Z ⊗OE(−1)

))
= −

∑
i

(−1)i dimHi
(
Z,Ωp−1

Z ⊗N
)

= −χ
(
Z,Ωp−1

Z ⊗N
)
.

Moreover, we compute that
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2∑
i=1

χ
(
Si, Ω

p−1
Si

⊗OE(−1)
)

=
2∑

i=1
χ
(
Z,Ωp−1

Z ⊗ s∗iOE(−1)
)

= χ

(
Z,Ωp−1

Z ⊗
( 2⊕

i=1
s∗iOE(−1)

))

= χ
(
Z,Ωp−1

Z ⊗N
)
.

Therefore, we get finally that

χ
(
Ωp

E(logD) ⊗OE(−1)
)

=
2∑

i=1
χ
(
Si, Ω

p−1
Si

⊗OE(−1)
)

+ χ
(
Ωp

E ⊗OE(−1)
)

= χ
(
Z,Ωp−1

Z ⊗N
)
− χ

(
Z,Ωp−1

Z ⊗N
)

= 0.

This completes the proof. �
Proof of Claim 7.3. Put E :=

⊕2n+2 OPn(1). Let P = Proj(S(E)) p−→ Pn be the as-
sociated projective vector bundle together with the invertible sheaf M := O(1). The 
sheaf of differential operators ΣM of M with order ≤ 1 is defined by the following exact 
sequence:

0 → OP → ΣM
q−→ TP → 0

with the extension class −c1(M) ∈ Ext1(TP, OP) � H1(P, Ω1
P). For i ∈ {1, . . . , 2n + 2}, 

we let λi ∈ H0(P, M ⊗ p∗OPn(−1)) such that Pi = {λi = 0} is the divisor of P whose 
fiber under the projection p is the i-th coordinate hyperplane of the fiber of P under p. 
Put P =

∑2n+2
i=1 Pi.

Suppose H is defined by the equation 
∏2n+2

i=1 Fi = 0 in Pn. Then we associate to 
H the section σ =

∑2n+2
i=1 Fi · λi ∈ H0(P, M). Put Z = {σ = 0}. Since H is normal 

crossing, Z is smooth in P. Note that the section σ ∈ H0(P, M) defines the evaluation 
map j(σ) : ΣM → M.

Lemma 7.5. j(σ) is surjective with kernel equal to TP(− logZ). That is, the following 
exact sequence holds:

0 → TP(− logZ) → ΣM
j(σ)−−−→ M → 0.

Proof. Since Z is smooth, the system of equations { ∂
∂x1

(Mx) = · · · = ∂
∂λ2n+2

(Mx) = 0}
has no common solutions in P. This means j(σ) is surjective. The local sections of 
TP(− logZ) are the first order differential operators preserving Z. Then for each open 
subset U ⊂ P, one has



M. Sheng et al. / Advances in Mathematics 272 (2015) 699–742 731
TP(− logZ)(U) =
{
P ∈ ΣM(U), P (σ) = σ

}
�
{
P ∈ ΣM(U), P (σ) = 0

}
.

Hence ker(σ) � TP(− logZ). �
Now define ΣM(− logP) = q−1(TP(− logP)) ⊂ ΣM.

Lemma 7.6. The following two exact sequences are exact:

0 → TP(− logP + Z) → ΣM(− logP) → M → 0,

0 → O⊕2n+2
P → ΣM(− logP) → p∗TPn → 0.

Proof. The proof for the first sequence is the same as the one in Lemma 7.5. The second 
sequence follows from the defining sequence of ΣM and the Euler sequences. �

Define Σ0
E = p∗ΣM(− logP). Note that R1p∗TP(− logP+Z) = R1p∗OP = 0. Then p∗

of two short exact sequences in Lemma 7.6 gives the following two short exact sequences 
of Σ0

E :

Corollary 7.7. The following two sequences of vector bundles are exact:

0 → TPn(− logH) → Σ0
E → E → 0,

0 → O⊕2n+2
Pn → Σ0

E → TPn → 0.

Recall the following

Lemma 7.8. Let X be a compact complex manifold. Given a short exact sequence of vector 
bundles on X:

0 → E → F → G → 0,

one has then a long exact sequence of the form:

0 → SkE → Sk−1E ⊗ F → · · · →
∧k

F →
∧k

G → 0.

Applying the previous lemma to the dual of the first short exact sequence in Corol-
lary 7.7, one obtains the following long exact sequence:

0 → Ωn−p
Pn (logH)(−n− 1) →

∧p
Σ0

E → · · · → SpE → 0.

Lemma 7.9. Hi(Pn, Sp−kE ⊗
∧k

Σ0
E) = 0, for each i > 0 and 0 ≤ k ≤ p.
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Proof. It suffices to show Hi(Pn, 
∧k

Σ0
E) = 0. The sheaf 

∧k
Σ0

E has a filtration from the 
second exact sequence in Corollary 7.7,

∧k
Σ0

E = F0 ⊃ F1 ⊃ · · · ⊃ Fk ⊃ Fk+1 = 0,

with for each 0 ≤ ν ≤ k,

Grν = Fν/Fν+1 =
∧ν

( 2n+2⊕
OPn ⊗

∧k−ν
TPn

)

=

(2n+2
ν

)⊕ ∧k−ν
TPn

=

(2n+2
ν

)⊕
Ωn+ν−k

Pn (n + 1).

By the Bott vanishing theorem, Hi(Pn,Ωn+ν−k
Pn (n +1)) = 0, which implies Hi(Pn,Fν) =0. 

In particular, Hi(Pn, 
∧k

Σ0
E) = 0. �

Proposition 7.10. χ(Pn, Ωn−p
Pn (logH)(−n − 1)) = (−1)p

(
n
p

)2.
Proof. Taking the Euler characteristic of the long exact sequence below Corollary 7.7, 
we have

χ
(
Ωn−p

Pn (logH)(−n− 1)
)

=
p∑

k=0

(−1)kχ
(
Sp−kE ⊗

∧k
Σ0

E

)
.

Again by the filtration of the sheaf 
∧k

Σ0
E in the proof of Lemma 7.9, one computes that

χ
(∧k

Σ0
E

)
=

k∑
i=0

χ(Gri)

=
k∑

i=0

i∑
j=0

(−1)i+j

(
2n + 2

j

)(
n + 1
k − i

)
χ
(
OPn(k − i)

)
.

Therefore,

χ
(
Ωn−p

Pn (logB)(−n− 1)
)

=
p∑

i=0

p−i∑
j=0

p−i−j∑
k=0

(−1)i+k

(
2n + 1 + i

i

)(
n + 1
j

)(
n + i + j

i + j

)(
2n + 2

p− i− j − k

)

=
p∑ p−i∑

(−1)i
(

2n + 1 + i

i

)(
n + 1
j

)(
n + i + j

i + j

)(
2n + 1
p− i− j

)

i=0 j=0
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=
p∑

l=0

l∑
i=0

(−1)i
(

2n + 1 + i

i

)(
n + 1
l − i

)(
n + l

n

)(
2n + 1
p− l

)

=
p∑

l=0

(−1)l
(
n + l

l

)2(2n + 1
p− l

)

= (−1)p
(
n

p

)2

. �
7.2. Calculations in Jacobian ring

In this subsection we will prove the upper bound of the dimension of the character-
istic variety C1,a claimed in Proposition 4.1. Recall the definitions of X and Y from 
Section 2.2. We want to compute the Hodge structure and the Higgs maps on X. Since 
the Hodge structure on X is determined by that on Y , we first analyze the Hodge struc-
ture on Y . In order to do that, we use the tool of Jacobian ring. It is constructed as 
follows. In the polynomial ring C[μ0, . . . , μn, y0, . . . , y2n+1], consider the polynomial

F = μ0F0 + · · · + μnFn

where

F0 := y2
n+1 −

(
y2
0 + y2

1 + · · · + y2
n

)
,

Fi := y2
n+i+1 −

(
y2
0 + a1iy

2
1 + · · · + aniy

2
n

)
, 1 ≤ i ≤ n.

Let J = 〈 ∂F
∂μi

, ∂F∂yj
| 0 ≤ i ≤ n, 0 ≤ j ≤ 2n + 1〉 be the ideal of C[μ0, . . . , μn,

y0, . . . , y2n+1] generated by the partial derivatives of F . Define the Jacobian ring to be

R := C[μ0, . . . , μn, y0, . . . , y2n+1]/J.

There is a natural bigrading on the polynomial ring C[μ0, . . . , μn, y0, . . . , y2n+1], that 
is: the (p, q)-part C[μ0, . . . , μn, y0, . . . , y2n+1](p,q) is linearly spanned by the monomials ∏n

i=0 μ
ai
i

∏2n+1
j=0 y

bj
j with 

∑n
i=0 ai = p, 

∑2n+1
j=0 bj = q. Since the ideal J is a homogeneous 

ideal, there is a natural induced bigrading of R = C[μ0, . . . , μn, y0, . . . , y2n+1]/J , written 
as R =

⊕
p,q≥0 R(p,q).

The group N =
⊕2n+1

j=0 F2 acts on R through y0, . . . , y2n+1. Explicitly, ∀g = (aj) ∈ N , 
we define the action of g on R by

g · yj := (−1)ajyj , ∀0 ≤ j ≤ 2n + 1,

g · μi := μi, ∀0 ≤ i ≤ n.

It is obvious that the action of N on R preserves the bigrading. Let RN
(p,q) be the 

N -invariant part of R(p,q), then we have the decomposition of the N -invariant subring: 
RN =

⊕
p,q≥0 R

N .
(p,q)
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Recall V(1) is the (−1)-eigen Q-PVHS associated to the family XAR → MAR. The 
following proposition gives an identification of the Higgs map associated to V(1) and the 
Jacobian ring multiplication.

Proposition 7.11.

(1) ∀0 ≤ q ≤ n, Hn−q,q(X)(1) � RN
(q,2q);

(2) ∀0 ≤ q ≤ n, we have a commutative diagram

TMAR,a ⊗Hn−q,q(X)(1)
θn−q,q

�

Hn−q−1,q+1(X)(1)

�

RN
(1,2) ⊗RN

(q,2q) RN
(q+1,2q+2)

Here X is the fiber over a ∈ MAR, and the lower horizontal arrow is the ring multipli-
cation map.

Proof. (1) Let N1 = Ker(
⊕2n+1

j=0 F2

∑
−−→ F2) be the subgroup of N =

⊕2n+1
j=0 F2. By 

Corollary 2.5 in [38] and its proof, we can see that ∀0 ≤ q ≤ n, Hn−q,q(Y )N1
(1) �

RN1
(q,2q)(0) = RN

(q,2q). By Proposition 2.3, ∀0 ≤ q ≤ n, Hn−q,q(X)(1) � Hn−q,q(Y )N1
(1), 

these two isomorphisms together give (1).
(2) follows from (1) and Proposition 2.6 in [38]. �
Next we will present C-bases of RN

(1,2) and RN
(2,4). Note that the ideal J is generated 

by the following elements:

∂F

∂μ0
= y2

n+1 −
(
y2
0 + y2

1 + · · · + y2
n

)
;

∂F

∂μi
= y2

n+i+1 −
(
y2
0 + a1iy

2
1 + · · · + aniy

2
n

)
, 1 ≤ i ≤ n;

− ∂F

2∂y0
= y0(μ0 + μ1 + · · · + μn);

− ∂F

2∂yi
= yi(μ0 + ai1μ1 + · · · + ainμn), 1 ≤ i ≤ n;

∂F

2∂yn+i+1
= μiyn+i+1, 0 ≤ i ≤ n.

By the relations above, we can see easily that

RN
(1,2) = C

〈
μiy

2
j

∣∣ 0 ≤ i, j ≤ n
〉
,
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where C〈μiy
2
j | 0 ≤ i, j ≤ n〉 means the linear subspace of R spanned by elements in the 

set {μiy
2
j | 0 ≤ i, j ≤ n}. Similarly, one finds that

RN
(2,4) = C

〈
μiy

2
jμpy

2
q

∣∣ 0 ≤ i, j, p, q ≤ n
〉
.

In order to obtain bases from {μiy
2
j | 0 ≤ i, j ≤ n} and {μiy

2
jμpy

2
q | 0 ≤ i, j, p, q ≤ n}, 

we study the relations in R.
In order to write the relations more symmetrically, we define

ai0 = a0j = 1, ∀0 ≤ i, j ≤ n.

Then we find easily that the following relations hold in R:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=0

ajiμiy
2
j = 0, ∀0 ≤ i ≤ n;

n∑
i=0

ajiμiy
2
j = 0, ∀0 ≤ j ≤ n.

(7.11.1)

Note that all the discussion above depends on the parameter a := (aij) ∈ M(n ×n, C). 
From these basic relations (7.11.1), we can get some other useful relations.

Lemma 7.12. For a generic parameter a ∈ M(n ×n, C), the following relations hold in R:

(R1) (
∑n

j=0 ajiμiy
2
j )μpy

2
q = 0, ∀0 ≤ i, p, q ≤ n.

(R2) (
∑n

i=0 ajiμiy
2
j )μpy

2
q = 0, ∀0 ≤ p, q, j ≤ n.

(R3) μpy
2
qμiy

2
q =

∑n
j=1,j 
=q

a0paji−a0iajp

a0iaqp−a0paqi
μpy

2
qμiy

2
j , ∀0 ≤ p �= i ≤ n, ∀1 ≤ q ≤ n.

(R4) μpy
2
jμpy

2
q =

∑n
i=1,i 
=p

aq0aji−aj0aqi

aj0aqp−aq0ajp
μiy

2
jμpy

2
q , ∀1 ≤ p ≤ n, ∀0 ≤ j �= q ≤ n.

Proof. The relations (R1) and (R2) follow obviously from the basic relations (7.11.1).
Given 0 ≤ p �= i ≤ n, 1 ≤ q ≤ n, in order to prove (R3), we consider the element 

μpμiy
2
0y

2
q . By relations (R1), we have

a0pμpμiy
2
0y

2
q = a0pμpy

2
0μiy

2
q = −

n∑
j=1

ajpμpy
2
jμiy

2
q ,

a0iμpμiy
2
0y

2
q = a0iμiy

2
0μpy

2
q = −

n∑
j=1

ajiμiy
2
jμpy

2
q .

Let a0i times the first identity and a0p times the second identity, then we get

n∑
a0iajpμpy

2
jμiy

2
q =

n∑
a0pajiμiy

2
jμpy

2
q .
j=1 j=1
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From this equality we get

(a0iaqp − a0paqi)μpy
2
qμiy

2
q = a0iaqpμpy

2
qμiy

2
q − a0paqiμiy

2
qμpy

2
q

=
n∑

j=1,j 
=q

a0pajiμiy
2
jμpy

2
q −

n∑
j=1,j 
=q

a0iajpμpy
2
jμiy

2
q

=
n∑

j=1,j 
=q

(a0paji − a0iajp)μpy
2
qμiy

2
j .

Since for a generic parameter a ∈ Cn2 , a0iaqp − a0paqi = aqp − aqi �= 0, we get (R3).
The relations (R4) can be proved similarly. �
Now we can determine C-bases of RN

(1,2) and RN
(2,4).

Proposition 7.13.

(1) For any parameter a ∈ Cn2 , RN
(1,2) has a C-basis {μiy

2
j | 1 ≤ i, j ≤ n}.

(2) For a generic parameter a ∈ Cn2 , RN
(2,4) has a C-basis {μiy

2
jμpy

2
q | 1 ≤ i <

p ≤ n, 1 ≤ j < q ≤ n}.
(3) For any parameter a ∈ Cn2 , ∀q ≥ 1, the multiplication map SymqRN

(1,2) → RN
(q,2q) is 

surjective.

Proof. (1): By the basic relations (7.11.1), we have

RN
(1,2) = C

〈
μiy

2
j

∣∣ 1 ≤ i, j ≤ n
〉
.

Proposition 2.8 and Proposition 7.11 imply that the dimension of the C-linear space 
RN

(1,2) is n2. So we get that {μiy
2
j | 1 ≤ i, j ≤ n} is a C-basis of RN

(1,2). This proves (1).
(2): Similarly as in (1), the dimension of the C-linear space RN

(2,4) is 
(
n
2
)2, and RN

(2,4)
is linearly spanned by {μiy

2
jμpy

2
q | 0 ≤ i, j, p, q ≤ n}, so it suffices to show that ∀0 ≤

i, j, p, q ≤ n,

μiy
2
jμpy

2
q ∈ C

〈
μiy

2
jμpy

2
q

∣∣ 1 ≤ i < p ≤ n, 1 ≤ j < q ≤ n
〉
.

This can be proved using the relations (R1)–(R4) in Lemma 7.12. Next we show 
μ0y

2
0μ0y

2
0 ∈ C〈μiy

2
jμpy

2
q | 1 ≤ i < p ≤ n, 1 ≤ j < q ≤ n〉 by the following steps to 

illustrate the ideas.
Step 1: By relations (R1), μ0y

2
0μ0y

2
0 ∈ C〈μ0y

2
0μ0y

2
q | 1 ≤ q ≤ n〉.

Step 2: ∀1 ≤ q ≤ n, by relations (R2), μ0y
2
0μ0y

2
q ∈ C〈μ0y

2
0μpy

2
q | 1 ≤ p ≤ n〉.

Step 3: ∀1 ≤ p, q ≤ n, by relations (R2), μ0y
2
0μpy

2
q ∈ C〈μiy

2
0μpy

2
q | 1 ≤ i ≤ n〉.

Step 4: ∀1 ≤ i, p, q ≤ n, if i = p, by relations (R4), μiy
2
0μpy

2
q ∈ C〈μi1y

2
0μpy

2
q | 1 ≤

i1 ≤ n, i1 �= p〉.
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Step 5: ∀1 ≤ q ≤ n, ∀1 ≤ i �= p ≤ n, by relations (R1), μiy
2
0μpy

2
q ∈ C〈μiy

2
jμpy

2
q | 1 ≤

j ≤ n〉.
Step 6: ∀1 ≤ q ≤ n, ∀1 ≤ i �= p ≤ n, by relations (R3), μiy

2
qμpy

2
q ∈ C〈μiy

2
jμpy

2
q | 1 ≤

j ≤ n, j �= q〉.
After these six steps, we have shown μ0y

2
0μ0y

2
0 ∈ C〈μiy

2
jμpy

2
q | 1 ≤ i < p ≤ n, 1 ≤

j < q ≤ n〉. Other cases can be treated similarly.
(3) follows directly from the definition of the Jacobian ring. �
Given α ∈ RN

(1,2), we can expand it under the basis above:

α =
∑

1≤i,j≤n

λijμiy
2
j ,

with (λij) ∈ M(n × n, C).
Since {μiy

2
jμpy

2
q | 1 ≤ i < p ≤ n, 1 ≤ j < q ≤ n} is a basis of RN

(2,4), we have the 
expression

α2 =
∑

1≤i<p≤n,1≤j<q≤n

fijpqμiy
2
jμpy

2
q .

Obviously each fijpq is a homogeneous quadratic polynomial of λij (1 ≤ i, j ≤ n), with 
coefficients being rational functions of the parameters aij (1 ≤ i, j ≤ n). As for the 
information of these fijpq, we have the following proposition.

Proposition 7.14. The following statements hold:

(1) ∀1 ≤ i < p ≤ n, ∀1 ≤ j < q ≤ n, we have

fijpq = cijijijpqλ
2
ij + ciqiqijpqλ

2
iq + cpjpjijpq λ

2
pj + cpqpqijpq λ

2
pq

+ cijiqijpqλijλiq + cpjpqijpq λpjλpq + cijpjijpqλijλpj + ciqpqijpqλiqλpq

+ cijpqijpqλijλpq + ciqpjijpqλiqλpj ,

where each of the ten coefficients cijijijpq, . . . , c
iqpj
ijpq is a nonzero rational function of 

aji, aqi, ajp, aqp.
(2) Notation as in (1). ∀2 ≤ j < q ≤ n, let Rjq be the following resultant:

Rjq := det

⎛
⎜⎜⎜⎜⎝

c1q1q112q 0 c1q1q1j2q 0

c1q2q112q c1q1q112q c1q2q1j2q c1q1q1j2q

c2q2q112q c1q2q112q c2q2q1j2q c1q2q1j2q

0 c2q2q112q 0 c2q2q1j2q

⎞
⎟⎟⎟⎟⎠ .

Then Rjq is a nonzero rational function of aij (1 ≤ i, j ≤ n).
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(3) Notation as in (1). ∀2 ≤ i < p ≤ n, let Qip be the following resultant:

Qip := det

⎛
⎜⎜⎜⎜⎝

cp1p111p2 0 cp1p1i1p2 0

cp1p211p2 cp1p111p2 cp1p2i1p2 cp1p1i1p2

cp2p211p2 cp1p211p2 cp2p2i1p2 cp1p2i1p2

0 cp2p211p2 0 cp2p2i1p2

⎞
⎟⎟⎟⎟⎠ .

Then Qip is a nonzero rational function of aij (1 ≤ i, j ≤ n).

Proof. (1): Examining the proof of Proposition 7.13, one can get the following fact:
∀1 ≤ i1, i2, j1, j2 ≤ n, if {(i1, j1), (i2, j2)} � {(i, j), (i, q), (p, j), (p, q)}, then when we 

express μi1y
2
j1
μi2y

2
j2

as a linear combination of the basis {μiy
2
jμpy

2
q | 1 ≤ i < p ≤ n, 1 ≤

j < q ≤ n}, the coefficient before μiy
2
jμpy

2
q is zero.

Using this observation, we find fijpq has the required expression. That each of the ten 
coefficients cijijijpq, . . . , c

iqpj
ijpq is a nonzero rational function of aji, aqi, ajp, aqp follows from 

an explicit computation. Explicitly, we have:

cijpqijpq = 2; ciqpjijpq = 2;

cijiqijpq = 2(ajp − aqp)
aqi − aji

; cpjpqijpq = 2(aji − aqi)
aqp − ajp

;

cijpjijpq = 2(aqi − aqp)
ajp − aji

; ciqpqijpq = 2(aji − ajp)
aqp − aqi

;

cijijijpq = 1
aji

· ajp − 1
aji − 1 ·

(
ajp(aqp − aqi)

ajp − aji
− aqp

)
+ aqi

aji
· aqp − ajp
aqi − aji

;

ciqiqijpq = 1
aqi

· aqp − 1
aqi − 1 ·

(
aqp(ajp − aji)

aqp − aqi
− ajp

)
+ aji

aqi
· ajp − aqp
aji − aqi

;

cpjpjijpq = 1
ajp

· aji − 1
ajp − 1 ·

(
aji(aqi − aqp)

aji − ajp
− aqi

)
+ aqp

ajp
· aqi − aji
aqp − ajp

;

cpqpqijpq = 1
aqp

· aqi − 1
aqp − 1 ·

(
aqi(aji − ajp)
aqi − aqp

− aji

)
+ ajp

aqp
· aji − aqi
ajp − aqp

.

(2) and (3): From the above explicit computation of the coefficients cijijijpq, . . . , c
iqpj
ijpq, 

we can see that Rjq and Qip are nonzero rational functions of aij (1 ≤ i, j ≤ n). �
Now we can complete the proof of Proposition 4.1. Recall C1,a is the first characteristic 

variety of V(1) at a ∈ MAR. By Proposition 7.11, it is easy to see that

C1,a � C ′
1,a :=

{
[α] ∈ P

(
RN

(1,2)
) ∣∣ α2 = 0 ∈ RN

(2,4)
}
,
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where P(RN
(1,2)) is the projectification of the C-linear space RN

(1,2), and [α] means the 

class represented by an element α ∈ RN
(1,2). For each a ∈ Cn2 , C ′

1,a is a closed subvariety 
in the projective space P(RN

(1,2)).
For later use, we state the following elementary lemma.

Lemma 7.15. Let V = Cp be an affine space with coordinates x1, . . . , xp. Then the fol-
lowing hold:

(1) Given

V1 ⊂
∪

V

∪
X1 X

where
– V1 is the subspace of V defined by x1 = 0;
– X1 is the subvariety of V1 defined by the simultaneous vanishing of the polynomials 

fj(x2, . . . , xp), 2 ≤ j ≤ q;
– X is the subvariety of V defined by the simultaneous vanishing of the polyno-

mials f1(x1, . . . , xp), fj(x2, . . . , xp), 2 ≤ j ≤ q, where f1(x1, . . . , xp) = ax2
1 +

g1(x2, . . . , xp)x1 + h1(x2, . . . , xp), with 0 �= a ∈ C.
Then we have dimX ≤ dimX1.

(2) Given

V2 ⊂
∪

V

∪
X2 X

where
– V2 is the subspace of V defined by x1 = x2 = 0;
– X2 is the subvariety of V2 defined by the simultaneous vanishing of the polynomials 

fj(x3, . . . , xp), 3 ≤ j ≤ q;
– X is the subvariety of V defined by the simultaneous vanishing of the polynomi-

als f1(x1, . . . , xp), f2(x1, . . . , xp), fj(x3, . . . , xp), 3 ≤ j ≤ q, and for i = 1, 2, 
fi(x1, . . . , xp) = aix

2
1 + bix1x2 + cix

2
2 + x1gi(x3, . . . , xp) + x2hi(x3, . . . , xp) +

ri(x3, . . . , xp), with ai, bi, ci ∈ C such that the following resultant is not zero:

det

⎛
⎜⎜⎝

a1 0 a2 0
b1 a1 b2 a2
c1 b1 c2 b2
0 c1 0 c2

⎞
⎟⎟⎠ �= 0.

Then we have dimX ≤ dimX2.
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Proof. The proof is direct. Since in each case we can consider the natural projections: 
πi : V → Vi (i = 1, 2) and the conditions guarantee that ∀x ∈ Vi, the dimension of 
X ∩ π−1(x) is either empty or a zero dimensional variety. �

Proposition 4.1 follows directly from

Proposition 7.16. If n ≥ 2, then for generic a ∈ Cn2 , we have dimC ′
1,a ≤ 2.

Proof. By Proposition 7.14, we can choose a generic parameter a = (aij) ∈ Cn2 , such 
that Proposition 7.13 holds, and ∀1 ≤ i < p ≤ n, ∀1 ≤ j < q ≤ n, each of the rational 
functions cpqpqijpq , Rjq, Qip takes nonzero value at the point a. We only need to show that 
at this point a, dimC ′

1,a ≤ 2. In the following, we fix this parameter a.
Under the basis μjy

2
j (1 ≤ i, j ≤ n), we identify RN

(1,2) with Cn2 , and we view (λij)
(1 ≤ i, j ≤ n) as the coordinates on the affine space Cn2 .

It is obvious that the cone in RN
(1,2) = Cn2 corresponding to C ′

1,a is the variety X̃ ⊂ Cn2

defined by the simultaneously vanishing of the 
(
n
2
)2 homogeneous quadratic polynomials 

fijpq (1 ≤ i < p ≤ n, 1 ≤ j < q ≤ n). Define X ⊂ Cn2 by the simultaneously vanishing 
of the following n2 − 3 homogeneous quadratic polynomials:

fi,j,i+1,j+1 (1 ≤ i, j ≤ n− 1);

f1,1,2,q (3 ≤ q ≤ n);

f1,1,p,2 (3 ≤ p ≤ n).

Since dimC ′
1,a = dim X̃ − 1 and X̃ ⊂ X, it suffices to show dimX ≤ 3.

In order to prove dimX ≤ 3 using Lemma 7.15, we give a filtration of Cn2 by affine 
spaces and define a subvariety in each of these affine spaces, i.e. we want to get the 
following diagram:

V1 ⊂
∪

V2 ⊂
∪

· · · ⊂ Vt =
∪

Cn2

∪
X1 X2 · · · Xt = X

with t = (n − 1)2.
Recall (λij) (1 ≤ i, j ≤ n) are coordinates on Cn2 . First give a filtration of the index 

set S := {(i, j) | 1 ≤ i, j ≤ n} as follows

S1 ⊂ S2 ⊂ · · · ⊂ St = S,

where we define inductively

• ∀1 ≤ p ≤ n − 1, Sp := {(i, j) ∈ S | 1 ≤ i ≤ 2, 1 ≤ j ≤ p + 1};
• ∀k ≥ 1, ∀k(n − 1) + 1 ≤ p ≤ (k + 1)(n − 1), Sp := Sk(n−1) ∪ {(k + 2, j) | 1 ≤ j ≤

p − k(n − 1) + 1}.
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Now ∀1 ≤ p ≤ t, define the affine space

Vp :=
{
(λij) ∈ Cn2 ∣∣ λij = 0, ∀(i, j) /∈ Sp

}
.

Then ∀1 ≤ p ≤ t, we define Xp ⊂ Vp by the simultaneous vanishing of the polynomials 
in Fp, where Fp is the set of polynomials defined inductively as follows:

• F1 := {f1122};
• ∀2 ≤ p ≤ n − 1, Fp := Fp−1 ∪ {f1,1,2,p+1, f1,p,2,p+1};
• ∀k ≥ 1, ∀k(n − 1) + 1 ≤ p ≤ (k + 1)(n − 1), Fp := Fp−1 ∪ {f1,1,k+2,2,

fk+1,p−k(n−1),k+2,p−k(n−1)+1}.

By Proposition 7.14, each fijpq is a polynomial of the four variables λij, λiq, λpi, λpq, so 
Xp ⊂ Vp is well defined. According to our choice of the parameter a, ∀1 ≤ i < p ≤ k− 1, 
∀1 ≤ j < q ≤ n, each of the rational functions cpqpqijpq , Rjq, Qip takes nonzero value at a. 
Then a direct verification shows that ∀1 ≤ p ≤ t − 1, the diagram

Vp−1 ⊂
∪

Vp

∪
Xp−1 Xp

satisfies the conditions in (1) or (2) of Lemma 7.15, hence we get dimX = dimXt ≤
dimXt−1 ≤ · · · ≤ dimX1. By definition, one can see that X1 is a hypersurface in C4

defined by a nonzero polynomial, so dimX1 ≤ 3, and finally we get dimX ≤ 3. �
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[11] I. Dolgachev, B. van Geemen, S. Kondō, A complex ball uniformization of the moduli space of cubic 

surfaces via periods of K3 surfaces, J. Reine Angew. Math. 588 (2005) 99–148.

http://refhub.elsevier.com/S0001-8708(14)00445-9/bib412743616D706Fs1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib412743616D706Fs1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib414354s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib414354s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib426Fs1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib426Fs1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib432D472D472D48s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib432D472D472D48s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib432D54s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib432D54s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib43796E6B2D76616E5374726174656Es1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib43796E6B2D76616E5374726174656Es1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib442D486F6467654949s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib442D5765696Cs1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib442D5765696Cs2
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib44s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib44s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib444Ds1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib444Ds1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib444B56s1
http://refhub.elsevier.com/S0001-8708(14)00445-9/bib444B56s1


742 M. Sheng et al. / Advances in Mathematics 272 (2015) 699–742
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