RATIONALLY INEQUIVALENT POINTS ON
HYPERSURFACES IN P"

XI CHEN, JAMES D. LEWIS, AND MAO SHENG

ABSTRACT. We prove a conjecture of Voisin that no two distinct points
on a very general hypersurface of degree 2n in P" are rationally equiva-

lent.
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1. INTRODUCTION

In [V1] and [V2], C. Voisin proved the following ([V1, Theorem 3.1] and
[V2 Theorem 0.6])

Theorem 1.1 (C. Voisin). Let X be a very general complete intersection
in Pk of type (dy, da, ..., dy).
o If> (di—1) > 2n+ 2, no two distinct points on X are Q-rationally
equivalent.
o If (n,k,d1) = (2,1,6), there are at most countably many points on
X that are Q-rationally equivalent to a fixed point p for all p € X.

The main purpose of this note is to generalize this result in two directions.
First, we will make a minor improvement by replacing rational equivalence
by Roitman’s I'-equivalence [R1]: fixing a smooth projective curve I' and
two points 0 # oo € T, for every algebraic cycle ¢ € ZF(X xT') with supp(€)
flat over I', the fibers &y and £~ of € over 0 and oo are I'-equivalent, written
as &y ~r €xo. We will prove

Theorem 1.2. For a fized smooth projective curve I' with two fized points
0 # o0, no two distinct points on a very general complete intersection X in
Pt of type (dy,ds, ..., dy,) are T-equivalent over Q if S (d; — 1) > 2n + 2,

Second, we will try to find the optimal bound for d; where the result
holds. Our most optimistic expectation is

Conjecture 1.3. For a very general complete intersection X C Ptk of
type (di,da, ..., dy) and every point p € X,
k
(1.1) dim Ry pr < 2n— Y (d;i — 1)
i=1
where Rx pr ={q#p€ X : N(p—q) ~r 0 for some N € ZT} and T is a
fizxed smooth projective curve with two fized points 0 # oco.

Note that Ry, is a locally noetherian scheme.
The case Y (d; — 1) = n + 1 follows from Roitman’s generalization of
Mumford’s famous theorem ([Mu], [R1] and [R2]). Of course, Voisin proved

k
(1.2) dim Ry ,p1 <2n+1— Y (di—1)
i=1
for > (di—1) > 2n+2 or (n,k,d1) = (2,1,6). Theorem [1.2]shows that
holds for > (d; — 1) > 2n + 2.

If our conjecture holds, Rx,r = 0 when ) (d; — 1) > 2n + 1. So the
“boundary” case is » (d; — 1) = 2n + 1. For example, it is expected that
Rx,r = 0 for a very general sextic surface X C P3. Voisin’s theorem
shows that dim Ry , p1 = 0 for such surfaces X. This boundary case is quite
challenging, even only for sextic surfaces. We claim the following:
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Theorem 1.4. No two distinct points are I'-equivalent over Q on a very
general hypersurface X C P! of degree 2n+2 for a fized smooth projective
curve T' with two fized points 0 # oo. That is, (1.1) holds for k = 1 and
d1 =2n -+ 2.

Note that the bound d > 2n + 2 is optimal for hypersurfaces of degree d
in P"*1: For a general hypersurface X of degree d < 2n + 1 in P"*!, there
exist two lines L and L in P"*! such that each L; meets X at a unique

point Di with D1 7& D2

Conventions. We work exclusively over C. Indeed, any two points on a
variety over [F,, are rationally equivalent over Q.

2. RELATIVE CYCLE MAP

Voisin’s proof consists of two major components. One is relative cycle
map. For a relative Chow cycle Z € CH}, (X/B) for a smooth projective
family 7 : X — B of relative dimension n, if AJ,(Z,) = 0 under the Abel-
Jacobi map on each fiber X}, one can define some infinitesimal invariant
0Z € H"(R"m.Q). This invariant can be defined in a Hodge-theoretical
way as in [V2]. Please see for a comprehensive treatment along this
line. Here we take a different approach: we define §Z directly by (see
below) and then we prove §Z is invariant under rational equivalence. This
has the advantage of being elementary: no Hodge theory is involved in the
definition of Z. In addition, we will obtain for free that §Z is invariant
under I'-equivalence. Another advantage of this approach is that §7 is well
defined for an arbitrary flat family 7 : X — B without any extra hypotheses
on X/B.

Definition 2.1. Let # : X — B be a flat and surjective morphism of
relative dimension n from X onto a smooth variety B of dim B = N. For a
multi-section Z C X, we define

(2.1) 67 € Hom(m, (AVQx), ANQp) = Hom (. QF, K5)

as follows:

Tr
(22) 0Z =Trypo(do): 0¥ 2, (100) QY = (r00).Kz 25 Kp
where Trz,/p is the trace map and o : Z < X is the embedding.

We can easily extend § to the free abelian group Z"(X/B) of algebraic

cycles Z of pure codimension n in X whose support supp(Z) is flat over B.
For Z =Y m;Z; with Z; multi-sections of 7, we let 6Z = > m;dZ;.

Remark 2.2. The definition (2.2 of 6Z might need some further explanation.
The differential map do is usually do : 0*QF — QY. In [2.2), it is the
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composition of do and (7 o 0),:

QY —— T (O © 07) — (10 0).0Y
(2.3) H

W*(U*U*Q%).

The trace map Try/p can be defined for m,(A™Qz) — A"{p under a gener-
ically finite map m : Z — B. Obviously, it is well defined outside of the
ramification locus of 7. Since every meromorphic differential form in A™Qpg
is regular if it is regular in codimension 1, it suffices to show that the image
of a differential m-form on Z under the trace map can be extended to a
regular m-form on B in codimension 1 [Kl Proposition 5.77, p. 185]. More-
over, the trace map is well defined for B normal if we follow the convention
to define Q25 to be the sheaf of differential forms regular in codimension
1. However, Tr/p cannot be defined for m(Q5™) — QY™ when m > 2,
which is the reason why Mumford’s argument cannot be generalized using
pluri-canonical forms.

For Z € Z"(X/B) and a morphism f : B’ — B, we clearly have the
commutative diagram

fraf —— af,

|762) |t z)

f*KB —_— KB’

(2.4)

where X' = X x g B’ and we also use f to denote the map X’ — X.

Lemma 2.3. Let 7 : X — B be a flat and projective morphism of relative
dimension n from X onto a smooth variety B of dim B = N and let Z be
a cycle in Z"(X/B). If mQ¥ is locally free and Z, ~r 0 for all b € B,
then 6Z = 0, where I' is a fixed smooth projective curve with two fized points
0 # 0.

Proof. Since F*Q% is locally free, §Z = 0 if and only if §Z = 0 at a general
point of B.

Using a Hilbert scheme argument, we can find a dominant and generically
finite morphism f: B — B and a cycle Y € Z"(X’ x I") such that supp(Y)
is flat over B’ x I' and Yy — Yoo = f*Z, where X' = X x g B’, Y} is the fiber
of Y over t € I and f*Z is the pullback of Z under f : X’ — X. Obviously,
0Z =0if 6f*Z = 0 by and the fact that W*Q% is locally free. To
simplify our notations, we replace (X, B) by (X', B').

For every t € ', Y; € Z2"(X/B) and thus it induces a map

(2.5) v : T — Hom(m, Y, Kp)
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by ~(t) = §Y;. More precisely, since Y is flat over B x T', we have
oY € Hom(E*Q%—:%n Kpxr)

(2.6) = Hom(njm Q™ @ nimQX @ n; Kr,1i Kp @ n; Kr)
‘ — Hom(n{m. QY @ ns Kr,n{Kp ® n3Kr)

= Hom(n{ 7. Q% , n K5)

where €, 1 and 7y are the projections e : X xI' > BxI',my: BxI'— B
and 72 : B x I' — T, respectively. Clearly, () is the restriction of Y to
the point ¢t € I'. It follows that - is a morphism. And since I' is projective,
it must be constant. Therefore, 67 = §Yy — §Y, = 0. We are done. O

So, to show that o1(b) 7r o2(b) over Q at a general point b € B for
two sections o; : B < X of X/B, we only need to find s € H(U, 7. Q%)
satisfying

(2.7) (doy)ots — (dog)oys #0

over some open dense subset U C B. The existence of such s is guaranteed
if HO(X,, Q) is imposed independent conditions by o;(b) for b € B general.
This observation leads to the following:

Proposition 2.4. Let m : X — B be a smooth and projective morphism
from X onto a smooth variety B of dim B = N. Suppose that H°(X,, Q)
is imposed independent conditions by all pairs of distinct points p # q € Xy
for b € B general. Then Rx, ,r =0 for b € B very general and all p € X,
where T is a fixed smooth projective curves with two fixed points 0 # oo.
More generally,

Rx,pr C {q € Xp:q#p and {p,q} does not impose independent
(2.8)
conditions on H°(X, Q)]\(])}

for b € B very general.

Here we say that a closed subscheme Z C X or its ideal sheaf Iy C Ox
imposes independent conditions on a coherent sheaf F or its global sections
HY(F) (resp. a linear series D C H°(F)) on X if H(F) — HY(F ® Oy)
(resp. D — H(F ® Oy)) is surjective.

Proof of Proposition[2.. Suppose that there are a pair of points p # ¢ on
a general fiber X} such that p ~p ¢ over Q and {p, ¢} imposes independent
conditions on H%(X,, QY). By a base change and shrinking B to an affine
variety, we may assume that

e there exists two disjoint sections P and Q C X of 7 : X — B such

that m(Py, — Qp) ~r 0 for some m € Z* and all b € B,
o h0(X,, QF) is constant for all b € B and
e HO(QF) is imposed independent conditions by P L Q.
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Since PUQ imposes independent conditions on H D(Q% ) and Q% is locally
free, the map

(2.9) HYQY ® Ip) —2» HO(0p0)

is a surjection, where op and og : B — X are the embeddings of P and @
to X, respectively. Combining (2.9)) with the pullback map of o : B — X
on differentials, we have a composition of two surjections

o¢ do
(2.10) HOON @ Ip) —» HO(0pQY) —» HO(QY)

where dop and dog are the pullback maps induced by op and og on the
differentials, respectively. Therefore, there exists s € H°(QY) such that

(2.11) ops =0 and (dog)ogs # 0.
It follows that
(2.12) (6Z,s) = (dop)ops — (dog)ogns = —(dog)ogs # 0

for Z = P — Q. On the other hand, 6Z = 0 by Lemma [2.3] Contradiction.
The above argument shows that no irreducible component of

Sxr = {(b,p,q) :b € B and p # q € X} satisfy that p ~p q over Q
(2.13) and {p, ¢} imposes independent conditions
on H'(Xy, Q%)}

dominates B via the projection § : Sy — B. Note that Sxr is a locally
noetherian subscheme of X x g X. Therefore, for b € B\{(Sx ) very general,

2-8) holds. 0

Remark 2.5. Note that the right hand side (RHS) of (2.8) is a subscheme
that does not depend on the choice of the triple (I, 0, c0).

3. POSITIVITY OF THE SHEAF OF HOLOMORPHIC N-FORMS

3.1. A key lemma. Let us first review some basic notions on global genera-
tion and very ampleness of coherent sheaves. A coherent sheaf V' on a variety
X is globally generated (vesp. very ample) if the map HO(V) — HY(V @ Oy)
is surjective for all 0-dimensional subschemes Z C X of length h°(Oz) = 1
(resp. 2), i.e., V is imposed independent conditions by all 0-subschemes of
length 1 (resp. 2). More generally, we say that a linear series D C H(V) is
globally generated (resp. very ample) if the map D — H°(V ® Oy) is surjec-
tive for all O-dimensional subschemes Z C X of length h°(Oz) = 1 (resp. 2).
The hypothesis in Proposition that Q% ® Ox, is imposed independent
conditions by two distinct points is a weak version of very-ampleness, which
is technically easier to treat and suffices for our purpose. We call V' weakly
very ample if H°(V) is imposed independent conditions by all pairs of two
distinct points on X.
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Let us go through some basic facts on these notions:

e A quotient of a globally generated (resp. (weakly) very ample) co-

herent sheaf is also globally generated (resp. (weakly) very ample).
More generally, if a coherent sheaf V' on a variety X is imposed in-
dependent conditions by a 0-dimensional subscheme Z C X, so is a
quotient Q) of V.

For coherent sheaves V and W on a variety X, if V is globally gen-
erated and W is imposed independent conditions by a 0-dimensional
subscheme Z C X, then V ® W is imposed independent conditions
by Z. In particular,

— if V is globally generated and W is globally generated (resp.
(weakly) very ample), V ® W is also globally generated (resp.
(weakly) very ample);

— if V is globally generated (resp. (weakly) very ample), so are
VeN Sym™ V and ANV for all N > 1.

Let

0 >y U sV —L s W 0

be a short exact sequence of coherent sheaves on a variety X, if
the map noI' : I'(V) — I'(W) induced by 7 is surjective and both
U and W are imposed independent conditions by a 0-dimensional
subscheme Z C X, the same is true for V. Thus, if nol is surjective
and both U and W are globally generated (resp. (weakly) very
ample), V is also globally generated (resp. (weakly) very ample).
Here we write I'(A) = HY(A).

Basically, if we have a short exact sequence , the global generation
(resp. very-ampleness) of V' implies that of W; the global generation (resp.
very-ampleness) of U and W implies that of V' under the extra hypothesis
that o I' is surjective. The hard question is how to tell whether a 0-
dimensional scheme Z imposes independent conditions on U if it does on V.
The following key lemma gives us a criterion for that.

Lemma 3.1. Let

(3.2)

a1 lOlQ l&g

0 > A1 > AQ iU A3
B By Bs

0

be a commutative diagram of sheaves over a topological space X whose rows
are left exact. Suppose the map as ol is surjective. Then the map ay ol is
surjective if and only if

(3.3)

n(ker(ag oI')) =noTl'(Az) Nker(agol).
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Proof. This follows from the diagram

(3.4) 0 —— [(4) —— T(A) —L— G 0

la 1 a9 a3
v ~

0

and the snake lemma, where E = ker(ag oI'), ' = noI'(Az) Nker(azol)
and G = nolI'(Az). Of course, this lemma can be formulated and proved in
abelian categories for left exact functors. ([

A typical way to apply the above lemma is the following: if U,V and
W are locally free in (3.1) and V is globally generated, then U is globally
generated if and only if

(3.5) nol'(V&I,) =nol'(V)NI'(W & Ip)
for all p € X.

3.2. Sheaf of holomorphic N-forms. The other component of Voisin’s
proof is the positivity of the sheaf of holomorphic N-forms. More precisely,
we are considering the global generation and very-ampleness of the sheaf
ANQy = Q% when restricted to a general fiber of a family 7 : X — B over
B of dim B = N. Voisin proved [V1l, Proposition 3.4] and [V2, Corollary
1.2]:

Theorem 3.2 (C. Voisin). Let X C B x P"** be a versal family of com-
plete intersections of type (d1,da, ...,dy) in Pk over a smooth variety B of
dim B = N. Then for a general point b € B,

(3.6) N eorKy' 2T ® Kyp
is globally generated on Xy if > (d; — 1) > 2n + 1 and very ample on X,

if Yo(di — 1) > 2n + 2, where 7 is the projection X — B, Tx = QY is the
holomorphic tangent bundle of X and T% = N"Tx.

Let us go over Voisin’s proof of the above theorem. The key fact is that
Tx (1) is globally generated [V2, Proposition 1.1]:

Theorem 3.3 (Clemens). For a versal family X CY = B x P of complete
intersections in P = P"** over a smooth variety B, Tx (1) = Tx ® Ox(1)
is globally generated on a general fiber Xy, where Op(1) is the hyperplane
bundle on P.
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This theorem was originally due to Herbert Clemens [C]. We will give a
proof following closely the argument of Lawrence Ein in [E1] and [E2].

Proof of Theorem[3.3. We have the so-called adjunction sequence
(3.7) 0 s Tx Ty @ Ox —— Nx — 0

associated to X C Y, where Nx is the normal bundle of X in Y. By (3.3)
in Lemma Tx (1) ® Ox, is globally generated if

(3.8) Ty (1) ® Oy, is globally generated
and
(3.9) noly(Ty (1) @ Ip) = noTy(Ty (1)) NT(Nx (1) ® 1)

where we use the notation I'y for I'y(F) = H°(Xp, F).
Obviously, (3.8]) follows immediately from the fact that

(3.10) Tp(1) and Op(1) are globally generated,
while (3.9) follows if we can prove that the map

HO(Xy, Ty (1) @ I,) — H°(X3, Nx(1) ® )

(3.11) \» H

HO(Nx, (1) ® Ip)

is surjective for all p € X}, where N, is the normal bundle of X; in P.
The surjectivity of the map (3.11)) comes from the surjectivity of two maps

(3.12) H(Nx,) ® H°(Ox,(1) ® I)) — H°(Nx, (1) ® I)
and
(3.13) HO(X,, Tp) & Ty H(Xy, Ty) — H°(N,)

via the diagram

HO(Xb, Ty) & HO(OXb(l) & Ip) —_ HO(Xb,Ty(l) ® Ip)

(3.14) l l

H(Nx,) @ H(Ox,(1) @ I,) ——— H°(Nx,(1) ® I),

where T, is the holomorphic tangent space of B at b and the map (3.13))
is induced by the Kodaira-Spencer map of the family X/B C Y/B.
Finally, (3.12]) follows from the fact that

(3.15) HY(Op(d)) ® H'(Op(1) @ I,) — H°(Op(d+1)®1,)

is surjective for all p € P and d > 0 and (3.13) is a consequence of the
hypothesis that X/B is versal. O
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To put it in a nutshell, the global generation of T'x (1) ® O, comes down

to three easy-to-verify facts (3.10)), (3.12) and (3.13). Thus, we can put
Theorem in a more general setting:

Theorem 3.4. Let P be a smooth projective variety, X be a smooth closed
subvariety of Y = B x P that is flat over a smooth variety B and let L be a
line bundle on the fiber X} of X/B over a point b € B. Suppose that

(3.16) Tp ® L and L are globally generated on Xy,

(3.17) Ho(Ny,) ® HY(L® I,) — H°(Nx, ® L ® I,)

is surjective for all p € Xy and the Kodaira-Spencer map

(3.18) Tpp — H(Nx,)/H(Xy, Tp)

is surjective. Then Tx ® L is globally generated on Xp. In addition,
(3.19) HY Xy, Tx ® L) = H' (X}, Tx ® L®I,) =0

for allp € Xy, if H' (X, Tp ® L) = H'(X,, L) = 0.

Note that the map (3.18) is the Kodaira-Spencer map associated to the
family X/B C Y/B, as given in the following diagram

Ty

(3.20) | \

0 — HYTx,) — H°(X,,Tp) — H°(Nx,) — HY(TY,).

The surjectivity of simply says that B dominates the versal deforma-
tion space of X C P.

Once we have the global generation of T'x (1), Theorem follows easily
from the fact

(321)  TR®Kyp=A"Tx(1)) ®Ox (Z(di 1) - (@2n+ 1)) .
Indeed, we can put Theorem [3.2]in a more general form as
Theorem 3.5. Under the same hypotheses of Theorem 5.4, T% ® Kx/p

is globally generated (resp. wvery ample) on Xy if Kx, ® L™ is globally
generated (resp. very ample).

Of course, combining Proposition and Theorem we arrive at the
following:

Theorem 3.6. Under the same hypotheses of Theorem we assume that

(3.16), (3.17) and (3.18) hold and Kx, ®@ L™" is very ample for b € B general

and n = dim X,. Then Rx, pr = 0 for b € B very general and all p € Xy,
where 1" is a fized smooth projective curve with two fixed points 0 # oo.

This implies Theorem [I.2]
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3.3. Global generation of T)%(l). In order to prove part of Conjecture
e.g., that no two points on a very general sextic surface are rationally
equivalent, we need to show that

ON @Kzl 2T @ Oy (Z(di 1) —(n+ 1))

>~ T7(n) ® Ox (Z(di —1)-@n+ 1))

is imposed independent conditions by two distinct points on a general fiber
Xp when > (d; — 1) > 2n + 1. Namely, we need improve Voisin’s theorem
to show that T%(n) is weakly very ample. Of course, if this is true for
T (m) for some m < n, it is true for T%(n). So we conjecture

(3.22)

Conjecture 3.7. Let X C B xP"* be a versal family of complete intersec-
tions of type (dy,da, ..., dy) in P"* over a smooth variety B of dim B = N,
Then for a general point b € B, H(Xy, T%(2)) is imposed independent con-
ditions by all pairs of points p # q € Xj.

Voisin actually had a stronger conjecture [V2, Question 2.1]:

Conjecture 3.8. Let X C B xP"* be a versal family of complete intersec-
tions of type (dy,dsa, ...,dy) in P"* over a smooth variety B of dim B = N,
Then for a general point b € B, T%(1) = (AN*Tx) ® Ox(1) is globally gener-
ated on Xy if Xy is of general type.

Clearly, Voisin’s conjecture implies that 7% (2) = T%(1) ® Ox(1) is very
ample on X3 and hence our conjecture In addition, it implies that Q% is
globally generated when ) (d; — 1) > 2n. Unfortunately, both of the above
conjectures fail.

Basically, we are considering whether Ty' ® L is imposed independent
conditions by a 0-dimensional subscheme Z C Xj, for a line bundle L. Using
Lemma [3.1] again, we can obtain the following criterion:

Theorem 3.9. Let Y be a smooth projective family of varieties over a
smooth variety B, X be a smooth closed subvariety of Y that is flat over
B, L be a line bundle on Xy for a point b € B and Z be a 0-dimensional
subscheme of Xy. Suppose that

(3.23) HY(X,, TP ® L) is imposed independent conditions by Z.

Then H°(X, T% ® L) is imposed independent conditions by Z if and only if
(3.24) 9 o TP R LR Iz) = N o T(IYP @ L)NT(TY '@ Nx @ L® I),

where Ny, : TP @ Ox — T{/”_l ® Nx is the map

m

(3.25) Nm(w1 Awa A oo Awp,) = Z(—l)k+ln(wk) ® /\ wj
k=1 i#k

induced by n: Ty @ Ox — Nx with Nx the normal bundle of X inY.
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Proof. By the adjunction sequence (3.7)), we obtain a left exact sequence
(3.26) 0 —T2RL —— TPRL " T 'oNy® L

on X3. Since Ty" ® L is imposed independent conditions by Z, we conclude
the same for T¢' ® L if and only if (3.24) holds by (3.3 in Lemma O

Note that 7, is actually the map in the generalized Koszul complex

(3.27) ATy ® Ox 2% A" 1Ty @ Ny — A 2Ty © Sym? Nx
. —)...%Ty@SymmileéSymme—)O

of "™ *Ty ® Sym® Nx induced by 7.
We are considering the very-ampleness of T%'(l) for X C Y = B x P for
P =P". By the Euler sequence

0 > Op OP(I)EB(TJFI) TP 0
(3.28) H
&
on P, we have the diagram
0 0
0—— OX OX
(3'29) 0 QX 5Y & OX i) NX — 0
0 y T'x >Ty®OXL>NX*>0
0 0
where
(3.30) &y =npTp @ mpé

with 7 : Y — B and np : Y — P the projections of Y onto B and P,
respectively. Since T'x is a quotient of Gx, T¥'(I) is imposed independent
conditions by two distinct points on X, if G¥¢(l) is. Thus, we have the
following easy corollary of Theorem

Corollary 3.10. Let P =P", X be a smooth closed subvariety of Y = BX P
flat over B, and Z be a 0-dimensional subscheme of Xy for a point b € B.
Suppose that

(3.31) Z imposes independent conditions on Op(l).
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Then Z imposes independent conditions on HO(Xy, TR(1)) if

(3:32)  &moTH(EP () © I2) = &m o TH(EP (1) NTH(EY (1) @ Nx ® Iz),
where &, 1 EY @ Ox — 5{,”71 ® Nx is the map induced by &. In addition,
the converse holds if

(3.33) HY (X, TP (1) =0

and Z imposes independent conditions on HO(Xy, T *(1)).

Proof. This follows directly from the diagram (3.29)) and Theorem The
converse follows from the exact sequence

(3.34) 0 —— T Hl) —— GR(l) —— T(1) —— 0.
0

For a versal family X of complete intersections, we have already proved

(3.33) for m = 2 and [ > 1 by (3.19) in Theorem So T%(2) is weakly
very ample if and only if

(3.35) & oTy(EF(2) ® Iz) = &0 Th(E7(2)) NTh(Ey(2) @ Nx @ Iz)

for all Z = {p1 # p2} C X and T%(1) is globally generated if and only if
(3.36)  &©olu(EF(1) @ Ip) =& o Ty(E7(1)) NTu(Ey(2) @ Nx @ 1)

for all p € Xj. Unfortunately, neither (3.35)) nor (3.36) holds for hypersur-
faces by a direct computation, although we will not go through the details
here as it is not the main purpose of this paper.

3.4. Differential map do. Since T%(2) fails to be weakly very ample, we
cannot apply Proposition [2.4] to show that no two points on a general sextic
surface are I'-equivalent. It is very likely that T%(n) fails to be weakly very
ample for n > 2 as well. So we are unable to prove Conjecture for
>(di —1) =2n+1 in this way.

A closer examination of the proof of Proposition shows that we do
not really need Q% to be weakly very ample on X;. We only need find
s € HO(U, W*Q)]\(f) satisfying . This is much weaker than the require-
ment that p; = o1(b) and py = 02(b) impose independent conditions on
HO(Xy, QF) for b general. For one thing, (doy)ojs — (dog)oss = 0 imposes
only one condition on I',(Q¥) = HO(X,, QF).

Let do; o T'y be the map induced by do; on Fb(Q%) as in

Iy(T% @ Kx)

(3.37) H

do1®dos

[y (%) Ty (Ko (B)) ® Lo (Koy(p)) -

Clearly, (2.7) holds for some s € HO(U, m,Q¥) if
(338) ker(dal o Fb) 75 ker(dag o Fb)
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holds at a general point b € B. More precisely, as long as (3.38]) holds at
a point b € B such that h%(X;, QY) is locally constant for ¢ in an open
neighborhood of b, we can find a section s, € Fb(Q% ) with the property

(3.39) (dal)sb — (dUg)Sb 75 0

and this s, can be extended to a section s € HO(U,m.QY) over an open
neighborhood U of b satisfying .

Therefore, to show that o;(b) are not I'-equivalent over Q on a general
fiber X3, we just have to prove . Let us formalize this observation in
the following proposition:

Proposition 3.11. Let X be a smooth projective family of varieties over a
smooth variety B of dim B = N and let o; : B — X be two disjoint sections
of X/B for i =1,2. Then o1(b) and o2(b) are not I'-equivalent over Q on
Xy for b € B general if holds at a point b where h°( Xy, QF) is locally
constant in t.

3.5. Criterion for two fixed sections. To apply Proposition [3.11] we
need an explicit description of the differential maps do;. They can be made
very explicit if X C Y = B x P is a family of varieties in a projective space
P passing through two fixed points p; € P and o;(b) = p; for i = 1,2. On
the other hand, for an arbitrary family X C Y with two sections o; over B,
we can always apply an automorphism A € B x Aut(P), after a base change,
fiberwise to Y/B such that A o 0;(b) = p; for two fixed points p; € P; thus,
to test for a general fiber X, of X /B, it suffices to test it for a general
fiber X, of )A(/B, X = AX) and ; = Ao o;. Let us first consider families
X C B x P with two fixed sections o;(b) = p;.

To set it up, we let P = P" and fix two points p; # ps in P. We let
X CY = B x P be a closed subvariety of Y that is flat over B with fibers
X, containing p; and po for all b € B. We assume that X and B are smooth
of dimX = N + n and dim B = N, respectively. We have two sections
0; : B — X sending 0;(b) = p; for all b € B and i = 1, 2.

To state our next proposition on the differential map do, we need to
introduce the filtration F*Q2x associated to the fibration X/B.

For a surjective morphism f : W — B with B smooth, we have a filtration

Q= FOQ S FQ > .. D F™HQR =0
FPQ,

with GI’%Q% = W = f* </\pQB> & /\m_pQw/B
w

(3.40)

for O, = A" Qy derived from the short exact sequence
(3.41) 0 —— f*Qp —— Qw —— Qyyp —— 0.

Note that FP is an exact functor.
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For mp: Y — B with Y = B x P, FPQY is simply that
(3.42) POy = P rpQp @ mpQp
i2p
and we have natural projections Q" — FPQOY.

Proposition 3.12. Let X C Y = B x P be a smooth projective family of
varieties in a smooth projective variety P passing through a fixed point p € P
over a smooth variety B with the section o : B — X given by o(b) = p for
b € B. Then the diagram

(3.43)

QY —— AF @ det(Wx) ————— QN @ det(Nyx) ® Nx

| l !

Q{ZTV(B) SN FNQQ—H{: ® det(Nx) N FNQ)]Y'HH_l ® det(Nx) ®NX

o( a(B)

commutes and has left exact rows, where N = dim B, k = dimY — dim X,
det(Nx) = A*Nx and the vertical maps in the second and third columns
are induced by the projections Q3 — FNQg, followed by the restrictions to
o(B).

Proof. The rows of (3.43]) are induced by Koszul complex (3.27) and hence
left exact.
We want to point out that the diagram

op 1 Qntl o Ny
(3.44) l l
FlOp — FIQU @ Ny

does nmot commute in general. However, it commutes when we restrict the
bottom row to o(B). That is, we claim that the diagram

ap —— Pt @ Ny

(3.45) o] [pms
Flop 7y PP @ Ny

o(B) o(B)

commutes. Of course, this implies that the right square of (3.43|) commute.
Let (x1,x2,...,x,) and (t1,t2,...,tx) be the local coordinates of P and B,

respectively. Let p = {z; =22 = ... = 2, = 0} and

(3.46) X ={fi(z,t) = fa(z,t) = ... = fr(x,t) = 0}.

Then 7 is given by

(3.47) n(w) = (w A dft,w Adfa,...,w Adfy).
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Since p € X}, for all b € B, we have f;(0,t) = 0. Hence

ofi
Ot =0
forallt,i=1,2,....,kand j =1,2,...,N. It follows that
pm+1 0 N(w1) = pmy1(w1 Adft,wr Adfa, ..., w1 A dfy)
(3.49) = (pmt1(w1 Adf1), pmrr(wi Adfa), ... pmt1(wi A dfy))
=0=1o0 pm(w1)
for all local sections
(3.50) w € HOU, P npQp @ npQp~") C HO(U,QF),
i<l

(3.48) =0

where U is an open subset of Y. Every w € HO(U, Q) can be written as

(3.51) W= w1 + weo
with w; given in (3.50) and wy € HO(U, F'QM). It is clear that
(3.52) Pm+1 0 N(W2) = N5 © pm(w2).

Combining (3.49) and (3.52)), we conclude that

(3.53) Pmt1 0 N(w) = N © pm(w)
and hence the diagram (3.45)) commutes. It remains to prove that the left

square of (3.43]) commutes.
Note that Q% can be identified with the image of the map

(3.54) ol @ 0Ox —2— OVFF @ det(Ny)
given by
(3.55) O(w) =w Adfy Adfa A ... A dfy.

By (3.48)) again, we see that the diagram

N o0y ——— ON*F @ det(Ny)

(3.56) |ao |

FNOY @ Oy T FNONT @ det(Ny)

o(B o(B)
commutes. Thus, the diagram

0

T

W0y ——» O 5 0N+ @ det (W)

(3.57) |ao Jda |

FNQY ®OX‘ i = W FNON*F @ det(Ny)

o(B)
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commutes. O
Setting m =n and L = Kx in (3.26]), we have
(3.58)
TY @ Kx — 1y @ Kx —n TQ* ® Kx @ Nx

QY —— QYT " @ det(Nx) — QYT @ det(Nx) @ Ny

where det(Nx) = A" "Nx.
Note that
(359)  FNOYT! = 7508 @ m5Qp and FNQYT? = 7508 © 1503

Combining (3.58)), (3.43) and (3.59), we obtain commutative diagrams

TR Ky —— TP @Ky ——— T0 '@ Kx @ Nx

(3.60) ldo’i lan,i loénfu

Koup) — mpTp@ Kx| o — T @ Kx @ Nx

g; g; B
with left exact rows for ¢ = 1,2. By the above diagram, we have

(3.61) ker(do; o I'y) = ker(ay, ; o I'y) Nker(n, o T'p)

for ¢ = 1,2. Therefore, (3.38]) is equivalent to

(3.62) ker(a,,1 o I'y) Nker(n, o IT'y) # ker(ay, 2 o I'y) Nker(n, o T) |

More explicitly, we can write I'y (7T} ® Kx) as
(3.63) Ty(Ty @ Kx) =Ty(rpTp @ Kx) & Y Ty(rpTh @ Kx)® Thy'.
j<n
Then the kernel of a, ; o I'y is
ker(ap,; 0 ') = Ty(npTp @ Kx (—pi))
(3.64) ® > Ty(mpTh® Kx) © Ty,
j<n
for i = 1,2, where Kx(—p;) = Kx ® I, for I, the ideal sheaf of p;. So

(3.62) is equivalent to
(3.65)

ker(n, o Ty) N (Ty(wpTp @ Kx(—p1)) & > _Ty(rpTh @ Kx) @ Tpy,’)
j<n

£ Ker(nn o Ty) N (T(mp TP @ Kx (—p2) & 3 Dy(mpTh @ Kx) © Th)

i<n

Combining it with Proposition we obtain the following criterion:
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Proposition 3.13. Let X C Y = B x P be a smooth projective family of
n-dimensional varieties in a projective space P passing through two fixed
point p1 # pa € P over a smooth variety B. Then p1 and p2 are not T'-
equivalent over Q on Xy for b € B general if holds at a point b where
hO(X:, TR @ Kx) is locally constant in t.

Remark 3.14. Since X C B x P is a family of varieties in P passing through
pi, n(v) is a section in H°(Nx,) vanishing at p; for all tangent vectors
v €Ty and i = 1,2. It follows that

n—1
| D To(mpTh® Kx) © Tpy,
=0
2
(3:66) < (ker(an—1i0Ly) =Ty(rpTp " @ Kx ® Nx(—p1 — p2))
=1
n—2 ] ]
&Y To(rpTh® Kx @ Nx) @ T, ' ™.
§=0

Let us apply Proposition to complete intersections in P = P*tF of
type (d1,ds,...,d). When > (d; — 1) = 2n + 1, we have Kx = Ox(n).
More general, let us consider a smooth projective family X C Y = B x P of
varieties of dimension n in P with Kx(—n) globally generated on each fiber
Xp. In this case, we have the following corollary of Proposition [3.13

Corollary 3.15. Let X C Y = B x P be a smooth projective family of
n-dimensional varieties in a projective space P passing through two fixed
point p1 # p2 € P over a smooth variety B and let Wx ;, be the subspace of

I'y(Tp(1)) defined by
(3.67) Wy = {w eTy(Tp(1) i n(w) € n(Th(O(1) @ Tay) },

where the map 1 on T'y(Tp(1)) and T'y(O(1)) @ Ty are given by the diagram

Lp(Ty (1)) === [y (Tp(1)) @ TH(O(1)) @ Ty
(3.68) "l /
[y(Nx (1))

Suppose that there exists a point b € B such that hO(Xt,Tgé ® Kx) is con-
stant for t in an open neighborhood of b, each point p; imposes independent
conditions on both Kx,(—n) and Tx (1) ® Ox,, i.e., the maps

(3.69) I'y(Kx(—n)) — Kx(—n)® O, and

(3.70) I'y(Tx (1)) — Tx(1) ® Oy,
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are surjective fori=1,2 and
(3.71) {w S WXJ, : w(pl) = 0} 75 {w S WX,b : w(pg) = 0}.
Then p1 and ps are not I'-equivalent over Q on Xy for b € B general.

Proof. By , there exists w € Wy ; such that w(p;) = 0 and w(ps—;) # 0
for i =1 or 2. Without loss of generality, let us assume that w;(p;) = 0 and
wi(p2) # 0 for some wy € Wy .

It is easy to see that Wx is the image of the projection from I'y(T'x (1))
to I'y(Tp(1)) via the diagram

Ty(Tx (1)) — Ty(Ty (1)) —— Ty(Nx(1))

(3.72) \ l

where I'y(Tx (1)) can be identified with ker(n). In other words, for every
w € Wxy, there exists 7 € I',(O(1)) ® T, such that n(w+7) = 0 and hence
w+Tely(Tx(1)).

By (3.70), T'y(T'x (1)) generates the vector space Tx(1) ® Op,. On the
other hand, by the diagram

Tx, (1) ® Op, —— Tx(1) ® Op, —— Ty

| | H

(3.73) Ty, (1) ® Op, — Ty (1) ® Op, — Tpy
\ |
Tp(1) ® Op,

we see that the image of the projection T'x (1) ® Op, = Tp(1) ® Op, is the
same as the image of the map T, (1) ® Op, — Ty, (1) ® O, and thus has
dimension n. Therefore,

(3.74) dim{w(p2) 1w € Wxp} =n.

And since wq(p2) # 0, we can find wo, ...,w, € Wx such that {w;(p2)} are
linearly independent. On the other hand, wi(p1) = 0 and hence {w;(p1)}
are linearly dependent. In other words,

w1(p1) Awa(p1) A ... Awp(p1) =0
w1(p2) Awa(p2) A ... Awp(p2) # 0.

Let n(w; 4+ 7j) = 0 for some 7; € I',(O(1)) ® Tgy and j = 1,2, ...,n. Then

(3.75)

(3.76) /\ wj +75) ® s € ker(n, o I'y)
7=1
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for all s € T'y(Kx(—n)). By (3.75)), we have

n
/\ wj @ s € Ty(rpTp ® Kx(—p1)) and

(3.77) =
/\ wj ®s & Ly(mpTp @ Kx(—p2))
j=1
provided that s(p2) # 0. The combination of (3.76)) and (3.77) yields (3.65]).

O

Since the validity of (3.71) is determined by the restriction of Wx to
Z = {p1,p2}, we may let Wx, 7 be the subspace of H(Z,Tp(1)) given by

Wxpz =Wxp © H(Og)
— {w|, 1w e T(Tp(1) and n(w) € n(Ty(O(1) @ Tsy) }
and reformulate as
(3.79) Wx sz NHY(Z,Tp(1) @ 1) # 0
for some p € supp(Z) = {p1,p2}-

(3.78)

3.6. Criterion for two varying sections. So far we have obtained the
key criterion, Corollary for the I'-equivalence of two fixed sections of
X/B in the ambient space P. To apply it to two arbitrary sections of X/B,
we need to use an automorphism A € Aut(Y/B) to move these two sections
to two fixed points in P, as pointed out before. This line of argument leads
to the following:

Proposition 3.16. Let X C Y = B x P be a smooth projective family
of n-dimensional varieties in a projective space P over the N -dimensional
polydisk B = SpecC[[t;]] and let o; : B — X be two disjoint sections of
X/B with p; = 0;(b) at the origin b € B for i =1,2. Let A\ € B x Aut(P)
be an automorphism of Y preserving the base B, satisfying that Ay = id and
Moi(t)) = pi fori=1,2 and all t € B and given by

X0 Xo

il X
(3.80) Ao =A] ],

Ty Ty

where (zg, 21, ..., T;) are the homogeneous coordinates of P and A = A(t) is
an (r+1) x (r+ 1) matriz over C[[t;]] satisfying A(0) = 1. Let Wx p, 7 » be
the subspace of H*(Z,Tp(1)) defined by

Wi za = {wl, + La(r) s w € Dy(Tp(1), 7 € Ty (O(1)) & Ty,

(3.81)
nw+7) =0}
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for Z = {p1,p2}, where Ly : 5Ty — Tp @ Oz is the map given by

8/(%0
d AT 0/0x

(382) L)\ <8t]> = [QTO r1 ... ﬂfr] Tt] o .
0/0x,

Suppose that
o hO(X,, T} ® Kx) is constant over B,
o Kx,(—n) and Tx (1) ® Ox, are imposed independent conditions by
each point p; fori=1,2,
e and

(3.83) Wxp,z2 NH(Z,Tp(1) @ 1) # 0
for some p € supp(Z).
Then o1(t) and o2(t) are not I'-equivalent over Q on Xy for t € B general.

Proof. Note that Wx , zx = Wxy 7z if Ly =0, i.e., 04(t) = p;.
Let X = A(X) C Y = BxP. Obviously, X is a smooth projective families
of n-dimensional varieties in P over B passing through the two fixed points

P17 pa-
We define the map 7 : Ty ® O — Ny and the space Wy, C I'y(Tp(1))

for X C Y = B x P in the same way as 7 and Wx ;. Note that since A\, = id,
Xp, = X, and we may use ['y(e) to refer both H°(Xy, ) and H°(X,, e).
Let us consider the commutative diagram:

Tp(Tx (1)) — Tp(Ty (1)) —— Tp(Nx (1))

%l(dA)* gl(dA)* . l

(3.84) Ty(T (1)) —— Ty(Ty (1)) —— Ty(Ng (1))

) ~_ |~

Ly (Tp(1))

As pointed out in the proof of Corollary Wxp is simply the image
of the projection from I'y(Tx (1)) to I'y(Tp(1)) when I'y(Tx (1)) is identified
with the kernel of 7 : Ty (Ty (1)) — Tp(Nx(1)). The same holds for X. That
is, Wg , is simply the image of the projection from [p(T(1)) to Ty(Tp(1))
when I'y(T'3(1)) is identified with the kernel of i : Ty(Ty (1)) — Iy(N5(1)).

We may regard W , as the image of I'y(T’x (1)) under the map 7p, 0 (dA).
in the above diagram. Note that mp,o(d\), is not the same as the projection
TP : Fb(Ty(l)) — Fb(Tp(l)), ie.,
(3.85) TP 0 (dN)y # TP
Indeed, we have

(3.86) (dN)y(w+7) = (w=+ Lx(7)) + 7
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for w e I'y(Tp(1)) and 7 € T',(O(1)) ® Tgp, where
(3.87) Ly: 75T —— 75T
is a homomorphism induced by (d\). : Ty — Ty. Thus,
(3.88) 7w 0 (dN)s(w+T7) = w4 La(7) # w = mpu(w + 7).
It follows that
Wg, =mpx0dAoly(Tx(1))
(3.89) = {w+La(7) s w € Ty(Tp(1)), 7 € Ty(O(1) ® Tpp,
n(w+ 1) = 0}.

We claim that Ly and Wx 7 are exactly the restrictions of L xand Wy
to Z, respectively. Indeed, the differential map dA : Ty — Ty is given by

(d\)« ( a(j;) = aii

0 0 ~ 0
A=) =5 + I (5
(@3 (%‘) 5tj+ A(%‘)

3.90
OAT |0/0m;
= ait] + [I‘O r1 ... Xy Tt]
0/0x,

at b. Therefore, L) is the restriction of EA to Z and hence Wg , . = Wxp 7.
In conclusion, the hypothesis (3.83) on Wx 7 » translates to

(3.91) {w €EWg,wip1) = 0} # {w €Wg,wip2) = 0}.

Then by Corollary o1(t) and o2(t) are not I'-equivalent over QQ on a
general fiber X; of X/B. O

Remark 3.17. In the above proof, it is easy to see that

o o(8)-0(2) min(2) (8 -2(2))

Since X, passes through p; and po, 7(7) vanishes at p; and hence L) satisfies

(3.93) n(La(7)) = n(T)‘Z for all 7 € Tpy.

There is a more intrinsic way to define Ly: for every t € B, we consider
the line joining the two points o;(t); we may regard o;(t) as the image of
two fixed points on P! mapped to this line and thus interpret Ly in terms
of the deformation of this map P! — P. We can put the above proposition
in the following equivalent form.
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Proposition 3.18. Let X C Y = B x P be a smooth projective family of
n-dimensional varieties in a projective space P over a smooth variety B and
letv:S=DBxPl Y bea closed immersion preserving the base B such
that v*Oy (1) = Og(1) and there are two fived points p; # pa on P1 with
vp(pi) € Xp for all b € B. Let Wxy, 75 be the subspace of H(Z,v;Tp(1))
defined by

Wxpz\ = {v@,"w\z + La(vy7) s w € Ty(Tp(1)),
(3.94) T €Iy (0(1)) ® Thp,

nw+71)= 0}

for Z = {p1,p2}, where Ly : 7§ gTpy — viTp ® Oz is the map induced by
Ts — v*Ty with mg g the projeétion S — B.

Suppose that Kx,(—n) and Tx (1) ® Ox, are imposed independent condi-
tions by each point vy(p;) fori=1,2 and

(3.95) Wbz NH(Z,v;Tp(1) ® I,) # 0

for some p € Z and b € B general. Then vy(p1) and vy(p2) are not T'-
equivalent over Q on Xy for b € B general.

Note that the hypothesis v*Oy (1) = Og(1) simply means that v maps
S/B fiberwise to lines in P.

Using Proposition [3.16| or [3.18] we obtain the following criterion for the
I'-inequivalence of all pairs of distinct points on Xj.

Corollary 3.19. Let X C Y = B x P be a smooth projective family of
n-dimensional varieties in a projective space P over a smooth variety B
and let Wxp, 7z be the subspace of H°(Z,Tp(1)) defined by for a
0-dimensional subscheme Z C X3, and Ly € Hom(nyTpp, Tp ® Ofz).

Suppose that Kx,(—n) and Tx (1) ® Ox, are globally generated on X
and holds for a general point b € B, all pairs Z = {p1,p2} of distinct
points p1 # p2 on Xy, some p € supp(Z) and all Ly € Hom(n3;Tgyp, Tp®Oyz)
satisfying . Then no two distinct points on Xy are I'-equivalent over
Q for b € B very general.

We believe that the above corollary will find application in the future.
However, we will not use it to prove our main theorem [1.4; instead, we will
apply Proposition directly, i.e., apply it to families X C B x P"*! of
hypersurfaces of degree 2n + 2 in P**1. In this case, both Kx(—n) = Ox
and T'x (1) are globally generated on X if X/B is versal. So it suffices to
verify , which we will carry out in the next section.

4. HYPERSURFACES OF DEGREE 2n + 2 IN Pl

4.1. Versal deformation of the Fermat hypersurface. In this section,
we are going to prove our main theorem using the criteria developed in
the previous section.
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To start, let us choose a versal family of hypersurfaces in P"*!. Let
X C Y = B x P be the family of hypersurfaces of degree d in P = P!
given by

(4.1) F(m0, 81,y Ty ty) = 2§+ 2 + o+ 2l + Yt f =0,
feda

where (xg, 1, ..., 2,1 1) are the homogeneous coordinates of P**!, J; is the
set of monomials in x; given by

mn
Jg = {xgnox?”...xwrf SMQ, My eeey M1 € N,
(4.2) mo +my + ... + mp41 = d and
Mo, M1y eeey M1 S d— 2}

and (tf) are the coordinates of the affine space B = Spang Jq = AV for
1

n+1
We may regard X /B as a versal deformation of the Fermat hypersurface.
At a general point b € B, X/B is obviously versal, i.e., the Kodaira-
Spencer map

(43) N =h(Op(d) — h(Tp) — 1 = <

Tpy —— HO(Nx,)/n(H®(Xy,Tp))
(4.4) j
H' <TXb)

is an isomorphism, where 7 is the map in

~
<

(4.5) 0 Tx y Ty ® Ox iU Nx
More explicitly, (4.4)) is equivalent to saying

(4.6) Span {ngf} @ Span J; = H(Nx,) = H° (X3, 0(d))
j

for b € B general.

Let £ = Op(1)®"*2 be the Euler bundle on P. Then
HO(&) 9,

@ Span {:c,ax]} /(@)

by the Euler sequence ([3.28) and

(4.7) HY(Tp) =

0 oF 0 oF
4. — | =+ a5 | = a0 =
(18) ! <390j> Oz and (atf> Oty I
for j=0,1,2,....,n+ 1 and f € J4, where
n+1 9

(4.9) a= Zwla—xz
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We are going to show that no two distinct points on a very general fiber
X, of X/B are I'-equivalent over Q when d = 2n+2 > 6. To set it up, we fix
a general point b € B. Let us assume that there exist two disjoint sections
0; : B — X in an analytic open neighborhood of b such that o1 (¢) and o2(¢)
are I'-equivalent over Q for all ¢. We let A € B x Aut(P) be an automorphism
of Y such that A\, = id and A(0;(t)) = p; = 04(b) for ¢ = 1,2 and let Ly be
defined accordingly by . It comes down to the verification of .

Definition 4.1. Let Z be a 0-dimensional scheme of length 2 in P = P!
with homogeneous coordinates (zg,x1,...,Tn4+1). We call Z generic with
respect to the homogeneous coordinates (x;) if

(4.10) H°(Oz(1)) = Span{x; : j # i} for every i = 0,1,...,n + 1.

Otherwise, we call Z special with respect to (x;). We call Z wvery special
with respect to (z;) if

(4.11) #{z;x; € H'(Iz(1))} =n = h2(0Op(1)) — 2
where Iz is the ideal sheaf of Z in P.

Remark 4.2. Clearly, these notions depend on the choice of homogeneous
coordinates of P. More generally, we can define these terms with respect to
a basis of H(L) for an arbitrary very ample line bundle L on P.

When the choice of homogeneous coordinates is clear, we simply say Z is
generic (resp. special/very special).

Obviously, being very special implies being special.

There always exist i # j such that x; and z; span H°(Oz(1)) since Op(1)
is very ample. Without loss of generality, we usually make the assumption
that (i,7) = (0,1), i.e.,

(4.12) H°(Oz(1)) = Span{xg, z }.
Under the hypothesis of (4.12), Z is special if and only if
(4.13) Span{zg, 21} = H°(Oz(1)) 2 Span{zy, T2, ..., Tpy1}-

Furthermore, by re-arranging xs, ..., Tn41, we may assume that there exists
1 <a<n+1 such that

(4.14) T1, . tq € HO(Iz(1)) and 2441, ..., i1 € HO(I2(1)).
Of course, Z is very special if and only if a = 1.

We are considering two cases: with respect to (z;),

Generic case: Z = {o1(b),02(b)} = {p1,p2} is generic or
Special case: Z = {01(b),02(b)} is special for all b € B.

4.2. A basis for Wx ;. For convenience, we identify the tangent space Tz
with Span Jg. Then n(f) = f for all f € Span Jj.

We start the proof of (3.83)) by studying the space Wx  defined by (j3.67)).
It has a basis given by:
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Lemma 4.3. Let P =P""! and X CY = B x P be the family of hypersur-
faces in P given by (4.1)) over B = Span Jy for d > 3. Then

(4.15) Wxp = {w € H(X,,E(1)) : p(w) € Span Jyy1}

' :Span{wijk:0§i,j,k§n+1,igjandi,j#k‘}

has dimension

2

(4.16) dim Wy = (n + 2) (” ; )
for b= (ty) in an open neighborhood of 0, where

Wijk = xixjai fori+#j#k and

Ty,

(4.17)

Wiik = xlzaik - Zcijkxixjaii fori#£k

J#i

with

—1 iF 2d 'ty ifiFtj=
d! Ox;~ “0x;0xy, d~ty ifiFj#k

for f = {2221, Here we consider 1 as a map H(E(1)) — H°(O(d + 1))
given by (4.8)).
Proof. We have

0 OF de1 of
(4.19) n (x x; (%ck) T . driz;r) ~ + E trz;x; r.

f€Jda
It is easy to check that
oF
(4.20) N(wijk) = Tixj—— € Span Jy41
ox
for i # j # k and

oF d—1 oF oF
4.21 wiig) = 12— — —ziz; | ———
( ) mlwir) — d: ! (&rc-l?@m@xk) Ox;
J# ¢ J

for i # k. Hence w;ji, € Wx, for all 4,5 # k.
To show that {wj; : % < j and 4, j # k} forms a basis of Wx ; in an open
neighborhood of 0, it suffices to verify this for b = 0: clearly,

(4.22) {wijk’bzo i< jandi,j# k:} - {xixjai i< jandi,j# k:}

is a basis of Wx . Therefore, (4.15) and (4.16) follow. O

€ Span Jg11

Clearly, Wx ; is the image of Wx; under the map

(4.23) HY(Xy, E(1)) —— HO(Xp, Tp(1)).
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More precisely, let nyb be the lift of Wx in H 9(X3,&(1)). Then

(4.24) Wxp =Wy ®a® H(O(1))

where Wy, Na® H°(O(1)) = 0 because

(4.25)  Span Jyi1 N7 (a® H(O(1))) = Span Ju11 N F ® H°(O(1)) = 0.

4.3. An observation on L). We observe the following:

Lemma 4.4. Let P = P"™! and X C Y = B x P be the family of hyper-
surfaces in P given by (4.1) over B = Span Jy. For b € B, a 0-dimensional
subscheme Z C X;, of length 2 and Ly € Hom(n 5T, Tp @ OZ), if

(4.26) Ly (f) # 0 for some f € H°(Iz(1)) ® Span Jy_; C Span J,
then (3.83)) holds.

Proof. Obviously, (4.26) holds for some f = lg with | € H°(Iz(1)) and
g€ Ji .

For each point p € supp(Z), we choose I, € H’(Op(1)) such that ,(p) = 0
and I, ¢ H°(Iz(1)) and let

(4.27) =L f—1®lgc H (Ox, (1) @ Tsp.
Then n(7p) = 0 so Lx(7p) € Wx p z . Clearly,
(4.28) Ly(mp) =Ly (f) — LLx (lpg) = 1,Lx (f)

since [ € H%(Iz(1)). Then by our choice of l,, Lx(7,) vanishes at p.
If Lx(7p) # 0, then (3.83)) follows. Otherwise,

(4.29) I,Lx (f) =0.

Since I, ¢ H°(Iz(1)), (4.29) implies that L (f) vanishes at all p € supp(Z).
If Z consists of two distinct points, then we must have

(4.30) Ly (f) =0,

which contradicts our hypothesis (4.26]).

If Z is supported at a single point p, then Ly (f) vanishes at p. Applying
the same argument to 7, = [, ® f —[®1,g for some I, € H°(Op(1)) satisfying
l4(p) # 0, we have

(4-31) LA(Tq) = quA (f) — 1Ly (lqg) = quA (f) € WX,b,Z,A
vanishing at p. Again, we have either (3.83) or (4.30]) since [,(p) # 0. O

Let us assume that (4.30) holds for all f € H°(Iz(1))®Span Jg_1. Other-
wise, we are done by the above lemma. Then Ly : Ty, — H%(Z,Tp) factors
through

Span Jy

(4.32) HO(Iz(1)) ® Span Jy_;
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and it can be regarded as a map

Span Jy Ly

(4.33) HO(Iz(1)) ® Span Jy_;

y HO(Z,Tp).

4.4. The space H'(Iz(1)) ® Span J4_1. Let us figure out the space (4.32)).
Obviously,

(4.34) HY(Iz(1)) ® Span Jy_; C SpanJy N H(I7(1)) ® HY(Op(d — 1)).
Furthermore, since H%(Iz(1)) ® H°(Op(d — 1)) is the kernel of the map

HOY(Op(d)) ——5 Sym? HY(Oz(1))

(4.35) /
Sym? HO(Op(1))
we may write as
(4.36) H°(Iz(1)) ® Span Jy_; C Span Jy N ker(€).

Actually, this inclusion is an equality for Z generic:

Lemma 4.5. Let P = P""1, J; be defined in ([£.2)) and Z be a 0-dimensional
subscheme of P of length 2. If d > 4 and Z is generic with respect to (x;),
then

HY(I7(1)) ® Span J;_; = Span J; N H°(I;(1)) @ H*(Op(d — 1))

(4.37) = Span J,; N ker(€).

Or equivalently, H(Iz(1)) ® Span Jy_1 is the kernel of the map
(4.38) SpanJ; —— Sym? HO(O(1)).
In addition,

Span Jy

3 d 170
> H 1
H(I,(0) @ Spandg, ~ " ym H(Oz(1))

(4.39)

s an isomorphism.

Proof. To prove ([4.37)), it suffices to find a subset S C J; such that

(4.40) Span J; = H°(Iz(1)) ® Span Jg_; 4 Span(S)
and
(4.41) H(I7(1)) ® H°(Op(d — 1)) N Span(S) = 0.

Let us assume (4.12)). By (4.10), H°(Oz(1)) = Span{z1, x2, ..., Ty +1} and
hence there exists ¢ # 0, 1 such that

(4.42) H°(Oz(1)) = Span{zy, z;}.
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Similarly, we have H°(Oz(1)) = Span{xg, z2, ..., T, 41} and hence there ex-
ists j # 0,1 such that

(4.43) H°(0z(1)) = Span{zg, z;}.
Then we let
5= {:ng:am?’ zg{)’x?wl, "Egi:zl‘ix%’
(4.44) ad3a3 xd et L i,
a:%x‘lj_ga:j, :chil_?’x?, xcll_?’a:;? }

By (4.12)), (4.42) and (4.43)), for every k,

x € H(Iz(1)) + Span{zg, =1},
(4.45) x € H°(Iz(1)) + Span{z1,x;}, and
T € HO(Iz(l)) + Span{xo, JI]‘}.

Then (4.40) follows.
To see (4.41)), we just have to show that ker(§) N Span(S) = 0, which is

equivalent to
(4.46) ¢ (Span()) = Sym” H(Oz(1))
since |S| = dim Sym? H?(Oz(1)) = d+1. Again it is easy to see from (#.12)),

(4.42)) and (4.43) that

¢ (Span(9)) =¢ (Span{ngkxlf ck=0,1,... ,d})
= Sym? H(O4(1)).

(4.47)

This also proves that (4.39)) is an isomorphism. O

When Z is special, H°(Iz(1)) ® Span Jy_; is no longer the kernel of the
map (4.38). Instead, we have the following result when Z is special but not
very special.

Lemma 4.6. Let P = P!, J; be defined in [.2) and Z be a 0-dimensional
subscheme of P of length 2. Suppose that d > 4, Z satisfies (4.13) and
{I'Qa "'7xn+1} ¢ HO(IZ(l)) Then

Span Jg Nker(¢§) = HY(Iz(1)) ® Span Jy_;
(4.48) + Span {:L‘g*%i(l‘j —cjry) i >1,5>2
and x; — cjz1 € HO(IZ(l))}.

Proof. We leave the verification of (4.48) to the readers. O
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4.5. Special case. Let us first prove when Z is special for all b.
Without loss of generality, let us assume that Z = {p1,pa2} satisfies (4.13))
and for b general and some a.

We claim that Ly : 75T, — Tp ® Oz factors through a sub-sheaf Gz
of Tp ® Oy, ie., Ly € Hom(n5Tpp,Gz) for the sub-sheaf Gz of Tp ® Oy
generated by the global sections

0
(4.49) H°(Gz) = Span {mia cj=00r2<ij< a} .
Lj
In addition, if x¢ vanishes at one of p; for b general, Gz is generated by
0
(4.50) H%(Gz) :Span{xiazi:j:00r2§i,j ga}.
Ly
To see this, we notice that (1,0, ...,0) € X, for all b. So
(4.51) x1(p;) #0 for i =1,2.
Otherwise, if 1 = 0 at some p € Z, then x93 = 23 = ... = x,41 = 0 at p by

(4.13) and p = (1,0, ...,0).
Thus, we may choose A to be given by

0 91(t)  g2(t) 0
T 1 Z1
(452) Al ] = A
Tn+1 In—at1 Tn+1
X

locally at b, for some g1(t), go(t) and A(t) satisfying g1(b) = 1, g2(b) = 0
and A(b) = I,—_1, where I, is the m x m identity matrix. Then by (3.82)),
(4.53) Ly (r) € H(Gz)

for all 7 € T}, with Gz generated by (4.49).
When z( vanishes at one of p; for b general, g2(t) = 0 in (4.52)) and thus
we have (4.50). This proves our claim that Ly factors through Gz given by

[39) or ([150).
Let A C P be the line joining p; and pa. Then the map £ in (4.35) is
simply the restriction to A as in

HO(Op(m)) —— HO(Op(m))

459 |
Sym™ H°(O(1))

for m € N. We will use Sym™ H°(Oz(1)) and H°(Oa(m)) interchangeably
under this setting. We also use ¢ to denote the induced map

HO(On(m))
§(F) @ HO(On(m — d))

(4.55) H(Ox, (m)) —
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where quotient by {(F') is necessary; otherwise it is not well defined as (F)
is not zero in H°(Ox(d)) unless X} contains the line A.

We further abuse the notations by using £ for the maps induced by the
restriction H%(E(m)) — HO(A, E(m)):

HY(E(m)) —— HO(X;, £(m)) —— HO(A,E(m))
(4.56) 0 HO(X,, Tp(m)) —— HO(A, Tp(m))

bk

¢ HO(OA(m"‘d))
HY(O(m +d)) — H°(Ox,(m+d)) = E(F) ® HO(On(m))

for m < d — 2, where we also abuse the notation 1 by using it for three
different maps, all defined by .

Next, let us consider the images of the spaces Wx, C H°(X,,E(1)) and
Wxp C HY(Xp, Tp(1)) under &, where {Wx ) and &(Wx ) are considered
as the subspaces of H(A,£(1)) and H°(A, Tp(1)), respectively.

Lemma 4.7. Let P = P"! and X C Y = B x P be the family of hy-
persurfaces in P given by {.1) over B = SpanJy for n > 2 and d > 4.
For b € B general and all 0-dimensional subschemes Z C Xy of length 2

satisfying ([(13),

(4.57) f(WX,b) D {l’%aaxl} U {Qfoxlaij 27> 1}
and
(4.58) §(Wxp) = HY(A, Tp(1))

Zf {$27"')xn+1} ¢ HO(IZ(]-)) and

& (Wxp) = Span {xoaﬁla ik #0, 1}
(%k
0 0
(459) U {.’I}(Q)axk — COlkl'()J?laixO ok 7é 0}
U x2i—c ToT ik:;él C H°(A,E(1))
laxk 10k+L0 18$1 . 5

if {xa,...;ni1} C HY(Iz(1)), where A C P is the line cutting out Z on Xy,
€ is the map defined in (4.56) and c;ji, are the numbers given by (4.18).

Proof. Let us first deal with the case that {xo,...,z,11} ¢ H°(Iz(1)), i.e.,
Z is special but not very special. Note that under the hypothesis of (4.13)),
all o, ..., 2,11 are multiples of 21 in H°(O(1)).
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We write uq = ug if £(u1 — u2) € EWxp). Of course, wijr = 0 for wjji
given by (4.17)). Under this notation, (4.57)) is equivalent to

0 0 0 0
2 0 _ 20 _ o0 _  _ 9
x1 0 =T axl =7 ax2 =...=T axn+1
(4.60) 9 P P
= xox1 = =..= 211 =0.

3%1 8952 aan

Without loss of generality, let us assume that zo ¢ H°(Iz(1)). Then
7y = ax1 in HY(O, (1)) for some a # 0. Therefore,

0

wolk =wior =0= zpr1=— = T129=— =0
oxy, oxy,
(4.61)
moaor =2 2 — g
0 8$k o 18xk o
for k > 3 and
0 0
w0 =wool =woi2 =0 = 19— =Tox0— =201 =— =0
Oxg 0 O0xo
(4.62) P P
2 _ _ _
- = - = - = O.
— 81‘0 Tt 6.%'1 Tt 81‘2
We claim that (4.61)) holds for all £ > 1, i.e.,
0 0
$0:E18— = w%a— = 0 for all £ > 1 or equivalently
(4.63) Tk T
xm]amk 0 for all 5,k >
If {x37 -"7«77n+1} gZ HO([Z(]'))7 say T3 € HO(IZ(l))J then
0
w3l =wize =0 = 93— = x123— =0
61’1 &rg
(4.64)
1a$1 - 1(91’2 -

and together with (4.61)) and (4.62)), we see that (4.63)) follows.
Otherwise, {z3,...,zn4+1} C H’(Iz(1)). Then by

0 0
w113 = 0 = 22— — (c103T0 + C19372)71 — = 0
113 1(’9333 (c1030 12372) 189:1

(4.65)
18$3 =0 1a$1 o
we conclude that
0 0
4. — = 2 - =
( 66) r1T2 o1 0=z o1

as long as ci93 # 0, which is obvious for b € B general. Similarly, by
considering wo93, we obtain

(4.67) z?
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This concludes the proof of (4.63)), which, combined with (4.62)), yields (4.60))
and hence (4.57)).
Next, let us prove (4.58). Note that by (4.24]), we have the diagram

Wiy —— HO(A,E(1))

(4.68) i l

Wxp LN HO(A, Tp(1))

and hence

EWxp)
4.69 Wxp) = 2
(4.69) V) = S moa )
for o given by ([.9).

Let us write u; = ug (mod «) if ug —up € §(Wxyp). Then (4.58)) is
equivalent to

(4.70) =0 (mod «)

xixj 8xk

for all i, j, k. Since H(O4 (1)) = Span{xg,z1}, it is enough to prove (4.70))
for 0 <i,j < 1.

Obviously,
P n+1 o
(4.71) z;a =0 (mod «) = xixoa—xo = —ux; ;%8% (mod «)

for all ¢. Combining (4.62)), (4.63)) and (4.71)), we obtain

0 0 0
(4.72) x%a—wo = xgxla—xo = x%a—% =0 (mod o) = xixja—xo =0 (mod «)
for all 4, j.
Finally, by (4.72),
) n+1 ) 9
(4.73) woor =0 = ngTEk — Z cojkxoxja—xo =0= x%a—xk =0 (mod «)

=1

When {z,...,2,41} C HY(Iz(1)), ie., Z is very special, (4 follows
directly from the fact that {(Wx ) = Span {&(wijr) }- O

for all £ > 1. Combining (4.63)), (4.72)) and (4.73), we conclude (4.58).
.59

We want to call attention to the subtle difference and relation between
EWx,p) and £(Wx ) in the above lemma and also Lemma below. By
([4.68), £(Wx ) is the image of (Wx ) under HY(A, E(1)) — H(A, Tp(1)).
However, £(Wx ) is not necessarily the lift of £(Wyx ) in HO(A, E(1)). In
particular, when Z is special but not very special, we have but it is
easy to check that E(Wx ) # H°(A, E(1)).

Let us go back to the proof of for Z special. Since zg and x; span
H°(Oz(1)), we can choose p € Z such that zg # 0 at p. To prove (3.83)), let
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us consider w € Wx such that w(p) = 0. Note that n(w) € Span Jg1 by
the definition of Wx and n(w) also vanishes at p. We claim that
(4.74) n(w) € H(I,(1)) ® Span Jj.

This follows from the lemma below.

Lemma 4.8. Let P =P and J; be defined in (4.2) for d > 3. Then

(4.75) Span Jgy1 N H(I,(d+ 1)) = H°(I,(1)) ® Span Jg
for every point p € P satisfying
(4.76) p{(1,0,...,0),(0,1,0,...,0), ..., (0, ...,0,1)}.

Furthermore, for every 0-dimensional subscheme Z C P of length 2, a point
p € supp(2) satisfying [A.76) and s € HO(I,(1))\H(1£(1)),

(4.77)  SpanJy N H(I,(d+ 1)) = H(Iz(1)) ® Span J; + s ® Span Jj.
Proof. By (4.76), there exist ¢ # j such that neither x; nor x; vanishes at p.

Without loss of generality, let us assume that xg # 0 and x; # 0 at p.
It is obvious that

Span Jgy 1 N H(I,(d+ 1)) D H°(I,(1)) ® Span J,; and
dim (Span Jgy1 N H(Ipy(d+ 1)) = dim Span J441 — 1.
Therefore, to show (4.75)), it suffices to show that

(4.78)

(4.79) Span Jy1 = H(I,(1)) ® Span Jy + Span {x%le_l}
which follows from the fact that
(4.80)  xp € H(I,(1)) + Span {zo} and z € H°(I,(1)) + Span {z1}

for all k.
To see (4.77), we observe that for all [ € H°(I,(1)) and f € Span Jy, If

can be written as
(4.81) If =(—cs)f +csf € H'(Iz(1)) ® Span J; + s ® Span J,
where c is a constant such that [ — cs € H?(Iz(1)). O

Note that by (4.1)), p € Z always satisfies (4.76)).
Suppose that a = 1 in (4.14), i.e., Z is very special. By Lemma [4.7]

0 0
méa—xk - CoucﬂcoﬂflaTr0 € EWxp)
0 0
(4.82) :E%aTjk ~ ClokTOT1L 5 € EWxp)

0
= (c1ok7f — 0011{95%)87“ e EWxp)

for k = 2,3. Since zo = ... = x,41 = 0 at p # (1,0,...,0),(0,1,0,...,0),
neither xy nor x; vanishes at p. Hence there exist numbers rp such that
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kal‘g — cmkm% — r,xox1 vanishes at p. For b general, the numbers ¢;;; are
general. In particular,

(4.83) det [0102 6012} £0

C103 €013

Therefore, at least one of clogwg—clogx%—mxoxl and 01031'(2)—01031'% —7r3ToT]
does not vanish on Z. Without loss of generality, let us assume that

(4.84) (1022 — c10227 — r2w0x1) ‘z # 0.

Therefore, we may choose w € Wx; such that

0

f(w) = (01025E% — C102$% — Tgxoxl) a—,
(4.85) i)

w(p) =0 and w‘Z £ 0.
Let us write

0

4.86 = 2 _ 2 _ _ o
( ) §(w) (0102% C10271 7’2330371) 7(%2 5182 97s

where s1 55 is the factorization of clOQx%—clogx%—Tonxl with s; € HO(Op(1))
satisfying s;(p) = 0 and s1s2 # 0 on Z.

Since w(p) = 0, 7 = n(w) vanishes at p as well. So by Lemma
7 € H(I,(1)) ® Span J;. When we regard 7 as a vector in H%(I,(1)) @ T,
we have

(4.87) La(T) = s17v

for some

(4.88) v € H(Gz) = Span xoi xli

8.%0’ 8930

by . Then
0

(4.89) w—Lx(T) = s1 <828 — ) € Wxp z
T2

Obviously, w — Ly(7) vanishes at p. But since s152 # 0 on Z and + lies in
the subspace (4.88) of H°(Z,Tp), it is easy to see that w — Lx(7) does not
vanish in HY(Z,Tp(1)). This finishes the proof for (3.83) when Z is very
special.

Suppose that 2 < a < n in (4.14). Then by (4.58), £ maps Wx surjec-
tively onto H°(A, Tp(1)). So we can choose w € Wx ; such that

0
axn—‘rl

(4.90) ¢(w) = szy

in HO(A,Tp(1)) for some s € H°(I,(1))\H"(Iz(1)). Note that z; does not
vanish on either p; € Z, as explained for (4.51]).
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By the same argument as before, we have

(4.91) w—Ly(1) =35 (xl — 7) € Wxpz

Tn+1

for some v € H°(Gz). Again, w — Ly(7) vanishes at p and does not vanish
in H%(Z, Tp(1)) for a < n by ([4.49). This finishes the proof for (3.83)) when
a <n.

Suppose that a > 2 and z( vanishes at one of p; for b general. Then we
choose w € Wx such that
(4.92) £(w) = 1~

. W) = sr]—

! 81‘0

in HY(A, Tp(1)) for some s € HO(1,(1))\H°(Iz(1)).

By the same argument as before, we have

(4.93) w—Ly(1)=s (mla — > € Wxp,zx
8:6()

for some v € H°(Gz). Again, w — Ly(7) vanishes at p. Note that we choose
p such that zo # 0 at p. So zp must vanish at Z\{p}. By (4.50)),

0 0 0
4.94 HY = e ey, Sty g
( 9 ) Y€ (gz) Spanﬁ{xoaxoaxlaxz’ ,xlaxa}
It follows that w — Ly(7) # 0 in H°(Z,Tp(1)). This finishes the proof for
(3.83)) when a > 2 and x( vanishes at one of p;.

It remains to verify (3.83) when @ = n + 1 in (4.14)) and z¢ # 0 at both
p;. In this case,

H°(G7z) = Span {ﬂfiaa :jg=0o0r2<4,j<n+ 1}
”
(4.95) o
= Span {55'1 :7=0,1,....,n+ 1}
8:1:]-

by (1)

Let us choose s1 = x¢9 — rix1 and so = xg — rox1 for some constants r;
such that s;(p;) # 0 and s;(ps—;) = 0 for ¢ = 1,2. Clearly, r1 # r2 # 0.
Fixing 1 <k <n+1, we let

) n+1 )
4.96 =T07— — KT
(4.96) Uk = T0o B ; CojkLj dzo

Since woor, = Touk, &(rour) € EMWxp). And by (4.57), §(r1ur) € EWxp)-
Therefore, &(sug) € EWxyp) for all s € H'(Op(1)). In particular, there
exist w;, € Wy, such that

4. ;
( 97) Wik A

zs-uk‘
A
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in HY(A,&(1)) for i = 1,2. Then by Lemma

(4.98) n(wix) — Sivik € HY(Iz(1)) ® Span J,
for some ~;; € Span J; and i = 1,2. We may write
(4.99) n(wsk) — Sivik = Z l;T;

with [; € H*(Op(1)) and 7; € H(Iz(1)) ® Span J4_1. Then
(4.100) Wik — SiL)\(’Yik) — leL)\(Tj) = S; (uk — L)\ (’)/Zk)) S WX,b,Z,)\-

when restricted to Z, since Ly vanishes on H°(Iz(1)) ® Span Jy_1.
By the same argument as before, we conclude that
=0

(4.101) (ur — L (Vi) )
for i = 1,2; otherwise, (3.83) follows. By our choice of s; and r;, we see that

(4.102) L (vir) = 7“3—#187:]C - Z COjkxjaTjo

j=1

for i = 1,2. In particular,

0
(4.103) L)\ (’ylk — "}/Qk) = (7’2 — 7"1)1‘178 7é 0.
Tk

So x1(0/0xy) lies in the image of Ly for all k =1,2,...,n+ 1.
By [#.93), n(wix) — sivik = 0 in HY(Ox(d + 1)) and hence

E(sivir) = E((wir)) = EM(siur)) = E(sim(uk))
(4.104) = i = n(ue))| | = 0= (e = n(w)| =0
= §(vik) = E(n(ur))
for i = 1,2. Therefore, (15 — Y2x) = 0 and hence
(4.105) Y1k — Y2k € Span Jg N ker(§).
Combining and , we conclude that

for each 1 <k <n+ 1, there exists 7 € Span Jy N ker(§)

4.106
( ) such that Ly(vx) = ajli.
al‘k

On the other hand, we know that
(4.107) Span Jy Nker(¢) = H(Iz(1)) ® Span Jg_1 +V
by (4.48) in Lemma for

V = Span {:cg_Qwi(:cj —cjx1):i>1,5>2and
(4.108)
) — ;11 € HO(IZ(I))}.
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And since Ly vanishes on H%(Iz(1)) ® SpanJy_1, ([#.106) is equivalent to
saying that

(4.109) {mlaa k> 1} C Ly(V).

T,
Note that for ngzxi(xj —cjr) €V,
(4.110) n (:cl ® 28 2z (xj — cjrr) — (x5 — cjr1) ® xg_2x1xi> =0
and hence
Ly (1’1 ® :):g_%i(:):j —cjz1) — (25 — ¢jz1) ® :):8_2361:):2')
(4.111) =x1L) (acg_Qxi(xj - cjx1)> — (xj — cjx1) Ly (:L‘g_QLL“l:L‘Z')
=1L, (xg_%i(:cj — cjxl)) € Wxpz

It follows that z1Lx(y) € Wx p 2z for all v € V. Consequently,

(4.112) Span {x%a k> 1} C WX,b,Z,)\
81‘k
by (@.109).
It remains to find u € H(A, £) satisfying
(4.113) uESpan{gcla8 k> 1}, u# 0 and zou € Wxp 7 2.
Tk

If such w exists, u # 0 at both p;. Then combining (4.112)) and (4.113]), we

see that (xg — riz1)u € W p z \ vanishes at ps but not p;.
To construct w satisfying (4.113)), let us consider

n+1 n+1
W = Co13 | Wo12 — g Co2;W1450 | — Co12 | Wo13 — E €035W150
j=2 Jj=2
) n+1 )
(4.114) = C013 .1‘01’1% — E Cozjxlxj%
2 =2 0

9 n+1 )
— €012 xoxlaimg - E 003j$137j873:0
—

in Wx . We choose w in such a way that the expansion of n(w) does not
contain monomials in Jgz41 of degree d — 1 in x¢. Thus, we can write

n+1

(4.115) n(w) =Yz
=1
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for some 7; € Span J;. Therefore, by the definition (3.81)) of W 7z,

n+1

(4.116) w— Z xi Ly (75) € Wx bz
=1

when restricted to Z. Combining it with (4.95) and (4.112)), we conclude

0 0 0
4.117 _— = — | = 2 - ew
( ) xo <0013$1 92s 01271 8903) Bray Big X.,b,Z\
for some constant 5. Similarly, we have
0 0 0
4.118 _— — — | = 2 - ew
( ) xo <0023$2 . C02172 8373) Boxy O X.,b,Z\

for some constant Sy by switching x; and x2. Hence by (4.117)) and (4.118)),

0
o <616013CE‘1 I + 626023152%
(4.119) 2 !

0
— (e1cor2z1 + 620021562)%) € Wxpz
3

for constants ey and e, not all zero, satisfying e; /31 + e85 = 0.
For b € B general, cy13¢o23 7 0 and hence ejcg13 and eacgag cannot both
vanish. Therefore,

0 0
(4.120) u = 61001396187:62 + eacpezro=—— — (e1co12®1 + e2c02122) =—

8$1 8$3
satisfies (4.113]).
This finishes the proof of (3.83)) for Z special. Thus, if Z = {o1(b), 02(b)}

is special with respect to (z;) for all b € B, then o1(b) and o2(b) are not
I'-equivalent over Q on X for b € B general.

4.6. Generic case. Next we will try to finish the proof of our main theorem
by proving (3.83) for Z generic. We start with a result on {(Wx ) for Z

generic, similar to Lemma [£.7]

Lemma 4.9. Let P =P and X C Y = B x P be the family of hypersur-
faces in P given by (4.1) over B = Span Jy forn > 2 and d > 4. Then £ is

surjective when restricted to Wx, i.e.,
(4.121) EWxp) = H (A, E(1))

for b € B general and all 0-dimensional subschemes Z C Xy of length 2 that

are generic with respect to (x;), where A C P is the line cutting out Z on
Xy and € is the restriction H°(E(1)) — HO(A, £(1)).

Proof. Let {w;;r} be the basis of Wx given by with ¢, given by
(4.18). For b € B general, {c;j; : 0 < i # j,k < n+ 1} is a general set of
numbers satisfying c;;r = ci;.

We write u1 = ug if {(ur —u2) € §Wxp). Of course, we have w;j, = 0
and want to show that u = 0 for all u € H(£(1)).
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For starters, it is obvious that

(4.122) wijr =0 = mia:jﬁ =0foralli#j#k
oxy,
and
(4.123) Wik = 0 = 27 aik Z Cijkxixjaii =0 for all ¢ # k.

J#i
Without loss of generality, we assume (4.12]). We discuss in two cases:
(1) Suppose that
(4.124) Span{zg, 21} = Span{z1,z;} = Span{z;, 2o} = H°(Oz(1))

for some . Without loss of generality, we may assume that i = 2.
Namely, we have

(4.125) Span{zg, z1} = Span{z1,zo} = Span{zs,zo} = H*(Oz(1)).

(2) Otherwise, suppose that there does not exist x; satisfying .
Namely, for each z;, either z; € Span{xzo} or z; € Span{z;} in
H°(Oz(1)). And since Z is generic, there must exist i # j # 0,1
such that

(4.126) Span{wg,z;} = Span{z1,z;} = H’(Oz(1)).

Without loss of generality, we may assume that ¢ =3 and j = 2. In
summary, when (4.124]) fails, we may assume that

Span{zg, x3} = Span{z1, 22} = Span{zg,z1} = H°(Oz(1)) and
{x9, ..., 241} C Span{z} USpan{z;} in H(Oz(1)).
In the first case, we assume (4.125)). Then for all £ # 0, 1,2 and all 4, 7,

(4.127)

(4.128) xoxla—mk = a:lwgaik = a:oxga—xk =0
and hence
(4.129) mia:ji =0

oxy,

since {zox1, T129, Tox2} spans H(O4(2)) by (4.125] m

Suppose that xj # 0 in HO(OZ( )) for some 3 < k < n+ 1. With-
out loss of generality, suppose that x3 # 0 in H°(Oz(1)). Then at least
two pairs among {zg, x3}, {x1,23} and {x9, x3} are linearly independent in
H®(Oyz(1)). Without loss of generality, let us assume that

(4.130) Span{zo, 1} = Span{z1, 23} = Span{zs,zo} = H*(Oz(1)).

Then
0

(4.131) ToT1 =223 = 2903— =0 = z;
8:1:2

@)

9 20 =
0xo 0xa / Ory
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for all 4,5. That is, (4.129)) holds for k£ = 2 as well. Thus, it holds for all
k=#£0,1:

(4.132) =0ifk#0,1.

T Oxy,

It remains to prove (4.129) for £ =0, 1.
By (4.123]) and (4.132)), we see that
0
2

(4.133) = Zcijkxjai =0foralli=0,1and k #0,1
Ty

i
by (4.132)). Setting ¢ = 0 in (4.133]) and combining it with (4.122), we have

9 o o
4.134 2 - = G = — =0forallk>1>1.
( ) ZUlg 6330 xo;mm% 8.%'0 T 81’0 or a =

If Span{zy,z;} = H°(Oz(1)) for some k > [ > 2, then

2 — .2 _ _

for all i, j by (4.134). Otherwise, 2 and x; are linear dependent in HY(Oy(1))
for all £ > [ > 2. This implies that

(4.136) Z3, ..., Tny1 € Span{za}

in H%(Oz(1)). Thus

0 0 0 0
4.137 2 - = —=0= —=0= i— =0forj>2
( ) x5 . T1T9 B ToT2 O o, o or j >
since g € Span{z1,z2}. So we may rewrite (4.134]) as
0 0
4.138 2~ = — = — =0
( ) Lo dzg T1T2 Do Co1kT0T1 org

for all k£ > 2. As long as cp12 # 0, we have

0 0
4.1 — = 2 7 =
(4.139) ToT1 B 0=z - 0

since zg = byw1 + boxs in HY(Oz(1)) for some b; # 0 by . Combining
(4.138) and (4.139)), we conclude that x;x;(0/0x9) = 0 for all 4,j. This
proves (4.129)) for k = 0. The same argument works for k¥ = 1. This finishes
the proof of the lemma if we have and one of x3, ..., x,4+1 does not
vanish in H(Oz(1)).
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Otherwise, while we still have (4.125)), 23 = ... = 2,41 = 0 in H°(Oz(1)).

Then we have a system of linear equations:

0 0 0

o= F = =0
ZTox1 073 T1%2 g ToT2 a1

0

(60131705131 + 00231‘0$2)87$0 =0
0

(61031'15130 + 01231,‘11'2)87‘%1 =0
0

(caoszomo + 0213x2m1)a—$2 =0
9 d

x% — (co11w0x1 + co21T0x2) =— =0

o1 oo

(4.140) 5 :

x%i&pz — (co12oz1 + coggxg:l@)a—a70 =0
9 o

93% D70 — (cr00z120 + 01205515132)8—:qu =0
9 o

o Oy (c102m170 + 0122x1x2)a—m1 =0
9 o

I% Do - (6200x2$0 + 0210.%2.731)67m2 =0
9 o

I% o, - (6201x2$0 + 0211'%23:1)871‘2 =0

Suppose that
(4141) agro + ai1x1 + asxre =0

in H%(Oy(1)) for some constants ag, ay,az, not all zero. By our hypothesis
(.125)), a; # 0 for i = 0, 1,2.

Using , we can reduce into a system of linear equations in
27(9/0z;) for 0 < i # j < 2. For example,

0
(co13zoxt + 6023$0$2)78x =0
0
9 _
1'11'2% =
0

(4.142)
(a1x1 + agx2)(co1371 + COQz),ﬂL"z)a:E0 = a1001377 9z + ascp23xy 90

=0.
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In this way, we obtain a more manageable system of linear equations:

9 0
aoﬂfoiax + co11
1

9 0
a1 5 — + C100
81'0

(s, ) + o ()

(st ) +oms (st )

(15t ) +con (st )
(4.143) aoxgéf)@ + otz (a1x§£O> + oz (aga:%aao) 0

(s, ) + e (et )

(s, ) + e (st )

(w0t ) +ono (et )

2 0 2 0 2 0 .
a2x287;1+6201 (Jtoxoa—x2 + co11 alxla—mg =0.

We may consider (4.143) as a system of homogeneous linear equations in
a;x?(0/0x;) for 0 < i # j < 2. It is easy to show that (4.143) has only the
trivial solution for ¢;;, general. That is,

ix?—zOém?iEOforalli#j.

a.%'j €5
Together with , we see that holds for all 4, j, k. This finishes
the proof of the lemma in the first case.

In the second case, we assume . Note that under this hypothesis,
{20, 22} and {x1,z3} are linearly dependent in HY(Oz(1)), respectively.
Then for all £ #£ 0,1, 2,3,

(4.144) a

x:r—zx:nizxx—zo
0 laxk_ 0 28xk_ 1 36%—
0 s 0 5 0

=2 =2
Oxk Oal'k laxk

And since {2, zox1, 22} spans H(OA(2)), we see that holds for all
k > 4. It remains to prove for K =0,1,2,3. We argue in a similar
way to the first case.

Suppose that one of x4, ..., 7,41 does not vanish in H°(0z(1)). Without
loss of generality, suppose that x4 # 0 in H°(Oz(1)). By , x4 lies in
either Span{zo} or Span{z;}. Without loss of generality, we may assume

(4.145)
=0.

= o1
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that 4 # 0 € Span{xg} in H°(Oz(1)). Then

= 0 =1z 9 =0
TITa7— = ToTa7— = — =
! 4(9330 2 48:60 ! 38950
= xoxl—a = :cg—a = x%—a =0 and
O0xo dxg 0z
(4.146) 5 5
O Gy = M Gy = g, =
0 0
9 _ 20 _ 20 _
= Tox1 By in By 7 By 0.

So holds for £ = 0,2 and hence for all k # 1, 3.

Let us prove for k = 1. If 7 # 0 € Span{wz1} in H°(Oz(1)) for
some k > 5, then we have for k = 1,3 by the same argument as
above. Otherwise, x € Span{zg} for all & # 1,3. Then

0 0 0 0
4.14 —_—= — =0=a2— = — =0
( 7) Loz 81‘1 o3 8.1‘1 1‘0 8.21;‘1 ror 6.%'1
and
0 0 0
4.14 o =) cjmizi— = — =0.
( 8) Iy D0 s C150T1% 4 o7 0 = ci307173 071
As long as c139 # 0, we have
0 0
4.14 — = 2 - =0
(4.149) 173 . 0=z .

which, together with (4.147]), implies (4.129) for k = 1. The same argument
works for k = 3. This proves the lemma if we have (4.127) and one of

T4, ..., Tpy1 does not vanish in H(Oz(1)).

The only remaining case is that we have (4.127) and x4 = ... = xp41 =0
in H°(Oyz(1)). In this case, we have
0 0 0
19— =2123=— =0 = xpx1=— = x%— =0
al‘o 8x0 Zo 8%0
(4.150) P P 9
ToT1=— =T123— =0= xor1=— = x%— =0
8x2 8372 81‘2 8«T2
and
0 0 0 0
2 _ 2 _
.7}087.%.2 — ;Coﬂxo.xjaxo =0= xo% — 60221’01'2871}0 =0
(4.151) ’

0 0
2 — 2 —
To— — Cc2i0ToTi—— =0 = 25— — copoxora— = 0.
2 axo 27&; J J (91‘2 2 81‘0 (91‘2

J
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Suppose that x5 = axg in H°(Oz(1)) for some a # 0. Then ([4.151)) becomes

0 0
—aCp22 (.’E(Q)axo> + .’E(Q)ail? =0

0 0
a? <x38x0> — acso <x%8$2> =0.

For cgoaca00 # 1, (4.152) has only the trivial solution as a system of homo-
geneous linear equations in 23(09/0zy) for k = 0,2. That is,

(4.152)

0 0
4.153 2 =12 _—=0
( ) Lo axo Lo ax2
which, combined with (4.150f), implies (4.129)) for £k = 0, 2. Similarly, we can
prove (4.129) for k = 1, 3. This finishes the proof of the lemma. [l
By the isomorphism (4.39)), L) actually induces a map
Span Jy Ly
HY(Z,T

HO(I7(1)) ® Span Jg_1 (2.T¢)

(4.154) l L{
e
Sym? H(0z(1)) === H°(Ox(d))

As before, we choose s; € H(Op(1)) such that s;(p;) # 0 and s;(p3_;) = 0
for i = 1,2. For every u € HY(£), by Lemma there exist w; € Wy p such
that

(4.155) E(wi) = &(siu)

in H°(A,&(1)) for i = 1,2. Then as (4.98), we have
(4.156) n(wi) — sy € H(Iz(1)) ® Span Jy

for some ~; € Span Jy. It follows that

(4.157) si (u— Lx(7i)) € Wxpzn

for i = 1,2, when restricted to Z. As before, we must have
(4.158) (u— Lx(7)) L 0

for ¢ = 1, 2; otherwise, follows.
By ([4.156)), & (n(w;) — si7:) = 0 and hence
£(sivi) = € (n(wi)) = € (n(siw)) = € (sin(u))

= il = n(w)| | = 0= (i = ()], =0= &) = gw)

for i = 1,2. Then &(v1) = &(72) and 71 — 72 € HO(Iz(1)) ® Span Jy_1 by
Lemma Therefore, Ly(y1) = La(7y2). Combining this with (4.158]), we
conclude that

(4.160) u = Lx(v1) = La(72)

(4.159)
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in H°(Z,Tp). This implies that the map Ly in (4.154)) is onto. Indeed, the
combination of (4.159)) and (4.160|) tells us exactly what L) is:

(4.161) Lx(v) :u)Z ifv‘A :U(U)‘A

for v € T, = Span J; and u € HY(E). Let us see the geometric implication

of ([£.161).

Let 77 be the map given by the commutative diagram
HO(€) —— H"(Op(d))
(4.162) gl lg
HO(A, &) —1— HO(O,(d)).

Obviously, 7 is the restriction of 77 to A and defined in the same way as n by

0 oF
4.163 nlxi— | =zi—
( ) K <$ a$j> v awj
for all 0 <1i,j < mn+ 1 with everything restricted to A.
Since
(4.164) RO(A,E) — hP(OA(d)) =2(n+2) — (d+1) >0

for d = 2n+2, there exists u # 0 € h°(A, £) such that 7j(u) = 0. By (4.161)),
u vanishes in H%(Z, Tp). That is, u lies in the kernel of the map

(4.165) HO(A, &) —2— HO(Z,Tp).

Obviously, ker(p) is two dimensional and « € ker(p) for a given in (4.9).
We can make everything very explicit. If we identify A with P! and let
p1 = (0,1), p2 = (1,0) and y be the affine coordinate of A\ps, then

(4.166) i (ker(p)) = Span{f(y), yf'(y)}

for f(y) = N(a) = £&(F) € H(Ox(d)). Since u # 0 € ker(p) and 7j(u) = 0,
we conclude that f(y) and yf’(y) must be two linearly dependent polyno-
mials in y. This can only happen if f(y) = cy™, i.e., £(F') vanishes only at
p1 and po. Namely, X; and A have no intersections other than p; and ps.
So we have reached our key conclusion:

Proposition 4.10. If there are two points p1 # p2 on a general hypersurface
X C P of degree 2n + 2 that are T-equivalent over Q, then the line A
joining p1 and pa meets X only at p1 and po.

It remains to prove the following:

Proposition 4.11. Let P = P"*' G(1, P) be the Grassmannian of lines
in P and B =PH®(Op(d)) be the parameter space of hypersurfaces in P of
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degree d = 2n+ 2. For 0 < m < d, let Wy, be the incidence correspondence

W, = {(X7A7p17p2) :p1 # p2 and X.A =mp; + (d—m)pz}

(4.167)
C BxG(1,P)x P xP.

Then

(1) Wy, is irreducible.

(2) W, is generically finite over B wia the projection 7 : Wy, — B.

(3) For a general X € B, the fiber 7= 1([X]) contains at least two points
(X, Ai, pin, pi2) for i = 1,2 such that p11 # p21 and the line joining
p11 and pa; meet X at more than two points.

Let us see how the above proposition implies our main theorem. We
consider the incidence correspondence

W= {(XvA,PhPQ) :p1 # p2 € X NA and py ~r p2 over Q}

(4.168)
CBxG(l,P)xPxP

for B =PH"(Op(d)). This is a locally noetherian scheme, a priori.

If no components of W dominate B, we are done. Otherwise, by Proposi-
tion and W must contain some W,, as an irreducible compo-
nent. Then by Proposition again, for X € B general, there exist
(X, Ai,pi1,pi2) € Wy, € W for i = 1,2 such that p;; # po1 and the line
joining p11 and po; meet X at more than two points.

Since p;1 ~r pi2 over Q and X.A; = mp;; + (d — m)p;2, we have

(4.169) dpil ~T dng ~T XAZ

over Q on X for ¢ = 1,2. It follows that all four points p;; are I'-equivalent
over Q. Then by Proposition [4.10] again, the line joining pi; and po; must
meet X only at p11 and pa1, which is a contradiction.

It remains to prove Proposition [£.11]

Proof of Proposition[.11. The proof of this statement is fairly standard. To
see that W, is irreducible of dim B, it suffices to project it to G(1, P)x Px P.
The fiber of W,,, over (A, p1,p2) for p1 # p2 € A is a linear subspace of B of
dimension dim B — d. Therefore, W, is irreducible of dimension

dim W, = dim{(A,pl,pg) ip1 #E P2 € A} + (dim B — d)
(4.170) =dimG(1,P)+2—-d+dim B
=dimB+ (2n+2—d) =dim B
for d = 2n + 2.
To show that W,, is generically finite over B, it suffices to exhibit a
point (X, A, p1,p2) € W,, such that A does not deform while preserving

the tangency conditions with X. By that we mean there does not exist a
one-parameter family of lines A; such that Ag = A and A; meets X at two



48 XI CHEN, JAMES D. LEWIS, AND MAO SHENG

points with multiplicities m and d — m, respectively. Such deformation of A
is governed by the standard exact sequence

(4171) 0 —— Th(~p1 — p2) — Tp(~log X)| —— N —— 0.

It is easy to find (X, A, p1,p2) € Wy, such that H(N) = 0. We leave the
details to the readers.

Finally, to show (3), it again suffices to exhibit (X, A;, pi1, pi2) € W, for
1 = 1,2 with the required properties and neither A; nor As deforms while
preserving the tangency conditions with X. Again, it is easy to find such X
and A; and use the exact sequence to show that A; do not deform.

We leave the details to the readers once more. O

This finishes the proof of our main theorem

5. NOTES ON ALGEBRAIC INVARIANTS

We explain here some algebraic invariants from Hodge theory, some of
which are used in [V2], and show that these invariants are the same thing as
de Rham invariants, the latter not involving Hodge theory. First some no-
tation. For a Q-MHS V', we put I'(V') := homymus(Q(0), V') and accordingly
J(V) = Extlys(Q(0), V).

To arrive at the invariants of interest, we must introduce a natural filtra-
tion on the Chow groups of X. Let p : X — S be a smooth and proper
morphism of smooth quasi-projective varieties over a finitely generated sub-
field k/Q, and let K = k(S). Fix an embedding K < C over k, and put
X :=X/C=4,, xgC.

Theorem 5.1 ([Lewl]). Let X := X/C be smooth projective of dimension
d. Then for all r > 0, there is a filtration, depending on k C C,
CH"(X;Q)=F' D F'D...D F¥ D Fv+l 5
LD TS il pre2
which satisfies the following
(i) Ft = CH} . (X;Q).

hom

(i) F2 Cker AJ ® Q: CH . (X;Q) — J(H2T71(X(C)7Q(7')>)-

(iii) F* CH™ (X;Q) e F*2 CH™(X;Q) C F"'*"2 CH"™2(X;Q), where @ is
the intersection product.

)

(iv) FY is preserved under the action of correspondences between smooth
projective varieties over C.

(v) Let Gr% := FV/F"*! and assume that the Kiinneth components of the
diagonal class [Ax] = @prq=24[Ax (p,q)] € H*4(X x X,Q(d))) are algebraic
over Q. Then

Ax(2d —2r +¢,2r — = 0y, - Identity.

0)- ‘Gr; CH" (X,m;Q)
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[If we assume the conjecture that homological and numerical equivalence
coincide, then (v) says that Gr', factors through the Grothendieck motive.]

(vi) Let D"(X) := (), F”, and k = Q. If the Bloch-Beilinson conjecture on
the injectivity of the Abel-Jacobi map (®@Q) holds for smooth quasi-projective
varieties defined over Q, then D"(X) = 0.

It is instructive to briefly explain how this filtration comes about. Con-
sider a k-spread p : X — S, where p is smooth and proper. Let n be
the generic point of S/k, and put K := k(n). Write Xg := A),. From
[Lewl] we introduced a decreasing filtration F” CH"(X;Q), with the prop-
erty that Gy CH" (X; Q) < EX2" ™" (p), where EX” ™" (p) is the v-th graded
piece of the Leray filtration on the lowest weight part H3 (X, Q(r)) of
Beilinson’s absolute Hodge cohomology H3/ (X, Q(r)) associated to p. That
lowest weight part H3/(X,Q(r)) C H%(X,Q(r)) is given by the image
HZ(X,Q(r)) — H3 (X,Q(r)), where X is a smooth compactification of
X. There is a cycle class map CH"(X; Q) := CH" (X /k; Q) — HZ(X,Q(r)),
which is conjecturally injective if k& = Q under the Bloch-Beilinson conjec-
ture assumption, using the fact that there is a short exact sequence:

0 — JH*H(X,Q(r)) = HF (X,Q(r)) = T(H* (X, Q(r))) = 0.
(Injectivity would imply D"(X) = 0.) Regardless of whether or not injectiv-
ity holds, the filtration ¥ CH"(X; Q) is given by the pullback of the Leray
filtration on H3,(X,Q(r)) to CH"(X;Q). It is proven in [Lewl] that the
term E%2" " (p) fits in a short exact sequence:

0 — BZ2™(p) = B (p) — B2V (p) = 0,
where
BV (p) = T(H"(S, R " p,Q(r))),
El/,2r71/(p) _ J(W—lﬂy_l(sv RQT_Vp*Q(T)))
o DGy 7 1(5, R p Q1))
C J(H"Y(S, R p.Q(r))).
[Here the latter inclusion is a result of the short exact sequence:
0— W_1H" 1S, R*"p,Q(r)) = WoH""1(S, R* " p,Q(r))
— GryyH"71(S, R* " p,Q(r)) — 0.]
One then has (by definition)
F'CH'(Xg;Q) = lim FYCH'(Xy;Q), Ay := p~ HU)
Ucs/Q
F"CH"(X¢;Q) = lim F"CH"(Xk;Q)
KcC
Further, since direct limits preserve exactness,

Grp CH' (Xk;Q) = lim Griz CH' (Ay; Q),
Ucs/Q
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Gry CH"(Xc; Q) = lim Gry CH' (Xk; Q)
KCC
5.1. (Generalized) normal functions. Let us now assume that with re-
gard to the smooth and proper map p: X — S over a subfield £k C C, and
after possibly shrinking S, that S is affine, with K = k(S). Let V C S(C)
be smooth, irreducible, closed subvariety of dimension v — 1 (note that S
affine = V affine). One has a commutative square

XV — X(C)
pv Lp
V. < 5(C),

and a commutative diagram
e GriyCH"(X;Q) — GrpCH (Xk;Q)

!

0 = EZ(p) -  EX(p) - BTV = 0
! ' !

0 = B (pv) =  EX(v) = EZV(v) = 0

0

where QZ’OQT_” (pv) = 0 follows from the weak Lefschetz theorem for locally
constant systems over affine varieties. Thus for any £ € Gr CH"(X;Q), we
have a “normal function” 7¢ with the property that for any such smooth
irreducible closed V' C S(C) of dimension v — 1, we have a value 7¢(V) €
E%* 7" (py). Here we think of V' as a point on a suitable open subset of the
Chow variety of dimension v — 1 subvarieties of S(C) and 7¢ defined on that
subset. For example if v = 1, then we recover the classical notion of normal
functions.

Definition 5.2. 7 is called an arithmetic normal function.

Example 5.3. If S is affine of dimension ¥ — 1. Then in this case V = S5, and
§ € Gr>- CH"(X;Q) induces a “single point” normal function
ne(V) = 1(S) € J(H"™H(S, R p,Q(1))).
Now let £ € F¥ CH"(X; Q) be given, and let [£] € ggfr_”(p) be its image
via the composite
F'CH'(X;Q) — EZZ ™V (p) = EZ* 7 (p).
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5.2. The invariants.

Theorem 5.4 (see [K-L]). The class ] depends only on n¢, and is called
the topological invariant of ne.

Let us assume that S is affine. Then
Os &c Rip,C % QL @ Rip,C % ... |

is an acyclic resolution of R?"~¥p,C in the analytic topology, where V :=
0 ® Id is the Gauss-Manin connection. The corresponding cohomology
HY (S, R*~"p,C) is given by H°(S, —) of the middle cohomology in:

ngl ® R2fr—l/p*c Z) Qg ® R2’f'—l/p*(c l Qngl ® RQT—VP*C,
which is by definition the space of de Rham invariants, and is denoted by
VDR (X/S). As the map g’;f’"*”(p) — VDR"(X/S), together with the
regularity of V, it follows that the de Rham invariant of an algebraic cycle
is the same as the topological invariant. It turns out that H*(S, R? p,Q(r))

defines a Q-MHS [Ar], hence its complexification carries a descending Hodge
filtration F*H*(S, R’ p,C). In particular,

égfr—u(p) N F’I‘HV(S’ RQT‘—VIO*C),
where the latter term maps to H°(S, —) of the middle cohomology in:
(51) ngl ® FT—V+1R27‘—IJP*C _V_> Qg ® FT—VRQT‘—I/p*C

L Qg—&-l ® FT’—I/—lRQT‘—Vp*(C’
which is called the space of Mumford-Griffiths invariants, and is denoted by
VJ"¥(X/S). Note that there is a natural “forgetful” map VJ""(X/S) —
VDR™(X/S), which need not be injective. Having said this, it is clear
from the above discussion that
Im (EV2"7¥(p) = VJ""(X/S)) = Im (EZ*" " (p) = VDR™(X/5)),

is an isomorphism. Thus when it comes to the image of algebraic cycles,
the de Rham and Mumford-Griffiths invariants coincide! (All of this is
based on [L-S] and [MS].) Those cycles that have trivial Mumford-Griffiths
invariant must therefore land in E%2"~¥(p). In some instances, this can be
an uncountable space. Note that

Qg—l ® Fr71/+2R2r7Vp*(C _V_> Q'é ® Fr71/+1R2r7Vp*(C
l Qngl ® FT—VR2T’—Vp*(C’

is a subcomplex of (5.1)). The Mumford invariants are H°(S, —) of the middle
cohomology of the cokernel complex:

Qg—l ® rHrfI/le,rfl(X/S) _V_> Q'é ® /Hrfu,r(X/S)

_V_> Qngl ® HT_V_I’T+1(X/S),

and where V is induced from V.
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Example 5.5. Let us put N := dim S and n the relative dimension of p, with
r = n. In this case we are studying the relative O-cycles on each fiber of p.
This involves F™* CH"(X; Q), where we set v = n. Then

(5. oo IS )
V(5 0o, H T (X/9)

is the associated space of Mumford invariants. If n = 2, it also appears
in [V2]. Note that in this case, we need ¢ € CH*(X;Q) to be Abel-Jacobi

equivalent to zero fiberwise, in order that ¢ € F2 CH*(X; Q).

Question 5.6. (i) Can one characterize this filtration in terms of arithmetic
normal functions?

(ii) By choosing V sufficiently general, can one characterize this filtration
in terms of the corresponding Abel-Jacobi map for a fixed general variety?

E.g. we know that F! CH"(X;Q) = CH}__(X;Q) and

hom

F?CH"(X;Q) C CH;,(X;Q) := ker AJx : CH}..(X;Q) — J"(X)g.

ﬁom
Is it the case that F? CH"(X;Q) = CH', ;(X;Q)?

(i) What about the zero (or torsion) locus of such normal functions. Le.,
are they sensitive to the field of definition of algebraic cycles?

Remark 5.7. e; Special cases of Question [5.6i) are worked out in [K-LJ.
Further, if both X and S are defined over k, with X = S x; X, with p = Pry,
then the answer is yes, as shown in [Lew?2].

ey In the case where v = 1, (ii) and (i)’ can be shown to be equivalent.
(See for example [Lew3].)

5.3. Example revisited. Let us put N := dim S and n the relative
dimension of p.

Question 5.8. Does there exists a morphism of sheaves

Qg ®OS fHO,n
V(QL ! ®og HIm1)

— Homoy (p*(/\NQX), WS)»

induced by

(@b, .(0) € (ASHO", po(W¥21)) = ') 0) =an [ g (bne € sy,
X}

where wg is the canonical sheaf on S?
Remark 5.9. The answer is a yes if X = S X X, for in this case

@(ngl ®OS Hl,n—l) — 0
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