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Abstract. Let k be an algebraic closure of a finite field of odd characteristic.
We prove that for any rank two graded Higgs bundle with maximal Higgs
field over a generic hyperbolic curve X1 defined over k, there exists a lifting
X of the curve to the ring W (k) of Witt vectors as well as a lifting of the
Higgs bundle to a periodic Higgs bundle over X/W (k). These liftings give rise
to a two-dimensional absolutely irreducible representation of the arithmetic
fundamental group π1(XK) of the generic fiber of X. This curve X and its
associated representation is in close relation to the canonical curve and its
associated canonical crystalline representation in the p-adic Teichmüller theory
for curves due to S. Mochizuki. Our result may be viewed as an analogue of
the Hitchin-Simpson’s uniformization theory of hyperbolic Riemann surfaces
via Higgs bundles.
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1. Introduction

The work of Deninger-Werner [DW] initiated the problem of associating rep-
resentations of geometric fundamental groups of p-adic curves to vector bundles
with suitable conditions. Their result can be viewed as a partial analogue of the
classical Narasimhan-Seshadri theory of vector bundles on compact Riemann sur-
faces. Later, Faltings [Fa], using the theory of almost étale extensions in his work
in the p-adic Hodge theory, obtained a far-reaching generalization. In particular,
as a p-adic analogue of Simpson’s theory in the nonabelian Hodge theory, Faltings
associates generalized representations to Higgs bundles over p-adic curves. How-
ever, a fundamental question concerning semistability of Higgs bundles remains:
Faltings asked whether semistable Higgs bundles of degree zero over a smooth
projective p-adic curve corresponds to usual (i.e. continuous Cp-) representations
of the geometric fundamental group.

Reading the foundational paper [Hi] of Hitchin in the nonabelian Hodge theo-
ry, one finds, on the other hand, that even the question that whether a very basic
graded Higgs bundle of the following type corresponds a usual representation is
unknown:

(E, θ) := (L⊕ L−1, θ),(1.0.1)

where L is a line bundle over X satisfying L2 ∼= Ω1
X ,

and θ : L→ L−1 ⊗ Ω1
X is the tautological isomorphism.

For X being a compact Riemann surface, this is Example 1.5 [Hi] (Example
1.4 relates to the theory of Narasimhan-Seshadri on stable vector bundles). Such
a Higgs bundle is considered to be basic because, as shown by Hitchin, it gives a
uniformization for a hyperbolic X. Simpson [Si] extended the theory to a non-
compact Riemann surface by introducing the logarithmic version of the previous
Higgs bundles, namely

(E, θ) := (L⊕ L−1, θ),(1.0.2)

where L is a line bundle over X satisfying L2 ∼= Ω1
X(logD),

and θ : L→ L−1 ⊗ Ω1
X(logD) is a tautological isomorphism,

where X is smooth projective and D ⊂ X a reduced divisor. This paper is
devoted to study this type of graded (logarithmic) Higgs bundles in the context
of the p-adic Hitchin-Simpson correspondence established in [LSZ]. For a rank
two graded logarithmic Higgs bundle with trivial determinant, the above type
is characterized by the Higgs field being an isomorphism and it is said to have
maximal Higgs field. Note that examples of the above type are typically Higgs
stable and are of degree zero. Recall that in the complex case, a Higgs bundle
with maximal Higgs field (1.0.1) is used to recover the uniformization theorem of
a compact Riemann surface by solving the Yang-Mills-Higgs equation. Hitchin
observed that the unique solution to the Yang-Mills-Higgs equation associates
to (E, θ) defined in (1.0.1) over X a polarized C-variation of Hodge structure
(H,∇, F il,Ψ) (in fact it carries also a real structure), where H is the underlying
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C∞-bundle of E with a new holomorphic structure, ∇ is an integrable connection

∇ : H → H ⊗ Ω1
X ,

F il is a Hodge filtration, that is, a finite decreasing filtration satisfying Griffiths
transversality and Ψ is a horizontal bilinear form satisfying the Hodge-Riemann
bilinear relation. By taking the grading of the Hodge filtration, one obtains
that the associated graded Higgs bundle GrFil(H,∇) is isomorphic to (E, θ).
Moreover, the classifying map associated to (H,∇, F il,Ψ) is a holomorphic map

π : X̃ → H
from the universal cover X̃ of X to the classifying space of rank two polarized R-
Hodge structures of weight one, which turns out to be the upper half plane H. As
the derivative of π can be identified with θ via the grading GrFil(H,∇), one knows
that π is an isomorphism. This illustrates the approach to the uniformization
theorem from the point of view of Higgs bundles.

Turn to the p-adic case. Let k := F̄p be an algebraic closure of a finite field of
odd characteristic p, W := W (k) the ring of Witt vectors with coefficients in k,
and K its fraction field, K̄ an algebraic closure of K. Based on the fundamental
work of Ogus-Vologodsky [OV] on nonabelian Hodge theory in characteristic p,
we introduced in [LSZ] the notion of a strongly semistable Higgs bundle, general-
izing the notion of a strongly semistable vector bundle which played an important
role in the work [DW], and a characteristic p/p-adic analogue of Yang-Mills-Higgs
flow whose “limit” can be regarded as a characteristic p/p-adic analogue of the
solution of the Yang-Mills-Higgs equation, whose definition is recalled as follows.

Let X1 be a smooth projective variety over k together with a simple normal
crossing divisor D1 ⊂ X1 such that (X1, D1) is W2(k)-liftable. Fix a smooth
projective scheme X2 over W2 := W2(k) together with a divisor D2 ⊂ X2 relative
to W2(k) whose reduction mod p is (X1, D1). Let C−1

1 be the inverse Cartier
transform of Ogus-Vologodsky from the category of nilpotent logarithmic Higgs
module of exponent ≤ p− 1 to the category of nilpotent logarithmic flat module
of exponent ≤ p− 1 with respect to the chosen W2-lifting (X2, D2). We refer the
reader to [LSZ0] for an elementary approach to the construction of the inverse
Cartier/Cartier transform in the case D1 = ∅ and the Appendix in a special log
case. A Higgs-de Rham flow over X1 is a diagram of the following form:

(H0,∇0)
GrFil0

%%

(H1,∇1)
GrFil1

##(E0, θ0)

C−1
1

99

(E1, θ1)

C−1
1

99

. . .

where the initial term (E0, θ0) is a nilpotent graded Higgs bundle with exponent
≤ p−1; for i ≥ 0, Fili is a Hodge filtration on the flat bundle C−1

1 (Ei, θi) of level
≤ p−1; for i ≥ 1, (Ei, θi) is the graded Higgs bundle associated with the de Rham
bundle (C−1

1 (Ei−1, θi−1), F ili−1). A Higgs-de Rham flow is said to be periodic of
period f ∈ N if f is the minimal integer such that there exists an isomorphism
of graded Higgs modules φ : (Ef , θf ) ∼= (E0, θ0). A (logarithmic) Higgs bundle



4 G.-T. LAN, M. SHENG, Y.-H. YANG, AND K. ZUO

is said to be periodic if it initiates a periodic Higgs-de Rham flow. There are
several points we want to emphasize in the above definition of a (periodic) flow:
first, the Hodge filtrations in the above diagram do not come from the inverse
Cartier transform, but rather are a part of the defining data of a flow; second,
the choice of the isomorphism φ is also a part of the defining data of a periodic
flow; third, since the inverse Cartier transform does depend on the choice of a
W2-lifting of (X1, D1), a periodic Higgs bundle only makes sense after a W2-lifting
is specified, although the Higgs bundle itself is just defined over k. To define the
notion of a periodic Higgs-de Rham flow over a truncated Witt ring, one needs
to lift the inverse Cartier transform of Ogus-Vologodsky which has been partially
realized in [LSZ]. We refer the reader to Section 5 in that work for details. It
is quite straightforward to generalize one of main results [LSZ, Theorem 1.6] to
the following logarithmic case, which shall provide us with the basic device for
producing representations in this paper.

Theorem 1.1. Let Y be a smooth projective scheme over W with a simple
normal crossing divisor D ⊂ Y relative to W . Then for each natural number
f ∈ N, there is an equivalence of categories between the category of strict pn-
torsion logarithmic Fontaine modules (with pole along D ×Wn ⊂ Y ×Wn) with
endomorphism structure of Wn(Fpf ) whose Hodge-Tate weight ≤ p − 2 and the
category of periodic Higgs-de Rham flows over Y ×Wn whose periods are divisors
of f and exponents of nilpotency are ≤ p − 2, where Wn(Fpf ) (resp. Wn) is the
truncated Witt ring W (Fpf )/pn (resp. W/pn) with coefficients in Fpf (resp. k).

After the fundamental theorem of Faltings [Fa0, Thereom 2.6*, Page 43 i)], to
each periodic Higgs-de Rham flow over Yn whose period is a divisor of f as above,
one can now associate a crystalline representation of the arithmetic fundamental
group of the generic fiber Y ◦K := (Y − D) × K with coefficients in Wn(Fpf ).
According to the theorem, the problem is reduced to showing that (1.0.2) over k
is periodic and can be lifted to a periodic Higgs bundle over an arbitrary truncated
Witt ring Wn, n ∈ N. Now we come to our main theorem.

Theorem 1.2. Assume that 2g−2+r > 0 and r is even. Let X1 be a generic
curve in the moduli space Mg,r of smooth projective curves over k with r marked
points D. Let (L1 ⊕ L−1

1 , θ1) be a logarithmic Higgs bundle with maximal Higgs
field (1.0.2) defined over X1. Then there exists a tower of log smooth liftings
(Xn, Dn)/Wn, n ∈ N

(X1, D1 := D) ↪→ (X2, D2) ↪→ · · · ↪→ (Xn, Dn) ↪→ · · · ,(1.2.1)

such that (L1⊕L−1
1 , θ1) is two-periodic with respect to the W2-lifting (X2, D2) and

lifts to a two-periodic logarithmic Higgs bundle (Ln ⊕ L−1
n , θn) over Xn with the

log pole along Dn for each n ≥ 2.

To be more specific, for all n ∈ N, there exists a log smooth Wn+1-lifting
(Xn+1, Dn+1) of (Xn, Dn), a logarithmic Higgs bundle (Ln ⊕ L−1

n , θn) over Xn, a
two-torsion line bundle Ln over Xn, a Hodge filtration Filn on the inverse Cartier
transform C−1

n (Ln ⊕ L−1
n , θn) with respect to Xn ⊂ Xn+1, and an isomorphism

φn : GrFiln ◦ C−1
n (Ln ⊕ L−1

n , θn) ∼= (Ln ⊕ L−1
n , θn)⊗ (Ln, 0),
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such that for all n ≥ 2,

(Ln ⊕ L−1
n , θn) ≡ (Ln−1 ⊕ L−1

n−1, θn−1) mod pn−1;

Ln ≡ Ln−1 mod pn−1; Filn ≡ Filn−1 mod pn−1; φn ≡ φn−1 mod pn−1.

Set (En, θn) := (Ln⊕L−1
n , θn), and denote the trivial filtration by Filtr. Then

there is a tower of two-periodic Higgs-de Rham flows as below:

((Hn+1,∇n+1), F iln+1)
Gr

**

mod pn

��

((Hn+1,∇n+1)⊗ Ln+1, F iln+1 ⊗ Filtr)
Gr

++

mod pn

��

(En+1, θn+1)

C−1
n+1

55

mod pn

��

(En+1, θn+1)⊗ Ln+1

C−1
n+1

33

mod pn

��

(En+1, θn+1)

mod pn

��

∼=
nn

((Hn,∇n), F iln)
Gr

**

((Hn,∇n)⊗ Ln, F iln ⊗ Filtr)
Gr

++
(En, θn)

C−1
n

55

(En, θn)⊗ Ln

C−1
n

33

(En, θn)
∼=

nn

(1.2.2)

The following consequence is immediate from Theorems 1.1 and 1.2 .

Corollary 1.3. Use notation as above. Then for a logarithmic Higgs bundle
with maximal Higgs field over a generic curve (X1, D1) in the moduli space Mg,r,
one has a log smooth curve (X∞, D∞) over W lifting (X1, D1) together with a
two-dimensional irreducible crystalline representation

ρ : π1(XK)→ GL(2,W (Fp2)),(1.3.1)

where XK := X×W K is the generic fiber of the hyperbolic curve X := X∞−D∞
over W .

The so-constructed representation ρ in the above corollary shares the following
stronger irreducibility property. For simplicity, we give the statement only for the
case where the divisor D1 in X1 is empty.

Proposition 1.4. Use notation as above. Assume D1 = ∅. Denote by ρ̄
the restriction of ρ to the geometric fundamental group π1(XK̄). Then for any
smooth curve YK̄ over K̄ with a finite morphism f : YK̄ → XK̄, the induced
representation of π1(YK̄) from ρ̄ is absolutely irreducible.

Proof. Let (E, θ) be the inverse limit of the graded Higgs bundle {(En, θn)}
in Theorem 1.2. By the example in [Fa, Page 861], one sees that the generalized
representation corresponding to (E, θ)Cp := (E, θ) ⊗ Cp is compatible with ρ̄,
that is, it is just the scalar extension of ρ̄ by tensoring with Cp. We can find a
finite extension field K ′ of K, with its integral ring OK′ , such that YK̄ has an
integral model YOK′ over OK′ with toroidal singularity. By the construction of the
correspondence [Fa, Theorem 6], the twisted pullback of the graded Higgs bundle
f ◦(E, θ)Cp corresponds to the pull-back representation of ρ̄ ⊗ Cp to π1(YK̄). By
the very construction of the twisted pullback, one has a short exact sequence

0→ (f ∗L−1, 0)→ f ◦(E, θ)Cp → (f ∗L, 0)→ 0,
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and that the Higgs field of f ◦(E, θ)Cp has nonzero Higgs field. Assume the con-
trary that the restricted Cp-representation of π1(YK̄) is not irreducible. Then it
contains a one-dimensional Cp-subrepresentation, and by the last paragraph in
[Fa, Page 860], it follows that f ◦(E, θ)Cp contains a rank one Higgs subbundle
(N, 0) of degree zero. But, this leads to a contradiction: as deg f ∗L−1 < 0, the
composite

N → f ◦(E, θ)Cp → f ∗L

cannot be zero and hence an isomorphism over a nonempty open subset U . This
implies that the Higgs field of f ◦(E, θ)Cp is zero over U and hence zero over the
whole space which is impossible. �

In general, the p-adic curve appeared in Corollary 1.3 is neither unique nor far
from an arbitrary lifting of (X1, D1) over k. In fact, it is in close relation with the
notion of a canonical curve due to S. Mochizuki [Mo, Definition 3.1, Ch. III]. At
this point, it is necessary to make a brief clarification about the relation between
the notion of an indigenous bundle, which is central in the p-adic Teichmüller
theory of Mochizuki for curves, and the notion of a logarithmic Higgs bundle
with maximal Higgs field (i.e. (1.0.2)). According to Mochizuki, an indigenous
bundle is a P1-bundle with connection associated to a rank two flat bundle with
a Hodge filtration, and its associated graded Higgs bundle is of the form (1.0.2).
He started with indigenous bundles over a Riemann surface admitting an integral
structure over W (k) for some p, and then studied the moduli space of p-adic
indigenous bundles over the corresponding p-adic curve. Although related, the
approach and setting in [Mo] are very different from ours. From the point of
view of nonabelian Hodge theory, one is by no means restricted to the curve case.
As an illustration, our approach yields a similar result for an ordinary abelian
variety A as Theorem 1.2 by considering the following Higgs bundle (see [LSZ,
Example 5.27]):

(ΩA ⊕OA, θ), where θ : ΩA → OA ⊗ ΩA is the tautological isomorphism.

Finally, we shall remind the reader that the explicit form of the divisor D1 in
the log curve X1 plays a minor role in our paper and therefore will be suppressed
whenever the context is clear. Thus the notation X1 could sometimes actually
mean the whole pair (X1, D1). The same convention applies also for log curves
Xn over Wn, n ≥ 2.

2. Outline of the proof of the main theorem

Let (E1 := L1 ⊕ L−1
1 , θ1) be the Higgs bundle (1.0.2). The proof of Theorem

1.2 is divided into two steps. In the first step, we show that there exists a W2-
lifting of X1 such that (1.0.2) becomes a two-periodic Higgs bundle, see Theorem
2.1; in the second step, we show that under some conditions, a periodic Higgs
bundle over Xn is liftable to a periodic Higgs bundle over Xn+1, see Theorem 2.5.
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Theorem 2.1. For a generic curve X1 ∈ Mg,r, there exists a W2-lifting X2

of X1 and a Hodge filtration Fil1 on C−1
1 (L1 ⊕ L−1

1 , θ1) such that

GrFil1 ◦ C−1
1 (L1 ⊕ L−1

1 , θ1) ∼= (L1 ⊕ L−1
1 , θ1)⊗ (L, 0),(2.1.1)

where L is a two-torsion line bundle over X1.

Corollary 2.2. Use notation as above. The Higgs bundle (L1 ⊕ L−1
1 , θ1)

with respect to the W2-lifting X2 is two-periodic.

Proof. It suffices to show there is some filtration Fil2 on

C−1
1 ((L1 ⊕ L−1

1 , θ1)⊗ (L, 0))

such that two graded Higgs bundles are isomorphic:

GrFil2 ◦ C−1
1 ◦GrFil1 ◦ C−1

1 (L1 ⊕ L−1
1 , θ1) ∼= (L1 ⊕ L−1

1 , θ1).

Since C−1
1 ((L1 ⊕ L−1

1 , θ1)⊗ (L, 0)) is naturally isomorphic to

C−1
1 (L1 ⊕ L−1

1 , θ1)⊗ C−1
1 (L, 0) = C−1

1 (L1 ⊕ L−1
1 , θ1)⊗ (L,∇can),

we can equip it with the filtration Fil2 which is the tensor product of the filtration
Fil1 on C−1

1 (L1⊕L−1
1 , θ1) and the trivial filtration on L. In the previous equality,

∇can denotes for the canonical connection in the Cartier descent theorem. Then
by Theorem 2.1, it follows that

GrFil2◦C−1
1 ◦GrFil1◦C−1

1 (L1⊕L−1
1 , θ1) ∼= (L1⊕L−1

1 , θ1)⊗(L⊗2, 0) = (L1⊕L−1
1 , θ1).

�

To outline the proof of Theorem 2.1, we start with an observation: For every
W2-lifting X2 of X1, there exists a short exact sequence of flat bundles as follows:

0→ (F ∗L−1
1 ,∇can)→ C−1

X1⊂X2
(E1, θ1)→ (F ∗L1,∇can)→ 0,(2.2.1)

where C−1
X1⊂X2

is the inverse Cartier transform C−1
1 and F : X1 → X1 is the

absolute Frobenius. Here and also in the following, when the dependence of
the inverse Cartier transform on the choice of a W2-lifting X2 of X1 plays a
prominent role in the situation, we shall use instead the notation C−1

X1⊂X2
for the

inverse Cartier transform. The above short exact sequence comes after applying
the exact functor C−1

X1⊂X2
to the short exact sequence of Higgs bundles:

0→ (L−1
1 , 0)→ (E1, θ1)→ (L1, 0)→ 0.

Set (H,∇) = C−1
X1⊂X2

(E1, θ1). Then, ignoring the connection in the exact se-
quence, we get an extension of vector bundles:

0→ F ∗L−1
1 → H → F ∗L1 → 0.(2.2.2)

The cohomology group H1(X1, F
∗L−2

1 ) ∼= Ext1(F ∗L1, F
∗L−1

1 ) classifies the iso-
morphism classes of extensions of form (2.2.2). Let {X1 ⊂ X2} be the set of
isomorphism classes of W2-liftings of X1, which is known to be an H1(X1, TX1/k)-
torsor, where TX1/k is the log tangent sheaf of X1/k. To consider the effect of
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the choices of W2-liftings on the inverse Cartier transform of (E1, θ1), we shall
consider the natural map

ρ : {X1 ⊂ X2} → H1(X1, F
∗L−2

1 ),(2.2.3)

obtained by sending X1 ⊂ X2 to the extension class of H as above. It turns out
that the map ρ behaves well under the torsor action and is injective (Lemma 3.8
and Lemma 3.2). Set A = Im(ρ). In order to take into account the connection
in the inverse Cartier transform, we shall also consider the isomorphism classes
Ext1

(
(F ∗L1,∇can), (F ∗L−1

1 ,∇can)
)

of extensions of flat bundles:

0→ (F ∗L−1
1 ,∇can)→ (H,∇)→ (F ∗L1,∇can)→ 0.(2.2.4)

There is a natural forgetful map

Ext1
(
(F ∗L1,∇can), (F ∗L−1

1 ,∇can)
)
→ Ext1(F ∗L1, F

∗L−1
1 )

by forgetting connections in an exact sequence of (2.2.4). We let B denote its
image. Thus by the short exact sequence (2.2.1), we see that A ⊂ B. Lat-
er we show that A is an affine subspace of the ambient space H1(X1, F

∗L−2
1 ),

not passing through the origin, and B is the linear hull of A. On the other
hand, if C−1

X1⊂X2
(E1, θ1) also satisfies (2.1.1), then it admits a subsheaf L1⊗L ↪→

C−1
X1⊂X2

(E1, θ1) with L ∈ Pic0(X1). For a given element ξ ∈ H1(X1, F
∗L−2

1 ), let
Hξ be the corresponding isomorphism class of extension:

0→ F ∗L−1
1 → Hξ → F ∗L1 → 0,(2.2.5)

Thus this leads us also to considering the subset K ⊂ H1(X1, F
∗L−2

1 ), consisting
of extensions such that Hξ admits a subsheaf L1⊗L ↪→ Hξ for some L ∈ Pic0(X1).
K is clearly a cone. We shall call it the periodic cone of X1/k.

Lemma 2.3. The periodic cone K can be written in the following form:

K =
⋃

s∈PHom(L1⊗L,F ∗L1),L∈Pic0(X1)

Ker(φs),(2.3.1)

where the map on H1

φs : H1(X1, F
∗L−1

1 ⊗ F ∗L−1
1 )→ H1(X1, L

−1
1 ⊗ L−1 ⊗ F ∗L−1

1 )

is induced from the sheaf morphism š⊗ id with š : F ∗L−1
1 → L−1

1 ⊗ L−1 the dual
of s.

Proof. IfHξ admits a subsheaf L1⊗L with L ∈ Pic0(X1), then the composite
L1 ⊗ L ↪→ Hξ � F ∗L1 cannot be zero since, otherwise, one gets a nonzero
morphism L1 ⊗ L→ F ∗L−1

1 which contradicts the fact

deg(L1 ⊗ L) > 0 > deg(F ∗L−1
1 ).

So for a chosen nonzero element s ∈ Hom(L1 ⊗ L, F ∗L1), our task is to describe
those extensions Hξ such that s is liftable to a morphism L1 ⊗ L→ Hξ. Pulling
back the extension Hξ along s, one obtains an extension of L1 ⊗ L by F ∗L−1

1

whose class is given by the image of ξ under the map

φs : H1(X1, F
∗L−1

1 ⊗ F ∗L−1
1 )

š⊗id→ H1(X1, L
−1
1 ⊗ L−1 ⊗ F ∗L−1

1 ).
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It is clear that s lifts to a morphism L1 ⊗ L → Hξ iff the pull-back extension of
Hξ along s is split, that is, φs(ξ) = 0. �

Viewing H1(X1, F
∗L−2

1 ) as the affine space, we shall see that both A and K are
actually closed subvarieties, see Propositions 3.1 and 3.5. One of the main points
of the paper is to show that for a generic curve X1 ∈Mg,r, A∩K 6= ∅. This fact
has the consequence that one finds then a W2-lifting X2 and a Hodge filtration
Fil1 on C−1

X1⊂X2
(E1, θ1) such that the isomorphism 2.1.1 holds, see Proposition

3.6. This is the way we prove Theorem 2.1. We use a degeneration argument to
show A ∩ K 6= ∅ for a generic curve. In fact, we consider a totally degenerate
curve of genus g with r-marked points in §4, where we are able to prove the
intersection A ∩ K consists of a unique element and consequently is nonempty.
In §5, we show that As and Ks form families when the base curve X1 deforms
and then, by upper semi-continuity, it follows that A ∩K 6= ∅ for closed points
in a nonempty open neighborhood of a totally degenerate curve.

Now we turn to the lifting problem of a periodic Higgs bundle. The key is to
resolve the obstruction class of lifting the Hodge filtration. For this purpose, we
make the following

Definition 2.4. Assume that L ∈ Pic0(X1). We call s ∈ Hom(L1⊗L, F ∗L1)
ordinary if the composite

H1(X1, L
−2
1 )

F ∗→ H1(X1, F
∗L−2

1 )
š2→ H1(X1, L

−2
1 ⊗ L−2)(2.4.1)

is injective, where the second map is induced by the sheaf morphism š2.

This definition is equivalent to the one introduced by Mochizuki in [Mo],
although it was stated in a totally different form. In our context, the ordi-
nariness ensures the existence of lifting Hodge filtrations. See §5. Denote by
(En, θn, F iln, φn) the two-periodic Higgs bundle over Xn in (1.2.2). This brings
us to Theorem 2.5.

Theorem 2.5. Use notation as in Theorem 2.1. Then with respect to a W2-
lifting X2 of X1, (E1, θ1) becomes a two-periodic Higgs bundle (E1, θ1, F il1, φ1).
Let s be the composite Fil1 ↪→ C−1

1 (E1, θ1) � F ∗L1, where Fil1 is of the form
L1⊗L for a two-torsion line bundle L and the second map is given in (2.2.2). If
s is ordinary, then for all n ≥ 1, inductively there exists a Wn+1-lifting Xn+1 of
Xn such that the two-periodic Higgs bundle (En−1, θn−1, F iln−1, φn−1) over Xn−1

can be lifted to a two-periodic Higgs bundle (En, θn, F iln, φn) over Xn.

We are now in a position to give a simple proof of Theorem 1.2.

Proof of Theorem 1.2. With the ordinary condition ensured by Propo-
sition 4.11, Theorem 1.2 is a direct consequence of Corollary 2.2 and Theorem
2.5. �
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3. The smooth case

In this section, we begin to investigate the properties of the subsets A and
K in the case where the base curve X1/k is a smooth projective curve of genus
g together with r-marked points D1 ⊂ X1. It is required that 2g − 2 + r be an
even positive number. To conform with the notation in later sections, we use the
fine logarithmic structures defined in [KKa] and notation therein. In particular,
we equip X1 with the standard log structure defined by the divisor D1 (Example
1.5 (1) [KKa]) and the base Spec k with the trivial log structure (so that the
structural morphism X1 → Spec k is log smooth Example 3.7 (1) [KKa]); ωX1/k

denotes for the invertible sheaf of differential forms with respect to these log
structures (1.7 [KKa]).

3.1. General discussion. In the last section, we introduced the subsets
A and K of the affine space H1(X1, F

∗L−2
1 ). We proceed to study some basic

geometric properties of these two subsets and their intersection behavior.

Let σ be the Frobenius automorphism of the field k. Then for any vector
bundle V overX1, the absolute Frobenius ofX1 induces a σ-linear (i.e. semilinear)
morphism F ∗ : H i(X1, V ) → H i(X1, F

∗V ) for i ≥ 0. Indeed, it is the composite
of natural morphisms:

H i(X1, V ) ∼= H i(X1, V ⊗OX1
OX1)→ H i(X1, V ⊗OX1

F∗OX1)
∼= H i(X1, F

∗V ).

In our case, we denote by WF the image of the natural map F ∗ : H1(X1, L
−2
1 )→

H1(X1, F
∗L−2

1 ). Then we have

Proposition 3.1. The subset A ⊂ H1(X1, F
∗L−2

1 ) is a nontrivial translation
of the linear subspace WF . Moreover, dimA = 3(g − 1) + r.

We postpone the proof. We point out first that WF is actually a linear sub-
space of B. Indeed, one can also interpret the natural map F ∗ : H1(X1, L

−2
1 )→

H1(X1, F
∗L−2

1 ) in terms of extensions. That is, it is the map obtained by pulling
back an extension of form

0→ L−1
1 → E → L1 → 0(3.1.1)

via the absolute Frobenius to an extension of form

0→ F ∗L−1
1 → F ∗E → F ∗L1 → 0.(3.1.2)

Note that the latter extension is tautological to the extension equipped with the
canonical connections:

0→ (F ∗L−1
1 ,∇can)→ (F ∗E,∇can)→ (F ∗L1,∇can)→ 0.(3.1.3)

Thus, we see that WF lies in B. In fact, there is also a natural map H1(X1, L
−2
1 ) to

Ext1
(
(F ∗L1,∇can), (F ∗L−1

1 ,∇can)
)
. To see this, we let H1

dR := H1
dR(F ∗L−2

1 ,∇can)
be the first hypercohomology of the de Rham complex

Ω∗dR(F ∗L−2
1 ,∇can) := F ∗L−2

1
∇can−→ F ∗L−2

1 ⊗ ωX1/k.
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There are natural morphisms of complexes

L−2
1 → Ω∗dR(F ∗L−2

1 ,∇)

and

Ω∗dR(F ∗L−2
1 ,∇)→ F ∗L−2

1 .

Identifying Ext1
(
(F ∗L1,∇can), (F ∗L−1

1 ,∇can)
)

with H1
dR, one sees that the former

morphism induces the map on hypercohomologies

β : H1(X1, L
−2
1 )→ Ext1

(
(F ∗L1,∇can), (F ∗L−1

1 ,∇can)
)
,

while the latter induces

α : Ext1
(
(F ∗L1,∇can), (F ∗L−1

1 ,∇can)
)
→ H1(X1, F

∗L−2
1 ),

which is just the forgetful map defining B. Moreover, the composite map

α ◦ β : H1(X1, L
−2
1 )→ H1(X1, F

∗L−2
1 )

is the map F ∗ defining WF . An injectivity result is now in order.

Lemma 3.2. Both the map α : H1
dR(F ∗L−2

1 ,∇can) → H1(X1, F
∗L−2

1 ) and the
map α ◦ β = F ∗ : H1(X1, L

−2
1 )→ H1(X1, F

∗L−2
1 ) are injective.

Proof. Consider first the map α. We prove by contradiction. Assume the
contrary. Then, there exists a nonsplit exact sequence (2.2.4) which becomes
split if ignoring the connections in the sequence. Let F ∗L1 ↪→ H be a splitting
of vector bundles. Since its image cannot be preserved by the connection ∇, the
associated Higgs bundle by taking grading with respect to the image must have
nonzero Higgs field. That is,

∇̄ : F ∗L1 → (H/F ∗L1
∼= F ∗L−1

1 )⊗ ωX1/k

is nonzero. But, since

degF ∗L1 =
p

2
(2g − 2 + r) >

2− p
2

(2g − 2 + r) = deg(F ∗L−1
1 ⊗ ωX1/k),

this is a contradiction. The injectivity for the map F ∗ also follows. Indeed,
the previous argument shows if the exact sequence (3.1.2) is split then the exact
sequence (3.1.3) with connections is also split. Then one applies the classical
Cartier descent theorem (viz, not the logarithmic one) to conclude the splitting
of (3.1.1). �

Remark 3.3. The above argument for F ∗ shows the following injectivity
statement: for a smooth projective variety X/k and a line bundle L over X

satisfying degL > µmax(ΩX)
p

, where µmax(ΩX) is the maximal slope of subsheaves

of ΩX , the natural morphism F ∗ : H1(X,L−1) → H1(X,F ∗L−1) is injective. It
can be also directly deduced from the proof of Lemma 2.23 [La].

By the above lemma, one computes the dimension of WF (and hence of A) by
Riemann-Roch. The dimension of H1

dR is computed via its natural isomorphism
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to its corresponding Higgs cohomolgy [DI],[OV]. Define H1
Hig := H1

Hig(L
−2
1 , 0)

to be the hypercohomology of the Higgs complex

Ω∗Hig(L
−2
1 , 0) := L−2

1
0→ L−2

1 ⊗ ωX1/k.

Clearly,
H1
Hig
∼= H1(X1, L

−2
1 )⊕H0(X1, L

−2
1 ⊗ ωX1/k

∼= OX1).

Lemma 3.4. There is a natural isomorphism

H1
dR(F ∗L−2

1 ,∇can) ∼= H1
Hig(L

−2
1 , 0).

Therefore dimB = dimA+ 1.

Proof. See Corollary 2.27 [OV] for the case D1 = ∅. However in the ze-
ro Higgs field case, one extends directly the splitting formula due to Deligne-
Illusie [DI] to construct an explicit quasi-isomorphism from the Higgs complex
Ω∗Hig(L

−2
1 , 0) to the simple complex associated to the Čech double complex of

F∗(Ω
∗
dR(F ∗L−2

1 ,∇can)). See, for example, the proof of Theorem 10.7 [EV]. In
particular, the argument works also in this special log case. �

The proof of the following proposition will be postponed to a later subsection.

Proposition 3.5. The periodic cone K is a closed subvariety of H1(X1, F
∗L−2

1 ).
Moreover dimK = (p− 1)(2g − 2 + r).

Next, we explain the intersection behavior of A and K inside the ambient
space H1(X1, F

∗L−2
1 ). A simple dimension calculation shows

dimA+ dimK = dimH1(X1, F
∗L−2

1 ).(3.5.1)

Let P := P(H1(X1, F
∗L−2

1 )) be the associated projective space and

p : H1(X1, F
∗L−2

1 )\{0} → P
be the natural map. By Proposition 3.1, p(A) ⊂ P is an affine space of the same
dimension as A. Denote by P(K) the projectivized periodic cone, and similarly
use notation P(WF ) and P(B). Now, by the above discussion, we get

dimP(B) + dimP(K) = dimP.(3.5.2)

Hence P(B) and P(K) always intersect. For each ξ ∈ P(B) ∩ P(K), the cor-
responding extension (H,∇) admits an invertible subsheaf L1 ⊗ L for some
L ∈ Pic0(X1) and ξ ∈ Ker(φs) with s the composite map L1 ⊗ L ↪→ H → F ∗L1.
This is almost what we need to prove the periodicity but not exactly: the next
proposition shows that those ξs in the subset p(A)∩P(K), if nonempty, give rise
to periodicity. But clearly

p(A) ∩ P(K) = P(B) ∩ P(K)− P(WF ) ∩ P(K).

Proposition 3.6. If p(A)∩P(K) 6= ∅ or equivalently A∩K 6= ∅, then (E1, θ1)
is a two-periodic Higgs bundle, that is, there exists a W2-lifting X2 of X1 and a
Hodge filtration Fil1 such that

GrFil1 ◦ C−1
X1⊂X2

(E1, θ1) ∼= (E1, θ1)⊗ (L, 0),(3.6.1)
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with L a certain two-torsion line bundle.

Proof. Take ξ ∈ A∩K. By definition, the corresponding extension is of the
form Hξ = C−1

X1⊂X2
(E1, θ1) for some W2-lifting X2 of X1 and Hξ has a subsheaf

L1 ⊗ L ↪→ Hξ for L ∈ Pic0(X1).

Next, we show that the subsheaf L1 ⊗ L ↪→ Hξ is saturated and not ∇-
invariant. Let Fil1 be the saturated subbundle of L1 ⊗ L ↪→ Hξ. We claim that
Fil1 is not ∇-invariant. Otherwise, since the p-curvature of ∇ on Hξ is nilpotent,
the p-curvature of ∇ on Fil1 would be zero; as Hξ has another subbundle F ∗L−1

1

with trivial p-curvature, the p-curvature of Hξ would have to be zero. But this
is a contradiction since Hξ is the inverse Cartier of a Higgs bundle with maximal
Higgs field and its p-curvature is therefore nonzero (actually nowhere zero).

Having now established that Fil1 is not ∇-invariant, one gets a nonzero Higgs
field

∇̄ : (Fil1)→ (Fil1)−1 ⊗ ωX1/k.

Thus one obtains relations:

2g − 2 + r

2
= deg(L1 ⊗ L) ≤ degFil1 ≤

1

2
degωX1/k =

2g − 2 + r

2
.

It follows immediately that Fil1 ∼= L1 ⊗ L, the Higgs field ∇̄ is an isomorphism,
and L is a two-torsion. To summarize, one gets

GrFil1 ◦ C−1
X1⊂X2

(E1, θ1) ∼= (E1, θ1)⊗ (L, 0)

as claimed. �

The last proposition reveals the intimate relation of the intersection A ∩ K
and the periodicity of the Higgs bundle (E1, θ1) with maximal Higgs field. In the
case of P1 with four marked points, one can directly show A∩K 6= ∅. In general,
we can only show the nonempty intersection for a generic X1 in the moduli using
a degeneration argument.

Proposition 3.7. Let X1 be a P1 with four marked points. Then the Higgs
bundle (E1 = O(1)⊕O(−1), θ1) of type (1.0.2) is one-periodic.

Proof. By the above discussion it suffices to show that P(WF ) ∩ P(K) = ∅,
or equivalently WF ∩ K = 0. First notice that the only nontrivial extension
of O(−1) by O(1) over P1 is isomorphic to O⊕2. Therefore, Hξ corresponding
to a nonzero ξ ∈ WF is also isomorphic to O⊕2. It follows that Hξ does not
admit any invertible subsheaf of positive degree, which implies ξ /∈ K and then
WF ∩K = 0. �

3.2. Proof of Proposition 3.1. Let θ̌1 : TX1/k

∼=→ L−2
1 be the isomorphism

induced by the Higgs field. By abuse of notation, we use it to also denote the



14 G.-T. LAN, M. SHENG, Y.-H. YANG, AND K. ZUO

induced isomorphism on cohomologies. The following diagram commutes:

H1(X1, TX1/k)

F ∗

��

θ̌1 // H1(X1, L
−2
1 )

F ∗

��

H1(X1, F
∗TX1/k)

F ∗(θ̌1)
// H1(X1, F

∗L−2
1 ).

(3.7.1)

Proposition 3.1 follows from the following observations.

Lemma 3.8. (1) Consider the map ρ : {X1 ⊂ X2} → H1(X1, F
∗L−2

1 )
defined in (2.2.3). Then for τ ∈ {X1 ⊂ X2} and ν ∈ H1(X1, TX1/k), it
holds that

ρ(τ + ν) = ρ(τ)− F ∗ ◦ θ̌1(ν).(3.8.1)

(2) The image of ρ does not pass through the origin of H1(X1, F
∗L−2

1 ).

Proof. (1) Given a W2-lifting X2 of X1, the obstruction to lifting the ab-
solute Frobenius over X2 lies in H1(X1, F

∗TX1/k). Therefore, one obtains he
following map

µ : {X1 ⊂ X2} → H1(X1, F
∗TX1/k).

Using the construction of the inverse Cartier transform of Ogus-Vologodsky
via exponential twisting (see [LSZ0] and see also Appendix in the log setting),
one sees immediately that ρ is nothing but the composite F ∗(θ̌1) ◦ µ. Via the
commutativity of the diagram (3.7.1), it suffices to show that µ is a torsor map
under the map

F ∗ : H1(X1, TX1/k)→ H1(X1, F
∗TX1/k).

This statement should be known in the literature, although we cannot find a
suitable reference. In the following, we shall provide a proof for the reader’s con-
venience. This proof might also help the reader to understand the computations
in the proof of Lemma 5.6.

Let X2 and X̂2 be two W2-liftings of the log curve X1. Let U = {Ui}i∈I be
an open affine covering of X1. Following a suggestion of the referee, we assume
additionally that the boundary divisor D1 does not intersect with any overlap
Uij := Ui ∩ Uj. By doing so, we can avoid the log differential calculus to define
the cocyle {hij} below. Note that there is a unique W2-lifting Vi of Ui up to
isomorphism (which we shall suppress in our computations). Let Vij be a W2-
lifting of Uij. Fix the embeddings Vij → Vj. Corresponding to liftings X2 and

X̂2, there are two embeddings gij : Vij → Vi, and ĝij : Vij → Vi. Note that
gij and ĝij have the same reduction Uij → Ui modulo p. Then the image of
g∗ij − (ĝij)

∗ : OVi → OVij is contained in pOVij . Therefore, one obtains the

morphism
g∗ij−(ĝij)

∗

p
: OUi → OUij which is known to be a k-derivation. Let

ν̃ij : ωUi/k → OUij be the OUi-morphism such that ν̃ij ◦ d =
g∗ij−(ĝij)

∗

p
. Localizing

ν̃ij over Uij, one obtains an OUij -morphism ωUij/k → OUij which can be regarded
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as a local section νij of the sheaf TX1/k over Uij. It is clear that {νij} is a 1-cocycle

which represents the cohomology class ν = [X2]− [X̂2] ∈ H1(X1, TX1/k).

On the other hand, let us choose and then fix log Frobenius liftings {Fi : Vi →
Vi}i∈I . For simplicity, let us assume Fi restricts a morphism Vij → Vij. Thus we
get the composite morphisms

gij ◦ Fj : Vij = Vji
Fj→ Vji = Vij

gij→ Vi

and

Fi ◦ gij : Vij
gij→ Vi

Fi→ Vi.

Both are log Frobenius liftings over Vij. Set

hij :=
(Fi ◦ gij)∗ − (gij ◦ Fj)∗

p
: F ∗OUi → OUij .

The 2-cocyle condition for {hij} is implicitly contained in Corollary 9.12 [EV].
Thus {hij} gives rise to a Čech-representative of the class µ(X1 ⊂ X2). Replacing

gij by ĝij, we obtain similarly {ĥij :=
(Fi◦ĝij)∗−(ĝij◦Fj)∗

p
} for µ(X1 ⊂ X̂2). Thus it

suffices to show the following equality:

hij − ĥij = −
F ∗ ◦ (gij)

∗ − F ∗ ◦ ĝ∗ij
p

.

The left hand side is equal to

(g∗ij − (ĝij)
∗) ◦ F ∗i

p
−
F ∗ ◦ (g∗ij − (ĝij)

∗)

p
.

It suffices to show the first term is zero. But this is clear: since
g∗ij−(ĝij)

∗

p
is a

k-derivation, for any element α ∈ OUi over Uij,

(g∗ij − (ĝij)
∗) ◦ F ∗i

p
(α⊗ 1) = ν̃ij ◦ d(F ∗α) = 0.

Therefore, the required equality follows.

(2) Assume the contrary, namely, for some W2-lifting, the extension (2.2.2)
given by the bundle part of the inverse Cartier transform of (E1, θ1) splits. By
Lemma 3.2, the extension as flat bundles (2.2.1) splits as well. It follows that its
p-curvature is zero, which is however impossible. �

3.3. Proof of Proposition 3.5. To exhibit the algebraic structure of the
periodic cone K, we proceed as follows. Note that the notions of locally free
sheaves of finite rank and vector bundles will be used interchangeably in our de-
scription.

Step 1: Denote by p1 : Pic0(X1)×X1 → Pic0(X1) and p2 : Pic0(X1)×X1 → X1

the projections. Write O = OPic0(X1)×X1
. Let L be the universal line bundle over
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Pic0(X1)×X1. Consider two invertible sheaves p∗2F
∗L−1

1 and p∗2L
−1
1 ⊗L−1 which

form the sheaf

HomO(p∗2F
∗L−1

1 , p∗2L
−1
1 ⊗ L−1) ∼= HomO(p∗2L1 ⊗ L, p∗2F ∗L1).

Its direct image p1∗HomO(p∗2F
∗L−1

1 , p∗2L
−1
1 ⊗L−1) is a locally freeOPic0(X1)-modules

of rank p−1
2

(2g − 2 + r) − (g − 1) by Riemann-Roch. Let V denote the vector

bundle p1∗Hom(p∗2F
∗L−1

1 , p∗2L
−1
1 ⊗ L−1) and P its associated projective bundle.

Let π0 : V → Pic0(X1) and q0 : V − {0} → P be the natural projections, where
{0} is the zero section of π0. Set π = π0 × id : V × X1 → Pic0(X1) × X1 and

q : V−{0}×X1
q0×id−→ P×X1 → P, where the second map is the natural projection.

Step 2: Consider the invertible sheaves π∗p∗2F
∗L−1

1 and π∗p∗2L
−1
1 ⊗ π∗L−1. By

construction, there is the tautological morphism

t : π∗p∗2F
∗L−1

1 → π∗p∗2L
−1
1 ⊗ π∗L−1.

Consider further

id⊗ t : π∗p∗2F
∗L−1

1 ⊗ π∗p∗2F ∗L−1
1 → π∗p∗2F

∗L−1
1 ⊗ π∗p∗2L−1

1 ⊗ π∗L−1,

and its restriction to the open subset V − {0} × X1. For simplicity, the same
notation will be used for this restriction. It induces then the following morphism
on the higher direct images:

φ : R1q∗π
∗p∗2F

∗L−2
1 → R1q∗π

∗(p∗2F
∗L−1

1 ⊗ p∗2L−1
1 ⊗ L−1).

Let G denote R1q∗π
∗p∗2F

∗L−2
1 and H denote R1q∗π

∗(p∗2F
∗L−1

1 ⊗p∗2L−1
1 ⊗L−1) tem-

porarily. Consider φ : G → H as a bundle homomorphism over P. Then define
Ker(φ) to be the inverse image of the zero section of the bundle H. It is a closed
subvariety of G. In fact, let 0 : P → H be the closed immersion whose image is
the zero section, then Ker(φ) is the image of the closed immersion G×H P→ G
given by the fiber product.

Step 3: Note that G = R1q∗π
∗p∗2F

∗L−2
1
∼= H1(X1, F

∗L−2
1 ) × P as a vector

bundle. Thus consider the projections

π1 : Ker(φ)→ H1(X1, F
∗L−2

1 ); π2 : Ker(φ)→ P.

Then since π1 is proper, the image of Ker(φ) under π1, for which we consider only
its reduced structure, is a closed subset of H1(X1, F

∗L−2
1 ). By our construction,

π1(Ker(φ)) is nothing but the periodic cone K.

Next, we determine the dimension ofK. It is easy to calculate the dimension of
Ker(φ) using the second projection π2. Take a closed point x = ([s], [L]) ∈ P with
[L] = π0(x) ∈ Pic0(X1) and s ∈ Hom(L1 ⊗ L, F ∗L1). The fiber π−1

2 (x) ⊂ Ker(φ)
is naturally identified with Ker(φs) ⊂ H1(X1, F

∗L−2
1 ) defined before, where φs :

H1(X1, F
∗L−2

1 )→ H1(X1, L
−1
1 ⊗L−1⊗F ∗L−1

1 ) is the morphism induced by s. Let
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Div(s) be the zero divisor of the morphism L1⊗L
s
↪→ F ∗L1. Then one computes

that

dim Ker(φs) = deg(Div(s)) =
p− 1

2
(2g − 2 + r).(3.8.2)

Therefore,

dim Ker(φ) = dimP + dim Ker(φs)(3.8.3)

= (p− 1)(2g − 2 + r).

Note also that Ker(φ) is actually a vector bundle over P and therefore irreducible.
The following lemma asserts that π1 : Ker(φ) → K is injective over a nonempty
open subset and therefore K is irreducible and of the same dimension as Ker(φ).

Lemma 3.9. For every closed point x = ([s], [L]) ∈ P(p1∗(L
−1
1 ⊗L−1⊗F ∗L1)),

the intersection

Ker(φs) ∩ (
⋃

([s′],[L′])6=([s],[L])∈P(p1∗(L
−1
1 ⊗L−1⊗F ∗L1))

Ker(φs′))

in the ambient space H1(X1, F
∗L−2

1 ) is contained in a proper closed subset of
Ker(φs). Therefore, the map π1 is injective over any closed point of Ker(φs)
away from the above intersection.

Proof. Assume that Ker(φs) ∩ Ker(φs′) 6= 0 for some ([s′], [L′]) ∈ P. Note
that Ker(φs) ∩Ker(φs′) is the kernel of the map

Ext1(F ∗L1, F
∗L−1

1 )
(φs,φs′ )−→ Ext1(L1 ⊗ L, F ∗L−1

1 )⊕ Ext1(L1 ⊗ L′, F ∗L−1
1 ),

which is induced by the sheaf morphism

F ∗L−2
1

(s,s′)−→ L−1
1 ⊗ L−1 ⊗ F ∗L−1

1 ⊕ L−1
1 ⊗ L′−1 ⊗ F ∗L−1

1 .(3.9.1)

A moment of thought gives us the saturation of the image of (3.9.1), which is
F ∗L−2

1 ⊗O(Ds,s′) with Ds,s′ = Div(s) ∩Div(s′). Therefore the morphism (3.9.1)
factors as

F ∗L−2
1 ↪→ F ∗L−2

1 ⊗O(Ds,s′) ↪→ L−1
1 ⊗ L−1 ⊗ F ∗L−1

1 ⊕ L−1
1 ⊗ L′−1 ⊗ F ∗L−1

1 .

The long exact sequence of cohomologies of the following short exact sequence of
vector bundles

0→F ∗L−2
1 ⊗O(Ds,s′)→ L−1

1 ⊗ L−1 ⊗ F ∗L−1
1 ⊕ L−1

1 ⊗ L′−1 ⊗ F ∗L−1
1

→L−2
1 ⊗ L−1 ⊗ L′−1 ⊗O(−Ds,s′)→ 0

gives the injective map

H1(X1, F
∗L−2

1 ⊗O(Ds,s′))→ H1(X1, L
−1
1 ⊗L−1⊗F ∗L−1

1 )⊕H1(X1, L
−1
1 ⊗L′−1⊗F ∗L−1

1 ),

as H0(X1, L
−2
1 ⊗L−1⊗L′−1⊗O(−Ds,s′)) = 0 because L−2

1 ⊗L−1⊗L′−1⊗O(−Ds,s′)
is of negative degree. Therefore, Ker(φs) ∩Ker(φs′) is the kernel of the map

H1(X1, F
∗L−2

1 )→ H1(X1, F
∗L−2

1 ⊗O(Ds,s′)),
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which turns out to be the image of the injection

H0(X1,ODs,s′ ) ↪→ H1(X1, F
∗L−2

1 ).

Here H0(X1, F
∗L−2

1 ⊗O(Ds,s′)) = 0 again because of the degree. Clearly,

dim(Ker(φs) ∩Ker(φs′)) = deg(Ds,s′) < deg(Div(s)) = dim Ker(φs).

The above argument actually proves that

Ker(φs) ∩ (
⋃

([s′],[L′]) 6=([s],[L])∈P(p1∗(L
−1
1 ⊗L−1⊗F ∗L1))

Ker(φs′))

⊂
⋃

D′(Div(s)

Im(H0(X1,OD′) ↪→ H1(X1, F
∗L−2

1 )),

while the latter is a finite union of closed subsets of dimension strictly less than
dim Ker(φs). This completes the proof. �

In order to employ a degeneration argument in the next section, we need to
consider the twisted Higgs bundle (ωX1/k⊕OX1 , θ1) = (E1, θ1)⊗(L1, 0). The final
remark shows that the intersection behaviour of the set A∩K is invariant under
this twist.

Remark 3.10. In the study of A and K, we can replace (E1, θ1) of (1.0.2)
with one of its twists (E1, θ1)⊗ (M, 0) by a line bundle M equipped with the zero
Higgs field. Indeed, first one gets the same ambient space

Ext1(F ∗L1 ⊗ F ∗M,F ∗L−1
1 ⊗ F ∗M) = Ext1(F ∗L1, F

∗L−1
1 ),

and then the same affine subspace A because of the canonical isomorphism

C−1
X1⊂X2

((E1, θ1)⊗ (M, 0)) ∼= C−1
X1⊂X2

(E1, θ1)⊗ (F ∗M,∇can).

We also get the same periodic cone K when one considers those extensions of
F ∗L−1

1 ⊗ F ∗M by F ∗L1 ⊗ F ∗M containing the invertible subsheaf L1 ⊗ F ∗M .

4. The degeneration argument

For a given curve X1 ∈ Mg,r, where 2g − 2 + r is kept as before to be a
positive and even number, it seems hard in general to determine whether or
not A intersects with K. Dimension counting (3.5.1) makes the problem more
interesting. The principal aim of this section is to show A ∩K 6= ∅ for a generic
curve via a degeneration argument. Therefore, we shall consider the coarse moduli
space of stable curves Mg,r and investigate the intersection behavior of A and K in
a neighborhood of a so-called totally degenerate (g, r)-curve (abbreviated as t.d.
(g, r)-curve). The advantage of considering a t.d curve is that one can exhibit
explicitly the nonemptiness of A ∩ K. In fact, Proposition 4.7 asserts that it
consists of exactly one point (multiplicity not counted). As another output of
this method, we also show the existence of ordinary sections for a generic curve,
which is essential in our method to guarantee the liftability of the periodic Higgs
bundle to an arbitrary truncated Witt ring in §5.
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4.1. The relative A and K over a local base. Recall that a t.d. (g, r)-
curve is a nodal curve with r-marked points whose arithmetic genus is g and
normalization consists of disjoint copies of P1 with three marked points, say
{0, 1,∞} (the inverse image of nodes are also considered as marked points on
the each component of the normalization). In the moduli Mg,r of stable (g, r)-
curves, there always exists such a t.d. (g, r)-curve.

Let χ be a t.d. (g, r)-curve. By the theory of log curves due to F. Kato [FKa],
χ → Spec k is canonically a stable log curve of type (g, r) (see Definition 1.12
[FKa], see also Theorem 2.6 for the meaning of the canonicity of the associated
log structures). The exact construction of the log structures appears in §2 [FKa],
which étale locally around a node of χ admits a chart of the following form

N2 α2 // k[x, y]/(xy)

N

diag

OO

α1 // k,

OO

where α1 sends 1 to 0, α2 sends (1, 0) to x and (0, 1) to y, and diag is the diagonal

morphism. Let f̃0 : (χ,M) → (Spec k,N) be the associated log curve (where
(Spec k,N) is the so-called logarithmic point). We shall also use the notion of
a log smooth deformation due to F. Kato (see Definition 8.1 [FKa0]). In the
following, we shall consider only the following type of log smooth deformations of
the stable log curve f̃0 if not otherwise specified: let B1 be a smooth affine curve
over k equipped with the log structure by one closed point 0 ∈ B1. Let (B1, Ñ) be

the log scheme. Let f̃ : (X1, M̃)→ (B1, Ñ) be a log smooth deformation of f0 such

that the underlying scheme of the fiber of f̃ over any other closed point of B1 than
0 is a smooth (g, r)-curve. Take a flat family of stable (g, r)-curves parameterized
by an affine curve such that its image in Mg,r intersects transversally with the
boundary divisor consisting of degenerate curves at the point [χ]. Then the
theory in [FKa] makes this family into a log smooth deformation of f0 with the

required type. For a log smooth deformation f̃ , let f : X1 → B1 be the underlying
morphism of schemes. Whenever the context is clear, we may also use f to denote
f̃ by abuse of notation.

One of the main advantages of log smooth deformations is that the sheaf of
relative log differential forms ωX1/B1 (w.r.t. the given log structures on X1 and
B1) is locally free by Proposition 3.10 [KKa]. Let TX1/B1 be its OX1-dual. We
shall consider the following relative Higgs bundle

(E , θ) = (ωX1/B1 ⊕OX1 , θ),(4.0.1)

where θ : ωX1/B1 → OX1 ⊗ ωX1/B1 is the natural isomorphism. For a closed point
b 6= 0, it restricts to a Higgs bundle (1.0.2) over X1,b := f−1(b) twisted by L1, i.e,

(L2
1 ⊕OX1 , θ1), θ1 : L2

1

∼=−→ OX1 ⊗ ωX1/k.

Lemma 4.1. The coherent sheaf of OB1-modules R1f∗F
∗
X1
TX1/B1 is locally free

and of rank (2p+ 1)(g − 1) + pr.
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Proof. For each closed point b ∈ B1, the fiber (F ∗X1
TX1/B1)b is natural-

ly isomorphic to F ∗TX1,b/k. We have shown that for b 6= 0, the dimension of
h1(F ∗TX1,b/k) is equal to (2p + 1)(g − 1) + pr. By the theorem of Grauert, our
problem is reduced to showing that it is so for the fiber over 0, which is Proposi-
tion 4.6 (1) below. �

Now we shall construct two closed subsets A and K inside the vector bundle
R1f∗F

∗
X1
TX1/B1 over B1, such that over a closed point 0 6= b ∈ B1, they specialize

to the A and K given before.

Construction of A: Let

∇can : F ∗X1
TX1/B1 → F ∗X1

TX1/B1 ⊗ ωX1/B1

be the relative flat bundle. From it, one gets the relative de-Rham complex

Ω∗dR := Ω∗dR(F ∗X1
TX1/B1 ,∇can).

There are natural morphisms of complexes Ω∗dR → F ∗X1
TX1/B1 and TX1/B1 → Ω∗dR

which induce the corresponding morphism on higher direct images:

Γ : R1f∗,dR(F ∗X1
TX1/B1 ,∇can)→ R1f∗F

∗
X1
TX1/B1 ,

and

Λ : R1f∗TX1/B1 → R1f∗,dR(F ∗X1
TX1/B1 ,∇can).

The coherent sheaves R1f∗,dR(F ∗X1
TX1/B1 ,∇can) and R1f∗TX1/B1 are both locally

free, and of rank 3g − 2 + r and 3g − 3 + r respectively by Proposition 4.6 (2)-
(3) below. Moreover, the sheaf morphisms Γ and Γ ◦ Λ are injective as they are
injective at each fiber over a closed point. Define B (resp. WF ) to be subsheaf
Γ(R1f∗,dR(F ∗X1

TX1/B1 ,∇can)) (resp. Γ ◦ Λ(R1f∗TX1/B1)). Clearly, WF ( B. Take
and then fix a nowhere vanishing section ξ0 of B − WF (it always exists after
shrinking B1 if necessary). We define A ⊂ R1f∗F

∗
X1
TX1/B1 to be the translation

of WF by ξ0.

Construction of K: We shall follow the construction of the periodic cone in
the smooth case, see Section 3.3. In Step 1, one replaces pi with the natural maps
in the following Cartesian diagram of the fiber product:

Jac(X1/B1)×B1 X1
p2−−−→ X1

p1

y yf1
Jac(X1/B1) −−−→ B1,

where Jac(X1/B1) is the relative Jacobian of the semistable curve f : X1 → B1.
Let L be the universal line bundle over Jac(X1/B1)×B1 X1. Consider the vector
bundle

V := p1∗Hom(p∗2F
∗TX1/B1 , p

∗
2T

p+1
2

X1/B1
⊗ L−1),

and its associated projective bundle P. Let

π : V×B1 X1 → Jac(X1/B1)×B1 X1, q : V− {0} ×B1 X1 → P
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be the maps defined similarly in the smooth case. Then Step 2 proceeds as in the
smooth case, so one obtains a closed subvariety Ker(φ) ⊂ R1q∗π

∗p∗2F
∗TX1/B1 . To

carry out Step 3, we need to show

R1q∗π
∗p∗2F

∗TX1/B1
∼= R1f∗F

∗TX1/B1 ×B1 P
as a vector bundle. Here we consider R1f∗F

∗TX1/B1 as a vector bundle over B1.
To see that, one considers the fiber product

P×B1 X1
u−−−→ X1

g1

y yf1
P v−−−→ B1,

Note first that the map q : V− {0} ×B1 X1 → P is just the composite

V− {0} ×B1 X1
q0×id→ P×B1 X1

g1→ P.
Second, one notices that there is a sheaf isomorphism

π∗p∗2F
∗TX1/B1

∼= (q0 × id)∗u∗F ∗TX1/B1 ,

so that R1q∗π
∗p∗2F

∗TX1/B1
∼= R1g1,∗u

∗F ∗TX1/B1 . Finally, by the flat base change
theorem, one gets a sheaf isomorphism

R1g1,∗u
∗F ∗TX1/B1

∼= v∗R1f∗F
∗TX1/B1 ,

while the latter as vector bundle is isomorphic to R1f∗F
∗TX1/B1 ×B1 P. So one

gets the proper map
π1 : Ker(φ)→ R1f∗F

∗TX1/B1

obtained from the composite

Ker(φ) ↪→ R1q∗π
∗p∗2F

∗TX1/B1
∼= R1f∗F

∗TX1/B1 ×B1 P→ R1f∗F
∗TX1/B1 .

We define K to be the closed subvariety π1(Ker(φ)).

By specializing to a closed point b 6= 0 ∈ B1, one finds that Ab is a nonzero
translation of WF,b. Of course, this may differ from the original definition of A
in the smooth case by a translation. See Proposition 3.1. But it is clear that
Ab∩Kb 6= ∅ iff A∩K 6= ∅ by Remark 3.10. The following paragraphs are devoted
to A0 ∩ K0. For simplicity of notation, we shall again use A for A0, B for B0, K
for K0, α for the induced morphism of Γ on fibers over 0, and similarly β for Λ
over 0.

4.2. The (0, 3)-curve. We study first the unique (0, 3)-curve up to isomor-
phism. We equip χ = P1 with the log structure associated to the divisor of three
distinct points. In this case, ωχ/k = OP1(1) and we are considering the following
logarithmic Higgs bundle

(OP1(1)⊕OP1 , θ), θ = id : OP1(1)→ OP1 ⊗ ωχ/k.
Thus the ambient vector space H1(χ, F ∗Tχ/k) = H1(P1,OP1(−p)) is of dimension
p− 1; The linear subspace

WF = Im(F ∗ : H1(χ, Tχ/k)→ H1(χ, F ∗Tχ/k))
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is of dimension zero. Hence A is just a nonzero vector inside the line B :
Im(H1

dR(F ∗Tχ/k,∇can)→ H1(χ, F ∗Tχ/k)). Here the dimension and the injectivity
are proved in the same way as in Lemma 3.4 and Lemma 3.2.

Lemma 4.2. The periodic cone K ⊂ H1(χ, F ∗Tχ/k) is the whole space. There-
fore, A ∩K consists of one point ξ0.

Proof. Take any ξ ∈ H1(χ, F ∗Tχ/k) which is the extension class of the fol-
lowing short exact sequence:

0→ OP1 → Hξ → F ∗ωχ/k = OP1(p)→ 0.(4.2.1)

Note that Hξ
∼= OP1(d1) ⊕ OP1(d2) for two integers d1, d2 with d1 + d2 = p.

Thus the larger number between d1 and d2 must be ≥ p+1
2

. This implies that Hξ

has an invertible subsheaf of degree p+1
2

. Therefore, K is just the whole space
H1(χ, F ∗Tχ/k). The unique element of ξ0 = A ∩K corresponds to the following
nonsplit extension (unique up to isomorphism):

0→ (OP1 ,∇can)→ (H0,∇)→ (F ∗ωχ/k,∇can)→ 0.(4.2.2)

�

Now we proceed to a clearer description of elements in K = H1(χ, F ∗Tχ/k).
Assume the three marked points of χ are given by {0, 1,∞}. Then there is an
obvious W2-lifting, say χ̃, of the log curve χ, which is given by (P1, 0, 1,∞) over
W2. Let C = Cχ⊂χ̃ (resp. C−1 = C−1

χ⊂χ̃) be the Cartier transform (resp. inverse
Cartier transform), see Appendix. It is an equivalence of categories. From an
extension of flat bundles,

0→ (Oχ,∇can)→ (H,∇)→ (F ∗ωχ/k,∇can)→ 0,(4.2.3)

one obtains an extension of Higgs bundles

0→ (Oχ, 0)→ (E, θ) = C(H,∇)→ (ωχ/k, 0)→ 0,(4.2.4)

and vice versa. Forgetting the Higgs field in the above extension, one sees that
E is the direct sum Oχ ⊕ ωχ/k, and therefore (E, θ) is of the form

(E, θa) := (ωP1
log
⊕OP1 , θa), θ = a · id : ωP1

log
→ Oχ ⊗ ωP1

log
= ωP1

log
for some a ∈ k.

Here ωP1
log

is the sheaf of log differentials on P1 with poles along {0, 1,∞}. For

each (E, θa), there is a natural extension

0→ (Oχ, 0)
i→ (E, θa)

p→ (ωχ/k, 0)→ 0,(4.2.5)

where i : Oχ → E = ωχ/k ⊕ Oχ is the natural inclusion (0, id) and p : E →

ωχ/k is the natural projection

(
id
0

)
. Set (Ha,∇a) := C−1

χ⊂χ̃(E, θa). Applying

the inverse Cartier transform to the extension (4.2.5), we obtain the following
extension of (Ha,∇a):

0→ (Oχ,∇can)→ (Ha,∇a)→ (F ∗ωχ/k,∇can)→ 0.(4.2.6)

It is clear that the extension (4.2.6) is nonsplit iff a 6= 0.
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Lemma 4.3. For a 6= 0, Ha = OP1(p+1
2

)⊕OP1(p−1
2

). In particular, Ha, a 6= 0

admits a unique invertible subsheaf ω
p+1
2

χ/k = OP1(p+1
2

) of degree p+1
2

.

Proof. The idea for the proof is similar to that of Proposition 3.6. Note it
suffices to show the maximal destabilizing subsheaf of Ha has degree p+1

2
. First

of all, we have already seen in the proof of Lemma 4.2 that degree p+1
2

invertible
subsheaf exists. Let L ⊂ Ha be any invertible subsheaf of positive degree. Then
L cannot be invariant under ∇a, since the p-curvature of ∇a is nonzero. So we
get a nonzero morphism

∇̄a : L→ (Ha/L)⊗ ωχ/k,

which implies degL ≤ degHa+degωχ/k
2

= p+1
2

as claimed. �

In the above proof, for the maximal destabilizing subsheaf ω
p+1
2

χ/k ⊂ Ha, one

obtains further an isomorphism:

∇̄a : ω
p+1
2

χ/k

∼=−→ (Ha/ω
p+1
2

χ/k
∼= ω

p−1
2

χ/k )⊗ ωχ/k.(4.3.1)

Consider further

0 // Oχ // Ha
// F ∗ωχ/k // 0

ω
p+1
2

χ/k

OO

s

;;

Here s : ω
p+1
2

χ/k → F ∗ωχ/k is the composite ω
p+1
2

χ/k ↪→ Ha � F ∗ωχ/k.

Proposition 4.4. Assume a 6= 0 and let P be any marked point of χ. Then
the value s(P ) is nonzero.

We shall take first an important digression into a description of residues of ∇a

at marked points, which will be applied several times in the later paragraphs. Let
us look at the connection of around the node 0. Let [x : y] be the homogenous
coordinate of P1 with t = x/y an affine coordinate of {y 6= 0} ⊂ P1. Then U =
Spec k[t, (t− 1)−1] is an open affine neighborhood of 0. Take Ũ = Spec W2[t, (t−
1)−1] ⊂ χ̃, together with the standard log Frobenius lifting F̃ determined by
t 7→ tp. Use the global basis e1 = 1 for OP1 and the local basis e2 = dt

t
for

ωP1
log

over U . Then by the construction of the inverse Cartier transform as in the

Appendix, a local expression of the connection ∇a over U is given by:

∇a{e1 ⊗ 1, e2 ⊗ 1} = {e1 ⊗ 1, e2 ⊗ 1}
(

0 ap dt
t

0 0

)
,

where [ei] := ei⊗1, i = 1, 2 is the natural basis ofH over U . It follows immediately
that the residue of ∇a at the origin is expressed by

Res0(∇a){[e1](0), [e2](0)} = {[e1](0), [e2](0)}
(

0 ap

0 0

)
.
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Using the transformation t 7→ t− 1 (resp. t 7→ t−1), one obtains the analogue for
the marked points 1 (resp. ∞).

Proof of Proposition 4.4. Let P be any marked point. By the previous
description, the k-linear map ResP (∇a) : Ha(P )→ Ha(P ) has the property that
ResP (∇a)([e1](P )) = 0. On the other hand, the isomorphism (4.3.1) induces the
isomorphism at the point P :

ResP (∇̄a) : ω
p+1
2

χ/k (P )
∼=−→ ω

p−1
2

χ/k (P ).

Now, if s(P ) were zero then [e1](P ) would be a basis for the image of ω
p+1
2

χ/k (P )→
Ha(P ). But this is impossible. �

The last lemma of this subsection will be applied in the next subsection.

Lemma 4.5. Let φ : P1 → P1 be an automorphism preserving {0, 1,∞} (i.e.
an automorphism of the log curve χ). For any a ∈ k, φ∗(Ha,∇a) = (Ha,∇a).

Proof. It is equivalent to show φ∗(E, θa) = (E, θa). But this is obvious. �

4.3. A totally degenerate (g, r)-curve. Let χ be a t.d. (g, r)-curve. A
direct calculation shows that χ has ν = 2g − 2 + r irreducible components and
δ = 3g − 3 + r nodes. Let {Pi ∈ χ|1 ≤ i ≤ δ} be the set of nodes of χ. Let
γ : χ̃ → χ be the normalization and {χi|1 ≤ i ≤ ν} its irreducible components.
Considering the inverse image of nodes as marked points on χ̃, χ̃ is therefore a
disjoint union of (0, 3)-curves. In other words, one obtains χ by gluing ν-copies
of (0, 3)-curves along the marked points in a suitable way. We can assume each
copy χi to be (P1, 0, 1,∞).

Proposition 4.6. (1) dimH1(χ, F ∗Tχ/k) = (2p+ 1)(g − 1) + pr;
(2) The map F ∗ = α ◦β : H1(χ, Tχ/k)→ H1(χ, F ∗Tχ/k) is injective and thus

dimWF = 3g − 3 + r;
(3) The map α : H1

dR(F ∗Tχ/k,∇can)→ H1(χ, F ∗Tχ/k) is injective and hence
dimB = 3g − 2 + r.

Proof. (1) One has the following short exact sequence of Oχ-modules:

0→ F ∗Tχ/k → γ∗γ
∗(F ∗Tχ/k)→ ⊕δi=1kPi → 0,(4.6.1)

where kPi denotes the skyscraper sheaf with stalk k at Pi and 0 elsewhere. Over
each component χi, one has

γ∗(F ∗Tχ)|χi ∼= F ∗Tχi ∼= OP1(−p),

and since H1(χ, γ∗γ
∗(F ∗Tχ)) = H1(χ̃, γ∗(F ∗Tχ)) as γ is finite, it follows that

h1(χ, F ∗Tχ/k) =
ν∑
i=1

h1(χi,OP1(−p)) + δ = (2p+ 1)(g − 1) + pr.
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(2) Using the long exact sequence of cohomologies associated with the short
exact sequence

0→ Tχ/k → γ∗γ
∗Tχ/k → ⊕δi=1kPi → 0,(4.6.2)

one calculates the dimension:

h1(χ, Tχ/k) = h0(χ,⊕δi=1kPi) = δ.

It remains to show the injectivity of F ∗. Like in the smooth case, we shall show
that if an extension of the form

0→ Oχ → E → ωχ/k → 0(4.6.3)

is nonsplit, then its Frobenius pull-back is nonsplit.

The restriction of E to each component χi is split. In other words, E is
obtained by gluing copies of ωP1

log
⊕OP1 along marked points. Any node Pi of χ

is obtained either by gluing two different components along one of three marked
points or by gluing one component along two different marked points (i.e. the
case of self normal crossing). Since the bundle ωP1

log
⊕OP1 does not change under

an automorphism of the log curve P1, we can assume that locally at Pi the bundle
E is described by gluing two copies of [ωP1

log
⊕ OP1 ]|U at 0. Take the basis {e1}

(resp. {e2}) of OP1 (resp. ωP1
log

) in the neighborhood U of 0, as discussed in the

(0, 3)-curve case. Let {e1,i, e2,i}i=1,2 be two copies of such. We shall see that the
set of isomorphism classes of extensions (4.6.3) is in one-to-one correspondence
with the set {Ai}1≤i≤δ with Ai the following upper triangular matrix

Ai =

(
1 λi
0 −1

)
.

Indeed, the formula

{e1,2(0), e2,2(0)} = {e1,1(0), e2,1(0)}Ai(4.6.4)

gives the gluing data of the fibers of two copies of OP1⊕ωP1
log

at 0 and any different

λi gives a locally non-isomorphic E over an open neighborhood of Pi. The second
diagonal element in Ai is −1 for the following reason: Let {ti}i=1,2 be the local
coordinate of an open affine neighborhood Ui ⊂ χi, i = 1, 2 of the node Pi. Set
U := U1 ∪ U2. Then ωχ/k(U) is expressed by

OU{dt1t1 } ⊕ OU{
dt2
t2
}

OU{dt1t1 + dt2
t2
}

.

Therefore, dt2
t2

= −dt1
t1

is the transition relation for the gluing of ωχ/k at the node.
Thus, we have obtained an explicit k-linear isomorphism

H1(χ, Tχ/k) ∼= kδ, [E] 7→ (λ1, · · · , λδ).

Now let {[e1,i], [e2,i]}i=1,2 be the natural basis of the restrictions of F ∗E to χ1

and χ2. It is clear that at Pi, the following formula holds:

{[e1,2](0), [e2,2](0)} = {[e1,1](0), [e2,1](0)}
(

1 λpi
0 −1

)
.
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Thus, if F ∗E, as an extension of F ∗ωχ/k by F ∗Oχ, is nonsplit, then there is a
nonzero λpi0 for some i0. As λi0 is nonzero, E is nonsplit as well.

(3) Note that one still has the isomorphism

H1
dR(F ∗Tχ/k,∇can) ∼= Ext1((F ∗ωχ/k,∇can), (F ∗Oχ,∇can)).

The latter space classifies the isomorphism classes of extensions of the following
form:

0→ (F ∗Oχ,∇can)→ (H,∇)→ (F ∗ωχ/k,∇can)→ 0.(4.6.5)

Like in the smooth case, one interprets α as the forgetful map

Ext1((F ∗ωχ/k,∇can), (F ∗Oχ,∇can))→ Ext1(F ∗ωχ/k, F
∗Oχ) ∼= H1(χ, F ∗Tχ/k).

Next we shall show that if the bundle H of the extension (H,∇) of form (4.6.5)
is split, then the extension is split. The proof is similar to (2) but easier. First of
all, the splitting of H restricts to a splitting of H|χi on the irreducible component
χi for each i. As χi is the (0, 3) curve, it follows that (H,∇)|χi is also split.
Thus ∇|χi is nothing but the canonical connection ∇can. Therefore, ∇ is just the
canonical connection on H = F ∗ωχ/k ⊕ F ∗Oχ, and therefore (H,∇) is split.

AsH1
dR(F ∗Tχ/k,∇can) is the fiber of the coherent sheafR1f∗,dR(F ∗X1

TX1/B1 ,∇can)
at 0 ∈ B1, its dimension is greater than or equal to 3g − 2 + r by upper semi-
continuity. Thus we need only show dimH1

dR(F ∗Tχ/k,∇can) ≤ 3g−2+r. Consider
the following commutative diagram of linear morphisms:

B = H1
dR(F ∗Tχ/k,∇can)

α

��

res|χ1 // H1
dR(F ∗Tχ1/k,∇can)

α

��
H1(χ, F ∗Tχ/k)

res|χ1 // H1(χ1, F
∗Tχ1/k).

The vertical morphisms α are injective by the previous discussion. Set L =
α(H1

dR(F ∗Tχ1/k,∇can)) (which is just the line B in the subsection 4.2) and let B0

be the kernel of the morphism res|χ1 : α(B)→ L. We shall get a key characteri-
zation of the image α(B) ⊂ H1(χ, F ∗Tχ/k) by the following calculation involving
residues:

Take an extension of the form (4.6.5). Let (Hi,∇i) be the restriction of
(H,∇) to χi, and let P be a node obtained by gluing χ1 and χ2 (they may
equal) along marked points. As discussed in the (0, 3)-curve case, (Hi,∇i) =
C−1(E := ωP1

log
⊕ OP1 , θai) for a scalar ai ∈ k. Also, the scalar ai is kept under

any automorphism of the log curve by Lemma 4.5. Thus, we can assume that
under the natural basis {[e1,i](P ), [e2,i](P )} of Hi(P ), i = 1, 2, the gluing matrix

at the node P is given by

(
1 λ
0 −1

)
, that is, the linear transition relation from

H1(P ) to H2(P ) is determined by

{[e1,2](P ), [e2,2](P )} = {[e1,1](P ), [e2,1](P )}
(

1 λ
0 −1

)
.(4.6.6)
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By the discussion on the residues of connections at marked points in the (0, 3)-
curve case, and since ∇1 and ∇2 glue at the node P , we obtain the equality(

0 ap1
0 0

)(
1 λ
0 −1

)
=

(
1 λ
0 −1

)(
0 −ap2
0 0

)
.

It follows that a1 = a2. As χ is connected, it follows that for each i,

(Hi,∇i) = C−1(E, θa)

for an a ∈ k.

Assume now that the restriction to χ1 of an extension (4.6.5) is split. Then a =
a1 = 0 and consequently, all restrictions to χis are split. This means that elements
in B0 are contained in those obtained by gluing copies of the split extension

0→ F ∗OP1 → F ∗ωP1
log
⊕ F ∗OP1 → F ∗ωP1

log
→ 0

along the nodes, which are exactly elements of the subspace WF ⊂ H1(χ, F ∗Tχ/k)
in (2). Thus we have obtained the required inequality

dimB = dimα(B) ≤ dimB0 + dimL ≤ dimWF + 1 = 3g − 2 + r.

�

The above proof shows that the morphism res|χ1 : α(B) → L is surjective
and its kernel is exactly WF . That is, we have a short exact sequence of k-vector
spaces

0→ WF → α(B)
res|χ1→ L→ 0.

By equipping extensions in WF with the canonical connections, one identifies
naturally WF with its inverse image α−1(WF ) ⊂ B. On the other hand, recall
that A is by definition a translation of WF by the element ξ0 in B −WF . Thus
we know that ξ0 restricts to χ1 (and also any other component χi) a nonsplit
extension. Thus the line k{ξ0} ⊂ B induces a splitting of the short exact sequence
of k-vector spaces

0→ WF → B
res|χ1→ H1

dR(F ∗Tχ1/k,∇can)→ 0.

Therefore, B = WF ⊕ k{ξ0}. After these preparations, we proceed now to prove
A ∩K 6= ∅.

Proposition 4.7. For every totally degenerate (g, r)-curve, the set A ∩ K
consists of one unique element.

Proof. Let (H0,∇) be the corresponding extension to ξ0. Then the elements
(H,∇) of A are in one-to-one correspondence with tuples µ := {µ1, · · · , µδ} ∈
kδ, so that µ = 0 corresponds to (H0,∇). Explicitly, let (H = Hµ,∇) be the
corresponding flat bundle over χ and let (Hi,∇i) be the restriction of (H,∇) to
χi, then the gluing datum under the natural basis at a node Pi is given by a

upper triangular matrix Bi =

(
1 µi
0 −1

)
with the transition relation

{[e1,2](Pi), [e2,2](Pi)} = {[e1,1](Pi), [e2,1](Pi)}Bi.(4.7.1)
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We claim that there exists a unique tuple µ such that the corresponding Hµ

admits an invertible subsheaf (ωχ/k)
p+1
2 ⊗L for some degree zero invertible sheaf

L. This claim is equivalent to saying that A intersects with K at one unique
point (multiplicity not counted), and it involves again a gluing argument.

By Lemma 4.3, we know that the restriction Hi of H to χi (i arbitrary) admits

a unique ω
p+1
2

χi/k
↪→ Hi. Assume that Pi is a node obtained by gluing χj, j = 1, 2

(they may equal) along marked points. By Proposition 4.4, the image of the fiber

ω
p+1
2

χj/k
(Pi) inside Hj(Pi) admits a basis of the form

hj = b[e1,j](Pi) + [e2,j](Pi).

Thus, in order to glue these two invertible subsheaves ω
p+1
2

χj/k
, j = 1, 2 along Pi

together, the necessary and sufficient condition is the one-dimensional subspace

ω
p+1
2

χ1/k
(Pi) ⊂ H1(Pi) maps onto the one-dimensional subspace ω

p+1
2

χ2/k
(Pi) ⊂ H2(Pi)

under the transition from H1(Pi) to H2(Pi), which is given by the matrix Bi

under the natural basis as above. By the relation (4.7.1), it is equivalent to the
solvability of the following equation:(

b
1

)
= u

(
1 µi
0 −1

)(
b
1

)
, for some u ∈ k.

One obtains the unique solution u = −1 and µi = −2b. It follows that there is

a unique µ ∈ kδ such that the invertible subsheaves {ω
p+1
2

χi/k
}i of Hi glue into an

invertible subsheaf of the corresponding Hµ. Note that the sheaf ω
p+1
2

χ/k restricts

to the sheaf ω
p+1
2

χi/k
over the component χi and the transition at each node is the

multiplication by (−1)
p+1
2 . The above calculation shows that the transition at

each node of the glued sheaf is always the multiplication by −1. Thus, if p+1
2

is

odd, they are indeed the same sheaf. If p+1
2

is even, they differ from each other
by the invertible sheaf L obtained by gluing Oχis along nodes with transitions by
−1. However, L is two-torsion in either case and hence degree zero. �

Let ξ1 be the unique point in A ∩ K. Assume that ξ1 ∈ Ker(φs) for some

section s ∈ Hom((ωχ/k)
p+1
2 ⊗ L, F ∗(ωχ/k)), where L is a certain two-torsion line

bundle. Its dual š induces the composite

F ∗Tχ/k = T pχ/k
š→ T

p+1
2

χ/k ⊗ L−1 š→ Tχ/k ⊗ L−2 = Tχ/k.(4.7.2)

The induced map on the first cohomologies is also denoted by š2.

Proposition 4.8. Use notation as above. The composite map

H1(χ, Tχ/k)
F ∗→ H1(χ, F ∗Tχ/k)

š2→ H1(χ, Tχ/k)(4.8.1)

is injective.
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Proof. First of all, Proposition 4.4 shows that the value of s at each node
of χ is nonzero. So is its dual š. This fact gives rise to the isomorphism in the
lower right corner of the following commutative diagram:

0 // Tχ/k //

F ∗

��

γ∗γ
∗Tχ/k
F ∗

��

// ⊕δi=1kPi
//

(·)p
��

0

0 // F ∗Tχ/k //

š2

��

γ∗γ
∗F ∗Tχ/k

š2

��

// ⊕δi=1kPi

∼=
��

// 0

0 // Tχ/k // γ∗γ
∗Tχ/k // ⊕δi=1kPi

// 0.

After taking cohomologies, we get

⊕δi=1kPi
∼= //

(·)p
��

H1(Tχ/k)

F ∗

��
⊕δi=1kPi

∼=
��

↪→ // H1(F ∗Tχ/k)

š2

��
⊕δi=1kPi

∼= // H1(Tχ/k)

Clearly (4.8.1) is injective. This completes the proof. �

4.4. Nonemptiness of A ∩K and ordinariness for a generic smooth
(g, r)-curve. Building upon Proposition 4.7 and Proposition 4.8, we show the
nonemptiness of A∩K and the existence of ordinary sections for a generic smooth
(g, r)-curve, by applying a continuity argument.

Proposition 4.9. For a generic curve X1 in Mg,r, A and K intersect.

Proof. Take an arbitrary t.d. curve χ ∈Mg,r and a log smooth deformation
f : X1 → B1 of χ as given in §4.1. Write V for the vector bundle R1f∗(F

∗TX1/B1)
over B1. Consider the irreducible closed subsets A and K and the composite

π : A ∩K ⊂ V → B1.

We know that: (i). dimA + dimK = dimV + dimB1 which can be seen from
Formula (3.5.1). This equality implies that any irreducible component of A ∩ K
is of dimension ≥ dimA + dimK − dimV = dimB1 = 1; (ii). By Proposition
4.7, ξ1 = π−1(0). Take any irreducible component Z of A ∩ K passing through
ξ1 and consider the restriction of π to Z: πZ : Z → B1. Since the fiber of πZ
over 0 is zero dimensional, the morphism πZ has to be dominant, and moreover,
its relative dimension is zero (i.e. Z is a curve). Thus, there is a nonempty open
subset of B1 such that the fiber of πZ over a closed point in which consists of
finitely many points. Shrinking this open subset if necessary, we shall obtain an
open subset V of B1 such that the fiber of A∩K over a closed point in which has
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an isolated point as irreducible component.

Let 0 6= b1 ∈ B1 be a closed point in V , and let X1 be the fiber of f over b1,
which is a smooth (g, r)-curve. Let B2 be an open affine neighborhood of b1 in
Mg,r (not the compactification!) such that a local universal family g : X2 → B2

exists. For g, we repeat the constructions of two closed subsets A and K inside
the vector bundle V := R1g∗F

∗
X2
TX2/B2 as given in §4.1. Take an isolated point ξ2

in A ∩K, which is the fiber of A ∩ K over b1, and an irreducible component W
of A ∩K passing through ξ2. Consider the composite of natural morphisms

πW : W ⊂ A ∩K ⊂ V → B2,

which are defined similarly as above. Again, by Formula (3.5.1), it follows that
dimW ≥ dimA + dimK − dimV = dimB2. Since the fiber of the map πW
over b1 is zero dimensional, one concludes again that πW is dominant (and there
is a nonempty open subset of B2 over which closed fibers of πW are of zero
dimensional). Therefore, there exists a nonempty Zariski open subset U of Mg,r

such that A ∩K 6= ∅ over any closed point in U . This completes the proof. �

We are now ready to supply a proof for Theorem 2.1.

Proof of Theorem 2.1. This theorem follows from Proposition 3.6 and
Proposition 4.9. �

Finally, we proceed to show the existence of ordinary sections for a generic
curve. First, we make the following

Definition 4.10. A smooth (g, r)-curve X1 is called ordinary if A ∩K 6= ∅
and moreover if there exists an ordinary section s ∈ Hom(L1 ⊗ L, F ∗L1) such
that A ∩K ∩Ker(φs) 6= ∅.

Proposition 4.11. A generic curve X1 in Mg,r is ordinary.

Proof. By definition of ordinariness, the set of ordinary sections makes an
open subset of Hom(L1⊗L, F ∗L1). Thus for every smooth (g, r)-curve, the subset
K0 := ∪s ordinaryKer(φs) is an open subset of K in view of (2.3.1). By extending
to the relative case, we obtain an open subscheme K0 ⊂ K. By Proposition 4.8,
A∩K0 is a nonempty open subset of A∩K. Thus replacing A∩K with A∩K0

in the argument of Proposition 4.9 gives the desired result. �

5. Lifting periodic Higgs bundles to a truncated Witt ring

In the previous two sections, we have basically established the existence of a
periodic Higgs-de Rham flow initializing a Higgs bundle with maximal Higgs field
(1.0.2) in characteristic p. The purpose of this section is therefore to lift a given
periodic Higgs-de Rham flow in characteristic p to the mixed characteristic. This
will be done inductively. Namely, assuming the existence of a periodic Higgs-de
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Rham flow over the Witt ring Wn−1 of length n− 1, we show it can be lifted to
a periodic Higgs-de Rham flow over Wn, under the ordinary condition.

Before moving on to the exact arguments via detailed calculations, we shall
give an overview of the whole lifting process. To start with, we shall fix an
ordinary curve X1, together with an ordinary section s ∈ Hom(L1 ⊗ L, F ∗L1)
satisfying A ∩ K ∩ Ker(φs) 6= ∅ (see Definitions 4.10 and 2.4). Thus we get
a morphism s̃ : L1 ⊗ L → H, whose image is denoted by Fil1 ⊂ H, such
that its composite with the natural projection H → F ∗L1 is s. As shown in
Proposition 3.6, we get a W2-lifting X2 of the log curve X1 such that we can take
an isomorphism (which is unique up to scalar in k∗):

φ1 : GrFil1 ◦ C−1
X1⊂X2

(E1, θ1) ∼= (E1, θ1)⊗ (L, 0).

Moreover, this naturally makes the Higgs bundle (E1, θ1) two-periodic (see Corol-
lary 2.2). Set (H1,∇1) = C−1

X1⊂X2
(E1, θ1) and let (E1, θ1, F il1, φ1) denote the two-

periodic Higgs-de Rham flow over X1/k defined as above.

Let (Xn, Dn)/Wn be a lifting of the log curve (X1, D1)/k, and let ωXn/Wn :=
ΩXn(logDn) be the sheaf of log differential forms with poles along Dn. The
following simple lemma will be used later.

Lemma 5.1. Use notation as above. There exists a unique graded Higgs mod-
ule (En, θn) over Xn lifting (E1, θ1) up to isomorphism.

Proof. First of all, there exists a unique lifting Ln of L1 over Xn such that
L⊗2
n = ωXn/Wn up to isomorphism. The uniqueness is clear, and the existence

part can be seen as follows: we proceed by induction on n. Let {ωij} be a Čech-
representative of ωXn/Wn . Modulo pn−1, one gets the induced Čech-representative
{ω̄ij} of ωXn−1/Wn−1 , for which we can assume the equation l2ij = ω̄ij, where {lij}
is a Čech-representative of the unique lifting Ln−1 by induction hypothesis. Take
an arbitrary lifting L̃n of Ln−1 with a Čech-representative l̃ij which lifts lij. We
are going to solve {aij} satisfying the equation

(l̃ij + pn−1aij)
2 = ωij.

Clearly, it leads to the unique solution aij = (2l̄ij)
−1bij, where l̄ij is the mod

p-reduction of lij and bij =
ωij−l̃2ij
pn−1 . One checks furthermore that, by the 2-cocycle

condition of {ωij}, {lij + pn−1aij} satisfies the 2-cocycle condition, which defines
a line bundle Ln lifting Ln−1 and satisfying L⊗2

n = ωXn/Wn as required. Therefore,
we obtain a graded Higgs module (En = Ln ⊕ L−1

n , θn) with

θn : Ln ∼= L−1
n ⊗ ωXn/Wn ,

whose reduction mod p gives

θ̄n : L1
∼= L−1

1 ⊗ ωX1/k.

Note θ̄n differs from θ1 only by a nonzero scalar in k. Thus, by adjusting θn with a
suitable scalar in Wn, we can always require (En, θn) lift (E1, θ1). The uniqueness
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of (En, θn) lifting (E1, θ1) is also clear: since Ln is unique, two liftings can only
differ on the Higgs field. Fixing the unique lifting θn−1 (up to isomorphism), the
set of liftings θn forms a torsor under H0(X1,OX1) = k which means that two
liftings differ by a scalar of form µ := 1 + pn−1λ ∈ Wn. It is clear that (En, θn)
and (En, µθn) are isomorphic graded Higgs modules. �

Now we address the problem of lifting the two-periodic Higgs-de Rham flow
from X1/k to X2/W2. First, there is a unique lifting of the graded Higgs bundle
(E2, θ2) over X2 of (E1, θ1) by Lemma 5.1. Second, by choosing any W3-lifting
X3 of the log curve X2/W2, we get the inverse Cartier transform 1 C−1

X2⊂X3
(E2, θ2)

(see §5 [LSZ]) which is a flat bundle over X2 whose reduction mod p is (H1,∇1).
Third, given (H2,∇2) := C−1

X2⊂X3
(E2, θ2) as above, there is an obstruction to

lifting Fil1 ⊂ H1 to a Hodge filtration Fil2 ⊂ H2. It is clear that the obstruction
class lies in H1(X1,Hom(Fil1, H1/F il1)). The upshot is that the natural map
(compare the map (2.2.3) and Lemma 3.8 (1) on its torsor property), obtained
from the previous consideration,

% : {X2 ⊂ X3} → H1(X1,Hom(Fil1, H1/F il1))(5.1.1)

from the set of isomorphism classes of W3-liftings of the log curve X2 over W2 to
the obstruction space is indeed a torsor map underH1(X1, TX1/k) (see Proposition
5.2). As a consequence, the ordinary condition on the section s guarantees the
existence of a lifting X3 (which actually turns out to be unique) such that one
is able to lift Fil1 to a Hodge filtration Fil2 ⊂ H2 = C−1

X2⊂X3
(E2, θ2). Once this

is established, the remaining issues for obtaining a two-periodic Higgs-de Rham
flow (E2, θ2, F il2, φ2) over X2/W2 which lifts the original one over X1/k become
straightforward. Then we continue the lifting from W2 to W3, and the previous
arguments apply. Assuming the existence of a two-periodic Higgs-de Rham flow
(En−1, θn−1, F iln−1, φn−1) over Xn−1, we can formulate the generalization of the
map (5.1.1) for n ≥ 2 in the same way:

% : {Xn ⊂ Xn+1} → H1(X1,Hom(Fil1, H1/F il1)).(5.1.2)

Before showing the torsor property of %, we shall first formulate a sheaf map. Let
us write the Higgs field θ1 of E1 in the following way:

θ1 : TX1/k → End(E1).

Note that the integrability of the Higgs field means precisely that θ1 is a morphism
of Higgs bundles (TX1/k, 0) → (End(E1),End(θ1)). Applying the inverse Cartier
transform to θ1, we get the corresponding morphism (of flat bundles)

C−1
1 (θ1) := C−1

X1⊂X2
(θ1) : F ∗TX1/k → End(H1).

Also, there is the obvious projection map

Pr : End(H1)→ Hom(Fil1, H1/F il1).

1For a sketch of the construction of the inverse Cartier transform over a truncated Witt
ring, including the log curve case, we refer the reader to paragraphs after the proof of Theorem
2.5 and before the proof of Proposition 5.2.
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So we can consider the composite of the following morphisms of sheaves of abelian
groups over X1/k:

ψ : TX1/k
F ∗−→ F ∗TX1/k

C−1
1 (θ1)
−→ End(H1)

Pr−→ Hom(Fil1, H1/F il1),

and its induced map (still denoted by ψ by abuse of notation) on the first coho-
mology groups:

ψ : H1(X1, TX1/k)→ H1(X1,Hom(Fil1, H1/F il1)).

Proposition 5.2. Use notation as above. Then for τ ∈ {Xn ⊂ Xn+1} and
ν ∈ H1(X1, TX1/k), it holds that

%(τ + ν) = %(τ)− ψ(ν).(5.2.1)

Let us postpone the proof of this until after showing Theorem 2.5, which is a
direct consequence of the proposition and the next two simple lemmas.

Lemma 5.3. Suppose the section s ∈ Hom(L1 ⊗ L, F ∗L1) satisfies A ∩ K ∩
Ker(φs) 6= ∅. Then the following diagram commutes:

TX1/k
ψ- Hom(Fil1, H1/F il1)

L−2
1

θ1 ∼=

?
š2◦F ∗ - L−2

1 ,

∼=

?

where š2 : F ∗L−2
1 → L−2

1 is induced by s and the right vertical isomorphism is the
obvious one.

Proof. It suffices to show the following diagram commutes:

F ∗ωX1/k
�ψ
∗

[Hom(Fil1, H1/F il1)]∗

F ∗L2
1

F ∗θ∗1
∼=

6

� s2

L2
1.

∼=

6

To show this, we first make the following identifications

End(H1) ∼= H∗1 ⊗H1
∼= H1 ⊗H1,

where the latter isomorphism is because H1
∼= H∗1 ⊗ det(H1) ∼= H∗1 . Under this

identification, the dual of the natural projection Pr becomes the inclusion

Fil1 ⊗ Fil1 = L2
1 ⊗ L2 = L2

1 ↪→ H⊗2
1 .

On the other hand, the composite

H1 ⊗H1

[C−1
1 (θ1)]∗

−→ F ∗ωX1/k
F ∗θ1−→ F ∗L2

1

is the self tensor product of the natural projection H1 → F ∗L1. Therefore, the
commutativity of the diagram follows from the fact that the Hodge filtration
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Fil1 ⊂ H1 is defined by lifting the morphism s, that is, the following diagram
commutes:

Fil1
↪→ // H1

// F ∗L1

L1 ⊗ L

∼=

OO

=
// L1 ⊗ L

s̃

OO

s

::

�

We postpone the proof of the next lemma to the end of this section.

Lemma 5.4. Let L1 = L be the two torsion line bundle over X1 given above.
For any sequence of Wn-liftings X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · · , let Ln be the two
torsion line bundle over Xn which is the unique lifting of L1. Then one gets
inductively that

C−1
Xn⊂Xn+1

(Ln, 0) = (Ln,∇n), n ≥ 2,

where ∇n is an integrable connection on Ln.

Proof of Theorem 2.5. We use induction on n ≥ 2 and assume we have
already lifted the two-periodic Higgs-de Rham flow (E1, θ1, F il1, φ1) over X1/k
to a two-periodic Higgs-de Rham flow (En−1, θn−1, F iln−1, φn−1) over Xn−1/Wn−1

with respect to the Wn-lifting Xn of the log curve Xn−1. By Lemma 5.3, we know
the semilinear map ψ : H1(X1, TX1/k

∼= L2
1) → H1(X1,Hom(Fil1, H1/F il1) ∼=

L2
1) is identified with morphism (2.4.1) in Definition 2.4. Thus, because of the

ordinary assumption on s, Proposition 5.2 shows that there exists a unique Wn+1-
lifting Xn+1 of the log curve Xn/Wn such that the Hodge filtration Filn−1 lifts
to a Hodge filtration Filn on the flat bundle C−1

Xn⊂Xn+1
(En, θn), where (En, θn) is

the unique lifting of (E1, θ1) to Xn. Also, let Ln be the unique two-torsion line
bundle over Xn lifting L1 := L over X1. Note GrFiln ◦ C−1

Xn⊂Xn+1
(En, θn) and

(En, θn)⊗ (Ln, 0) are two graded Higgs modules over Xn lifting (E1, θ1)⊗ (L1, 0)
which is also of maximal Higgs field. By the uniqueness in the Lemma 5.1 and
its proof, there is an isomorphism

φ̃n : GrFiln ◦ C−1
Xn⊂Xn+1

(En, θn) ∼= (En, θn)⊗ (Ln, 0)

whose mod pn−2 reduction has the form µφn−1 for some µ ∈ Wn−1. Take any lift
µ̃ ∈ Wn of µ and set φn = (µ̃)−1φ̃n. Then φn lifts φn−1. Finally, using Lemma
5.4 and the argument in the proof of Corollary 2.2, we obtain a two-periodic
Higgs-de Rham flow (En, θn, F iln, φn) over Xn/Wn with respect to Wn+1-lifting
Xn+1 of Xn, which lifts the starting one over Xn−1. This completes the induction
step and therefore the proof of the theorem. �

In the next several paragraphs, we shall digress into a brief account of the
construction of the inverse Cartier transform C−1

Xn⊂Xn+1
(En, θn) following the the-

ory in §5 [LSZ], which may help the reader to understand the local calculations
in the proof of Proposition 5.2. By doing so, we can also lay out some notation
used in the proof. First, we give the following:
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Definition 5.5. Let Xn, n ≥ 2 be a smooth scheme over Wn with a reduced
normal crossing divisor Dn ⊂ Xn relative to Wn (that is, each component of Dn

is flat over Wn). A log Frobenius lifting Fn : Xn → Xn with respect to Dn is a
morphism on Xn satisfying (i) its reduction modulo p is the absolute Frobenius
on X1; (ii) its restriction to Wn ⊂ OXn is the Frobenius automorphism of Wn;
(iii) F ∗nO(−Dn) = O(−pDn).

Given a log Frobenius lifting Fn as above, we get the OXn-morphism

dFn : F ∗nωXn/Wn → pωXn/Wn ⊂ ωXn/Wn ,

and hence the Hasse-Witt map over Wn−1, that is the OXn−1-morphism

dFn
p

: F ∗n−1ωXn−1/Wn−1 → ωXn−1/Wn−1 .

Recall that (En−1, θn−1, F iln−1, φn−1) is a two-periodic Higgs de-Rham flow
over Xn−1 lifting (E1, θ1, F il1, φ1) over X1. More explicitly,

φn−1 : GrFiln−1 ◦ C−1
Xn−1⊂Xn(En−1, θn−1) ∼= (En−1, θn−1)⊗ (Ln−1, 0)

is an isomorphism of graded Higgs bundles over Xn−1 lifting φ1, and it induces
the isomorphism ψn−1 := φn−1 ◦GrFiln−1⊗Filtr ◦ C−1

Xn−1⊂Xn(φn−1) which reads

ψn−1 : GrFiln−1⊗Filtr ◦C−1
Xn−1⊂Xn ◦GrFiln−1 ◦C−1

Xn−1⊂Xn(En−1, θn−1) ∼= (En−1, θn−1),

where Filn−1⊗Filtr is the tensor filtration on C−1
Xn−1⊂Xn(En−1, θn−1)⊗(Ln−1,∇n−1).

Notation: Write (E, θ) for the unique lifting (En, θn) of (En−1, θn−1) to Xn.
Let (H̄, ∇̄, F il) denote the de Rham bundle over Xn−1:

(H̄, ∇̄) = C−1
Xn−1⊂Xn(En−1, θn−1)⊗ (Ln−1,∇n−1), F il = Filn−1 ⊗ Filtr.

By the above discussion, φn−1 induces an isomorphism

ψ̄ : GrFil(H̄, ∇̄) ∼= (Ē, θ̄) := (En−1, θn−1)

The tuple (E, θ, H̄, ∇̄, F il, ψ̄) is therefore an object in the category H(Xn) (§5
[LSZ]). Fix an open affine covering U ′′ = {U ′′i }i∈I for Xn+1 such that the OU ′′i -
module ωXn+1/Wn+1(U

′′
i ) is free of rank one, which induces the corresponding open

affine covering U ′ = {U ′i} (resp. U = {Ui}) for Xn (resp. X1) by reduction modulo
pn (resp. p). Define U ′′ij = U ′′i ∩ U ′′j and similarly define U ′ij and Uij. Following a
suggestion of the referee, we shall assume in the following that the covering U ′′
of Xn+1 is so chosen that U ′′ij ∩Dn+1 = ∅ for all i, j. Certainly, this can be done,
since one can take for example U ′′i = X ′′n+1 −

∑
j 6=iDn+1,i where the boundary

divisor Dn+1 =
∑
Dn+1,i is written into the summation of disjoint Wn+1-rational

points of Xn+1. By doing so, we are saved from carrying out extra calculations
in the log setting in the proofs of Proposition 5.2 and Lemma 5.6 and in the
verification of the 2-cocycle condition of the Taylor formula. For each i ∈ I, fix
a log Frobenius lifting F ′′i : U ′′i → U ′′i whose restriction to U ′i is denoted by F ′i .
Without loss of generality, we assume that F ′′i restricts to a morphism on the
overlap U ′′ij for each i. Also, we can choose a local coordinate t′′ij for U ′′ij such
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that Dn+1 is locally defined by t′′ij, whose mod pn (resp. mod p) reduction will be
denoted by t′ij (resp. tij). In the case that Dn+1 ∩ U ′′ij = ∅, we set

zij =
F ′′∗i (t′′ij)− F ′′∗j (t′′ij)

p
∈ OU ′ij ;

Otherwise, we set

zij =
F ′′∗i (t′′ij)/F

′′∗
j (t′′ij)− 1

p
∈ OU ′ij .

The inverse Cartier transform C−1
n = C−1

Xn⊂Xn+1
is the composite of two functors2

H(Xn)
Tn→ M̃IC(Xn)

Fn→MIC(Xn).

The precise definition of each category shall not be recalled here. But since
we face a log situation which has not been considered in [LSZ], we need to
point out the necessary modifications in the construction. Roughly speaking,
the first functor Tn constructs a OXn-module with a quasi-nilpotent integrable
p-connection (H̃, ∇̃) from the given tuple (E, θ, H̄, ∇̄, ψ̄) in H(Xn). The explicit
formulas in the second approach to the construction of Tn show clearly that it
works verbatim in the log situation. The modification occurs in the second functor
Fn. Write H̃i for the restriction H̃|U ′i and similarly define ∇̃i. Then for each i,
define a local flat bundle over U ′i

Hi := F
′∗
i H̃i, ∇i : Hi → Hi ⊗ ωU ′′i /Wn ,

where

∇i(f ⊗ e) := df ⊗ e+ f(
dF ′′i
p
⊗ 1)(1⊗ ∇̃i(e)), f ∈ OU ′i , e ∈ H̃i.(5.5.1)

On the overlap U ′ij, the transition matrix is provided by the Taylor formula. By
the assumption that the boundary divisor does not appear in U ′ij, the usual Taylor
formula applies and it reads

Gij(e⊗ 1) =
∑
n≥0

∇̃n
∂t′
ij

(e)⊗
znij
n!
.

By the well-known 2-cocycle condition of the Taylor formula (also as verified in
§5 [LSZ]), {Gij} glues (Hi,∇i) into a global flat bundle (H,∇) which is defined
to be C−1

n (E, θ). As a final remark, the functor Tn does not depend on the choice
of Wn+1-liftings of Xn, but the functor Fn does.

Now we can proceed to prove Proposition 5.2. Let X̂n+1 be another Wn+1-
lifting of Xn. We put the hat on the notations for Xn+1 to mean the corresponding
notations for X̂n+1. For example, Û ′′i means an open affine subset of X̂n+1. We
shall assume that the reductions mod pn of the corresponding objects for both
liftings are the same.

2The notation differs slightly from §5 [LSZ]. To simplify the notation, we have not bothered
to make the obvious base change of the studied objects over X ′

n = Xn ×σ Wn.



37

Proof of Proposition 5.2. Use notation as above. Put also

(H ′,∇′) = (H,∇)⊗ Z/pn−1, F il′ = Filn−1.

Caution: The de Rham bundle (H ′,∇′, F il′) over Xn−1 is not (H̄, ∇̄, F il) (it
differs by a twist of Ln−1). For the lifting Xn+1, let {Gij} be the gluing functions
for the local flat bundles {(Hi,∇i)} to obtain (H,∇), provided by the Taylor

formula in the functor Fn. Correspondingly, let {Ĝij} be the gluing functions for

{(Ĥi, ∇̂i)} to obtain (Ĥ, ∇̂) = C−1

Xn⊂X̂n+1
(E, θ) with respect to the lifting X̂n+1.

We remind the reader that the bundles with p-connection obtained via the functor
Tn are the same for both liftings so we can identify Ĥi with Hi for each i.

For the fixed lifting Xn+1, we are going to compute a Čech-representative of
the obstruction class %(Xn ⊂ Xn+1) (5.1.2) to lift Fil′ to a Hodge filtration Fil
(which is a locally direct summand of H). We have the following diagram of
morphisms:

Hi

res
!!

Hj

res
||

Hi|U ′′ij

Gij∼= // Hj|U ′′ij
For each i ∈ I, we choose a local section ei of Hi, satisfying: (i) ei mod pn−1 is a
local basis for Fil′|U ′i ; (ii) Gij(res(ei)) = u′ijres(ej) mod pn−1 in H ′|U ′ij for some

unit u′ij (this is possible because Fil′ is a global subbundle of H ′). Therefore,
for any lifting u′′ij of u′ij to U ′′ij, Gij(res(ei)) and u′′ijres(ej) are two liftings of the

same local basis in Fil′|U ′ij , and
Gij(res(ei))−u′′ijres(ej)

pn−1 is then an element in H1|Uij .
Recall the projection map Pr : End(H1) → Hom(Fil1, H1/F il1) defined above.

Regarding Gij as an element in End(H|U ′′ij), Oij := Pr◦ Gij−u
′′
ij ·Id

pn−1 defines a section

of Hom(Fil1, H1/F il1) over Uij. Now we proceed to verify the 2-cocycle condition
for {Oij}. Complete the above local section ei into a local basis {ei, fi} of Hi and

then represent the transition Gij by the matrix

(
aij bij
cij dij

)
. The assumption

(ii) on ei implies cij = 0 mod pn−1. Let c̄ij =
cij
pn−1 ∈ OUij . For a temporary

use, let us put bar over a local section to mean its reduction mod p, and let
π : H1 → H1/F il1 be the projection. Then Oij(ēi|Uij) = c̄ijπ(f̄j|Uij). One derives
the 2-cocyle condition from the 2-cocycle condition satisfied by {Gij} as follows:
over U ′′ijk := U ′′i ∩ U ′′j ∩ U ′′k , one has the equality(

ajk bjk
cjk djkj

)(
aij bij
cij dij

)
=

(
aik bik
cik dik

)
,

which gives particularly the following equality in OU ′′ijk :

aijcjk + cijdjk = cik.

Dividing both sides by pn−1, one gets āij c̄jk + c̄ij d̄jk = c̄ik, where āij (resp. d̄jk)
is the mod p reduction of aij (resp. djk). On the other hand, over Uijk,

(Oij +Ojk)(ēi|Uijk) = (c̄ij d̄jk + āij c̄jk)π(f̄k|ijk),
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and Oik(ēi|Uijk) = c̄ikπ(f̄k|Uijk). Thus Oij +Ojk = Oik holds. Moreover, it is easy
to check further that the 1-cocyle {Oij} is a coboundary dh, h = (hi) iff cij can
be modified to be zero (so that {ei}s glue into a sub line bundle Fil of H lifting
Fil′. So {Oij} gives us a representative for the obstruction class lifting the Hodge
filtration.

Now we shall measure the difference of two obstruction classes coming from

two liftings X̂n+1 and Xn+1. Recall the function ẑij =
F̂ ′′∗i (t′′ij)−F̂ ′′∗j (t′′ij)

p
∈ OU ′ij in the

Taylor formula Ĝij. Define αij = ẑij − zij. By the assumption on the Frobenius
liftings, αij is divisible by pn−1. A direct calculation shows the following relation

between the transition matrices Ĝij and Gij:

Ĝij = Wij ·Gij,

where for e ∈ H̃|U ′ij ,

Wij(e⊗ 1) = e⊗ 1 + ∇̃∂t′ij
(e)⊗ αij.

Thus, the difference between the obstruction classes can be represented by

{Pr ◦ (
Ĝij − u′′ij · Id

pn−1
)− Pr ◦ (

Gij − u′′ij · Id
pn−1

) = Pr ◦ (
Wij − Id
pn−1

) ◦ Ḡij},

where Ḡij denotes the reduction of Gij mod p. As the reduction of p-connection

∇̃ mod p is just the Higgs field θ1, it follows that

Wij − Id
pn−1

= F ∗(θ1,∂tij
)
αij
pn−1

.

Let ν = [X̂n+1] − [Xn+1] ∈ H1(X1, TX1/k). The next lemma shows that the
cycle {− αij

pn−1 (∂tij ⊗ 1)} represents the class F ∗ν in H1(X1, F
∗TX1/k). Thus we

get C−1
1 (θ1)(F ∗ν) = −C−1

1 (θ1,∂tij
)
αij
pn−1 over the overlap Uij, and now we need a

clearer expression of it. For this, we choose a local basis ei = {ei,1, ei,2} of E1|Ui
and ej = {ej,1, ej,2} of E1|Uj , and let Mij be the transition matrix between the
two bases on the overlap Uij, that is, ej|Uij = ei|UijMij. Then ei⊗ 1 (resp. ej⊗ 1)
gives a local basis for F ∗E1|Ui (resp. F ∗E1|Uj) and the corresponding transition
matrix (to glue into F ∗E1) is F ∗Mij. By the construction of the inverse Cartier
transform, H1 is obtained by gluing F ∗E1|Ui and F ∗E1|Uj (using the above basis)
via the gluing matrix Ḡij ·(F ∗Mij) (the so-called exponential twisting in [LSZ0]),
where Ḡij = Id+ F ∗(θ1,∂tij

)z̄ij with z̄ij the mod p reduction of zij. Thus, on the

overlap, the morphism

F ∗E1|Uij
F ∗(θ1,∂tij )

−→ F ∗E1|Uij
is expressed into F ∗MijF

∗θ1,∂ti , where we use the restriction of ei ⊗ 1 on the
source and the restriction of ej ⊗ 1 on the target as local basis. On the other
hand, the morphism

H1|Uij
C−1

1 (θ1,∂tij )

−→ H1|Uij
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can be expressed as ḠijF
∗MijF

∗θ1,∂ti using the same bases as above. Thus, we
conclude that

C−1
1 (θ1,∂tij) = Ḡij ◦ F ∗(θ1,∂tij

) = F ∗(θ1,∂tij
) ◦ Ḡij,

where the second equality can be seen by the expression of Ḡij. Therefore {Pr ◦
Wij−Id
pn−1 ◦Ḡij} represents the class−Pr◦C−1

1 (θ1)◦F ∗(ν). This finishes the proof. �

The proof of the following lemma is analogous to that of Lemma 3.8 (1).

Lemma 5.6. Use notation as above. Then the image of ν = [X̂n+1] − [Xn+1]
under the map F ∗ : H1(X1, TX1/k)→ H1(X1, F

∗TX1/k) is represented by the class
{− αij

pn−1 (∂tij ⊗ 1)}.

Proof. Each open affine U ′i (resp. U ′ij which is again affine) has a unique
Wn+1-lifting V ′′i (resp. V ′′ij ) up to isomorphism (we shall suppress the choice of
isomorphisms in our argument). Fix embeddings {V ′′ij → V ′′j }, and corresponding

to the Wn+1-lifting X̂n+1 (resp. Xn+1) of Xn, there are embeddings {ĝij : V ′′ij →
V ′′i } (resp. {gij : V ′′ij → V ′′i }). Note that ĝij and gij have the same reduction

modulo pn. Thus
ĝ∗ij−g∗ij
pn

: OUi → OUij is a k-derivation and gives rise to a

Čech-representative {νij} for ν ∈ H1(TX1/k). Now we choose and then fix (log)
Frobenius liftings {G′′i : V ′′i → V ′′i }i∈I which are assumed to induce Frobenius
liftings over V ′′ij . Thus we get two composite morphisms

gij ◦G′′j , G′′i ◦ gij : V ′′ij → V ′′i

which are two (log) Frobenius liftings over V ′′ij . By the identification U ′′ij = V ′′ij ,
we can assume F ′′i = G′′i ◦ gij and F ′′j = gij ◦G′′j on the overlap. Then we get

zij =
g∗ij ◦ (G′′i )

∗(t′′ij)− (G′′j )
∗ ◦ g∗ij(t′′ij)

p
.

Similarly, we obtain

ẑij =
ĝ∗ij ◦ (G′′i )

∗(t′′ij)− (G′′j )
∗ ◦ ĝ∗ij(t′′ij)

p
.

Because of the mod pn-reduction property of ĝij and gij, the difference αij =
ẑij − zij is divisible by pn−1, and we get

αij
pn−1

=
ẑij − zij
pn−1

=
1

pn
(
(ĝ∗ij − g∗ij) ◦ (G′′i )

∗(t′′ij)− (G′′j )
∗ ◦ (ĝ∗ij(t

′′
ij)− g∗ij(t′′ij))

)
.

As
ĝ∗ij−g∗ij
pn

is a derivation and d(G′′i )
∗(t′′ij) is divisible by p,

(ĝ∗ij−g∗ij)◦(G′′i )∗(t′′ij)

pn
= 0.

Therefore,

− αij
pn−1

=
(G′′j )

∗ ◦ (ĝ∗ij(t
′′
ij)− g∗ij(t′′ij))
pn

= F ∗ ◦ (
ĝ∗ij − g∗ij
pn

)(tij),

which means {− αij
pn−1 (∂tij⊗1)} represents the class {F ∗ν} ∈ H1(X1, F

∗TX1/k). �
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Finally, we shall provide the proof of Lemma 5.4, which follows directly from
the construction of the inverse Cartier transform.

Proof of Lemma 5.4. Start with n = 1. Note that (L1, 0, F iltr, id) defines
a one-periodic Higgs de-Rham flow over X1. Therefore, the tuple

(L2, 0,L1,∇can, F iltr, id)

is an object inH(X2), where∇can is the canonical connection on F ∗L1 = L
p
1 = L1.

Let (H̃2, ∇̃2) be the corresponding bundle with p-connection. According to the
second approach in the construction of the functor T2 given in [LSZ], H̃2 can be
identified with the cokernel of the morphism

L2 → L1 ⊕ L2, x 7→ (x̄,−px),

where x̄ is the reduction of x mod p. It factors as

L2

mod p
� L1

(id,−p)
↪→ L1 ⊕ L2,

whose image is clearly identified with the kernel of the morphism

L1 ⊕ L2

 p
id


� L2.

Hence H̃2 = L2. Let e be a local section of L2 such that its mod p reduction is a
local (∇can-)flat basis of L1. Then e is flat with respect to the p-connection ∇̃2 by
its definition. Next, by Formula (5.5.1), it is also clear that 1⊗ e is a flat basis of
the local flat bundle (H2,∇2) = F2(H̃2, ∇̃2) restricted to some open affine subset.
Suppose the transition function of H̃2 = L2 is given by gij. Then by the Taylor
formula expressed via the local flat bases, we know that the transition function
for H2 is given by gpij which simply means H2 = L

p
2 = L2. Then one constructs

inductively the one-periodic Higgs-de Rham flow (Ln, 0, F iltr, id) over Xn/Wn

(or equivalently the object (Ln, 0,Ln−1,∇n−1, F iltr, id) in H(Xn)) and shows, by
local calculations similar to the above, that C−1

Xn⊂Xn+1
(Ln, 0) = (Ln,∇n) for n ≥ 2

and Ln admits a local flat basis with respect to ∇n. �

6. Appendix: Cartier transform and inverse Cartier transform in a
special log case

Let k be a perfect field of positive characteristic and X a smooth algebraic
variety over k. Let D =

∑
iDi ⊂ X be a simple normal crossing divisor, where Di

is a smooth irreducible component. This gives rise to one of standard examples
of the logarithmic structure on X (Example 1.5 (1) [KKa]). The aim of this
appendix is to provide the Cartier/inverse Cartier transform of Ogus-Vologodsky
[OV] in this special log case. Note the thesis of D. Schepler (see [S]) has treated
this issue in a more general log setting. In particular, we believe our main result
Theorem 6.1 is really contained in Corollary 4.11 (iii) in [S]. Thus, the main point
of this appendix is to provide the exponential twisting approach (see [LSZ0] for
D = ∅) to the Cartier/inverse Cartier transform of Ogus-Vologodsky and Schepler
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in this special log setting. Also, the construction of the inverse Cartier transform
serves as the basis for its lifting to a truncated Witt ring as sketched in §5. We
acknowledge our referee pointed out an error in the original formulation of the
category MIC0

≤n(Xlog/k).

Let ωXlog/k = ΩX(logD) be the sheaf of log differential forms which is a
locally free OX-module. Let TXlog/k be its OX-dual. Let us recall the short exact
sequence of the residue map:

0→ ωX/k → ωXlog/k

⊕resDi−→ ⊕iODi → 0,

where ωX/k is the sheaf of regular differential one forms on X. First we formulate
two categories: for a nonnegative integer n, let HIG≤n(Xlog/k) be the category
of nilpotent logarithmic Higgs sheaves over X/k of exponent ≤ n. Any object
(E, θ) ∈ HIG≤n(Xlog/k) is of form

θ : E → E ⊗ ωXlog/k

satisfying

θ∂1 · · · θ∂n+1 = 0

for any local sections ∂1, · · · , ∂n+1 of TXlog/k
3. Let HIG0

≤n(Xlog/k) be the full
subcategory of HIG≤n(Xlog/k) with the tor condition :

T or1(E,F∗ODi) = 0, ∀ i.(6.0.1)

Note that the tor condition is a local condition: T or1(E,F∗ODi) = 0 iff for every

closed point x ∈ Di, Tor
OX,x
1 (Ex, F∗ODi.x) = 0. Note also that the tor condition is

obviously satisfied in the case that either E is locally free or D is simply an empty
set. Correspondingly, let MIC≤n(Xlog/k) be the category of nilpotent logarithmic
flat sheaves of exponent ≤ n (its object is similarly defined with the nilpotent
condition referring to its p-curvature) and MIC0

≤n(Xlog/k) the full subcategory of
MIC≤n(Xlog/k) consisting of objects (H,∇) satisfying the tor condition

T or1(H,ODi) = 0, ∀ i,(6.0.2)

together with the residue condition that the residue of ∇ is nilpotent of exponent
≤ n which is explained as follows: recall that for a logarithmic flat (resp. Higgs)
sheaf (H,∇) (resp. (E, θ)), the residue along Di is an ODi-linear morphism

ResDi∇ : H|Di := H ⊗ODi → H|Di
(resp. ResDiθ : E|Di → E|Di) obtained from the composite

H
∇−→ H ⊗ ωXlog/k

id⊗resDi−→ H ⊗ODi .

If for each i, (ResDi∇)n+1 = 0 (resp. (ResDiθ)
n+1 = 0), we call the residue of

∇ (resp. θ) nilpotent of exponent ≤ n. Note that, for (E, θ) ∈ HIG≤n(Xlog/k),
(Res θ)n+1 = 0 holds automatically; but this is not the case for MIC≤n(Xlog/k).

3The convention of exponent adopted here differs from the one used in [LSZ0] which
originated from N. Katz [KA], but conforms with the one used in Ogus-Vologodsky [OV].
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Theorem 6.1 (Corollary 4.11 (iii) [S]; Theorem 1.2 [LSZ0] for D = ∅).
Assume (X,D) is W2-liftable. Then there is an equivalence of categories

HIG0
p−1(Xlog/k)

C−1

−−−⇀↽−−−
C

MIC0
p−1(Xlog/k).

Our argument follows the line of [LSZ0] which is completely elementary. The
tor condition first appears in the logarithmic analogue of the Cartier descent
theorem due to A. Ogus (see Theorem 1.3.4 [O]), from which we borrow for the
following simple reason:

Lemma 6.2. Let HIG0
≤0(X/k) (resp. MIC0

≤0(X/k)) be the full subcategory of
HIG≤0(X/k) (resp. MIC≤0(X/k)) with the tor condition (6.0.1) (resp. 6.0.2).
Then the category HIG0

≤0(Xlog/k) is equal to HIG0
≤0(X/k) while the category

MIC0
≤0(Xlog/k) is equal to MIC0

≤0(X/k). The classical Cartier descent theorem

gives an equivalence of categories between HIG0
≤0(X/k) and MIC0

≤0(X/k).

Proof. Since ωX/k is naturally a subsheaf of ωXlog/k, HIG0
≤0(X/k) (resp.

MIC0
≤0(X/k)) is a subcategory of HIG0

≤0(Xlog/k) (resp. MIC0
≤0(Xlog/k)). Take

an object (H,∇) in MIC0
≤0(Xlog/k). By the tor condition, one has a short exact

sequence

0→ H ⊗ ωX/k → H ⊗ ωXlog/k
id⊗res→ ⊕iH ⊗ODi → 0.

The residue condition says that ∇(H) ⊂ H ⊗ ωXlog/k goes to zero under the
morphism id⊗ res and therefore is contained in H ⊗ωX/k by the exactness of the
previous sequence. Thus the logarithmic flat sheaf (H,∇) is indeed a flat sheaf
on X. So

MIC0
≤0(X/k) = MIC0

≤0(Xlog/k).

The equality HIG0
≤0(X/k) = HIG0

≤0(Xlog/k) is clear. It remains to show the
Cartier descent preserves the tor conditions. Let (E, 0) in HIG≤0(X/k), and let
(H = F ∗E,∇can) ∈ MIC≤0(X/k) be the corresponding object. Since X/k is
smooth, the absolute Frobenius morphism F is flat. By the flat base change for
tor, one has the equality of OX-modules:

F∗T or1(H,ODi) = T or1(E,F∗ODi).

From this, one sees that (E, 0) satisfies the tor condition (6.0.1) iff (H,∇) satisfies
the tor condition (6.0.2). This completes the proof. �

We can proceed to the proof of Theorem 6.1, whose idea is to reduce the
general case to the classical Cartier descent (Lemma 6.2) via an exponential
twisting [LSZ0].

Proof. Given the explicit exposition of the constructions in [LSZ0] for the
case where D is absent, we shall not repeat the whole argument but rather em-
phasize the new ingredients in the new situation. Fix a W2-lifting (X̃, D̃) of
(X,D), see Definition 8.11 [EV]. Recall that, for an open affine subset Ũ ⊂ X̃, a
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log Frobenius lifting over Ũ , respecting the divisor D̃U := D̃ ∩ Ũ , is a morphism
over the Frobenius on W2

F̃(Ũ ,D̃U ) : OŨ → OŨ
lifting the absolute Frobenius morphism on U := Ũ × k and satisfying

F̃ ∗
(Ũ ,D̃U )

OŨ(−D̃U) = OŨ(−pD̃U).

Such a lifting exists and two such liftings differ by an element in F ∗TXlog/k over U .
See Propositions 9.7 and 9.9 in [EV]. Then, proceeding in the same manner as in
Section 2.2 [LSZ0] for the inverse Cartier transform C−1, one obtains (H,∇) =
C−1(E, θ), which clearly belongs to MIC≤p−1(Xlog/k). Since E satisfies the tor
condition and H is locally F ∗E, it follows that H also satisfies the tor condition
from the proof of Lemma 6.2. Now we use ζ to represent the map

dF̃(Ũ ,D̃U )

p
: F ∗ωXlog/k(U)→ ωXlog/k(U).

Then locally over U , the connection is given by

∇|U = ∇can + ζ(F ∗θ|U).

It follows that ResDi∇|U = F ∗ResDiθ|U and therefore (H,∇) ∈ MIC0
≤p−1(Xlog/k).

Conversely, given an object (H,∇) ∈ MIC0
≤p−1(Xlog/k), one proceeds as Section

2.3 [LSZ0]. In the same way, one shows that the new connection

∇′|U = ∇|U + ζ(ψ|U),

where ψ = ψ∇ : H → H ⊗ F ∗ωXlog/k is the p-curvature of ∇, has vanishing
p-curvature. However, there is one new ingredient here, namely, the following.

Claim 6.3. The following diagram commutes:

H

��

ψ∇ // H ⊗ F ∗ωXlog/k
id⊗ζ // H ⊗ ωXlog/k

id⊗resDi
��

H ⊗ODi
−ResDi∇ // H ⊗ODi .

(6.3.1)

Granted the truth of the claim (which is proven below), the residue of ∇′|U
vanishes. In this way, we reduce it to Lemma 6.2. �

Here is the proof of the claim just mentioned above:

Proof. Let x ∈ Di be a closed point and let {t1, · · · , td} be a set of local
coordinates for an open affine neighborhood Ũ ⊂ X̃ of x, such that D̃Ũ is defined

by
∏

1≤j≤r tj = 0. Then {dtj
tj
, dtl}1≤j≤r,r+1≤l≤d is a basis for Γ(Ũ , ωX2/W2), where

ωX2/W2 stands for the sheaf ΩX̃(log D̃). Assume moreover that D̃i,Ũ is defined by

t1 = 0. Let R = Γ(Ũ ,OŨ). Then a log Frobenius lifting over Ũ is of the following
form:

F̃ (tj) = tjuj, uj = 1+paj, 1 ≤ j ≤ r, F̃ (tl) = tpl +pbl, r+1 ≤ l ≤ d, aj, bl ∈ R.
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Consider the composite over U (here we write ζF̃ for ζ to distinguish the choice

of F̃ in the definition):

F ∗ωXlog/k

ζF̃→ ωXlog/k

resDi−→ ODi .

We claim that it is independent of the choice of F̃ . Indeed, because

ζF̃ (
dtj
tj

) =
dtj
tj

+ daj; ζF̃ (dtl) = tp−1
l dtl + dbl,

it follows that resDi ◦ ζF̃ (dt1
t1

) = 1 and

resDi ◦ ζF̃ (
dtj
tj

) = resDi ◦ ζF̃ (dtl) = 0, 2 ≤ j ≤ r, r + 1 ≤ l ≤ d.

Thus, we can take the standard log Frobenius lifting F̃ (ti) = tpi for each i in
the following calculation. Using the standard Frobenius lifting, the composite
(id⊗ ζ) ◦ ψ is expressed into

ψ = ψ1 ⊗
dt1
t1

+ · · ·+ ψr ⊗
dtr
tr

+ tp−1
r+1ψr+1 ⊗ dtl + · · ·+ tp−1

d ψd ⊗ dtd,

where ψj (resp. ψl) is the endomorphism of H over U defined by ψ1⊗tj∂tj (resp.

ψ1⊗∂tl ). Similarly, we express the connection over U into

∇ = ∇1 ⊗
dt1
t1

+ · · ·+∇r ⊗
dtr
tr

+∇r+1 ⊗ dtl + · · ·+∇d ⊗ dtd.

Since we are considering the residue along Di which is defined by t1 = 0, to show
the commutativity of the diagram (6.3.1), it suffices to verify the equality

ψ1|t1=0 = −∇1|t1=0,

whose verification is formally like the curve case. For simplicity, we write t for
t1. By an elementary calculation, one finds (t∂t)

p = t∂t. Thus,

ψ1 = ψ1⊗t∂t = ∇p
t∂t
−∇t∂t ,

so we conclude that its residue ψ1|t=0 at {t = 0} equals

∇p
t∂t
|t=0 −∇t∂t|t=0 = (∇t∂t|t=0)p −∇t∂t|t=0 = −∇t∂t|t=0

which is just −∇1|t=0. Note the second equality in above follows from the as-
sumption (ResDi∇)p = 0. The claim follows. �
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