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Abstract. We prove a conjecture of Voisin that no two distinct points
on a very general hypersurface of degree 2n in Pn are rationally equiva-
lent.
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1. Introduction

In [V1] and [V2], C. Voisin proved the following ([V1, Theorem 3.1] and
[V2, Theorem 0.6])

Theorem 1.1 (C. Voisin). Let X be a very general complete intersection
in Pn+k of type (d1, d2, ..., dk).

• If
∑

(di − 1) ≥ 2n+ 2, no two distinct points on X are Q-rationally
equivalent.
• If (n, k, d1) = (2, 1, 6), there are at most countably many points on
X that are Q-rationally equivalent to a fixed point p for all p ∈ X.

The main purpose of this note is to generalize this result in two directions.
First, we will make a minor improvement by replacing rational equivalence
by Rŏıtman’s Γ-equivalence [R1]: fixing a smooth projective curve Γ and
two points 0 6=∞ ∈ Γ, for every algebraic cycle ξ ∈ Zk(X×Γ) with supp(ξ)
flat over Γ, the fibers ξ0 and ξ∞ of ξ over 0 and ∞ are Γ-equivalent, written
as ξ0 ∼Γ ξ∞. We will prove

Theorem 1.2. For a fixed smooth projective curve Γ with two fixed points
0 6=∞, no two distinct points on a very general complete intersection X in
Pn+k of type (d1, d2, ..., dk) are Γ-equivalent over Q if

∑
(di − 1) ≥ 2n+ 2,

Second, we will try to find the optimal bound for di where the result
holds. Our most optimistic expectation is

Conjecture 1.3. For a very general complete intersection X ⊂ Pn+k of
type (d1, d2, ..., dk) and every point p ∈ X,

(1.1) dimRX,p,Γ ≤ 2n−
k∑
i=1

(di − 1)

where RX,p,Γ = {q 6= p ∈ X : N(p − q) ∼Γ 0 for some N ∈ Z+} and Γ is a
fixed smooth projective curve with two fixed points 0 6=∞.

Note that RX,p,Γ is a locally noetherian scheme.
The case

∑
(di − 1) = n + 1 follows from Rŏıtman’s generalization of

Mumford’s famous theorem ([Mu], [R1] and [R2]). Of course, Voisin proved

(1.2) dimRX,p,P1 ≤ 2n+ 1−
k∑
i=1

(di − 1)

for
∑

(di−1) ≥ 2n+2 or (n, k, d1) = (2, 1, 6). Theorem 1.2 shows that (1.1)
holds for

∑
(di − 1) ≥ 2n+ 2.

If our conjecture holds, RX,p,Γ = ∅ when
∑

(di − 1) ≥ 2n + 1. So the
“boundary” case is

∑
(di − 1) = 2n + 1. For example, it is expected that

RX,p,Γ = ∅ for a very general sextic surface X ⊂ P3. Voisin’s theorem
shows that dimRX,p,P1 = 0 for such surfaces X. This boundary case is quite
challenging, even only for sextic surfaces. We claim the following:
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Theorem 1.4. No two distinct points are Γ-equivalent over Q on a very
general hypersurface X ⊂ Pn+1 of degree 2n+2 for a fixed smooth projective
curve Γ with two fixed points 0 6= ∞. That is, (1.1) holds for k = 1 and
d1 = 2n+ 2.

Note that the bound d ≥ 2n+ 2 is optimal for hypersurfaces of degree d
in Pn+1: For a general hypersurface X of degree d ≤ 2n + 1 in Pn+1, there
exist two lines L1 and L2 in Pn+1 such that each Li meets X at a unique
point pi with p1 6= p2.

Conventions. We work exclusively over C. Indeed, any two points on a
variety over Fp are rationally equivalent over Q.

2. Relative cycle map

Voisin’s proof consists of two major components. One is relative cycle
map. For a relative Chow cycle Z ∈ CHn

hom(X/B) for a smooth projective
family π : X → B of relative dimension n, if AJn(Zb) = 0 under the Abel-
Jacobi map on each fiber Xb, one can define some infinitesimal invariant
δZ ∈ Hn(Rnπ∗Q). This invariant can be defined in a Hodge-theoretical
way as in [V2]. Please see §5 for a comprehensive treatment along this
line. Here we take a different approach: we define δZ directly by (2.2) (see
below) and then we prove δZ is invariant under rational equivalence. This
has the advantage of being elementary: no Hodge theory is involved in the
definition of δZ. In addition, we will obtain for free that δZ is invariant
under Γ-equivalence. Another advantage of this approach is that δZ is well
defined for an arbitrary flat family π : X → B without any extra hypotheses
on X/B.

Definition 2.1. Let π : X → B be a flat and surjective morphism of
relative dimension n from X onto a smooth variety B of dimB = N . For a
multi-section Z ⊂ X, we define

(2.1) δZ ∈ Hom(π∗(∧NΩX),∧NΩB) = Hom(π∗Ω
N
X ,KB)

as follows:

(2.2) δZ = TrZ/B ◦ (dσ) : π∗Ω
N
X

dσ−→ (π ◦ σ)∗Ω
N
Z = (π ◦ σ)∗KZ

TrZ/B−−−−→ KB

where TrZ/B is the trace map and σ : Z ↪→ X is the embedding.
We can easily extend δ to the free abelian group Zn(X/B) of algebraic

cycles Z of pure codimension n in X whose support supp(Z) is flat over B.
For Z =

∑
miZi with Zi multi-sections of π, we let δZ =

∑
miδZi.

Remark 2.2. The definition (2.2) of δZ might need some further explanation.
The differential map dσ is usually dσ : σ∗ΩN

X → ΩN
Z . In (2.2), it is the
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composition of dσ and (π ◦ σ)∗:

(2.3)

π∗Ω
N
X π∗(Ω

N
X ⊗OZ) (π ◦ σ)∗Ω

N
Z

π∗(σ∗σ
∗ΩN

X).

The trace map TrZ/B can be defined for π∗(∧mΩZ)→ ∧mΩB under a gener-
ically finite map π : Z → B. Obviously, it is well defined outside of the
ramification locus of π. Since every meromorphic differential form in ∧mΩB

is regular if it is regular in codimension 1, it suffices to show that the image
of a differential m-form on Z under the trace map can be extended to a
regular m-form on B in codimension 1 [K, Proposition 5.77, p. 185]. More-
over, the trace map is well defined for B normal if we follow the convention
to define ΩB to be the sheaf of differential forms regular in codimension
1. However, TrZ/B cannot be defined for π∗(Ω

⊗m
Z ) → Ω⊗mB when m ≥ 2,

which is the reason why Mumford’s argument cannot be generalized using
pluri-canonical forms.

For Z ∈ Zn(X/B) and a morphism f : B′ → B, we clearly have the
commutative diagram

(2.4)

f∗ΩN
X ΩN

X′

f∗KB KB′

f∗(δZ) δ(f∗Z)

where X ′ = X ×B B′ and we also use f to denote the map X ′ → X.

Lemma 2.3. Let π : X → B be a flat and projective morphism of relative
dimension n from X onto a smooth variety B of dimB = N and let Z be
a cycle in Zn(X/B). If π∗Ω

N
X is locally free and Zb ∼Γ 0 for all b ∈ B,

then δZ = 0, where Γ is a fixed smooth projective curve with two fixed points
0 6=∞.

Proof. Since π∗Ω
N
X is locally free, δZ = 0 if and only if δZ = 0 at a general

point of B.
Using a Hilbert scheme argument, we can find a dominant and generically

finite morphism f : B′ → B and a cycle Y ∈ Zn(X ′×Γ) such that supp(Y )
is flat over B′×Γ and Y0− Y∞ = f∗Z, where X ′ = X ×B B′, Yt is the fiber
of Y over t ∈ Γ and f∗Z is the pullback of Z under f : X ′ → X. Obviously,
δZ = 0 if δf∗Z = 0 by (2.4) and the fact that π∗Ω

N
X is locally free. To

simplify our notations, we replace (X,B) by (X ′, B′).
For every t ∈ Γ, Yt ∈ Zn(X/B) and thus it induces a map

(2.5) γ : Γ→ Hom(π∗Ω
N
X ,KB)
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by γ(t) = δYt. More precisely, since Y is flat over B × Γ, we have

δY ∈ Hom(ε∗Ω
N+1
X×Γ,KB×Γ)

= Hom(η∗1π∗Ω
N+1
X ⊕ η∗1π∗ΩN

X ⊗ η∗2KΓ, η
∗
1KB ⊗ η∗2KΓ)

−→ Hom(η∗1π∗Ω
N
X ⊗ η∗2KΓ, η

∗
1KB ⊗ η∗2KΓ)

= Hom(η∗1π∗Ω
N
X , η

∗
1KB)

(2.6)

where ε, η1 and η2 are the projections ε : X × Γ→ B × Γ, η1 : B × Γ→ B
and η2 : B × Γ → Γ, respectively. Clearly, γ(t) is the restriction of δY to
the point t ∈ Γ. It follows that γ is a morphism. And since Γ is projective,
it must be constant. Therefore, δZ = δY0 − δY∞ = 0. We are done. �

So, to show that σ1(b) 6∼Γ σ2(b) over Q at a general point b ∈ B for
two sections σi : B ↪→ X of X/B, we only need to find s ∈ H0(U, π∗Ω

N
X)

satisfying

(2.7) (dσ1)σ∗1s− (dσ2)σ∗2s 6= 0

over some open dense subset U ⊂ B. The existence of such s is guaranteed
if H0(Xb,Ω

N
X) is imposed independent conditions by σi(b) for b ∈ B general.

This observation leads to the following:

Proposition 2.4. Let π : X → B be a smooth and projective morphism
from X onto a smooth variety B of dimB = N . Suppose that H0(Xb,Ω

N
X)

is imposed independent conditions by all pairs of distinct points p 6= q ∈ Xb

for b ∈ B general. Then RXb,p,Γ = ∅ for b ∈ B very general and all p ∈ Xb,
where Γ is a fixed smooth projective curves with two fixed points 0 6= ∞.
More generally,

(2.8)
RXb,p,Γ ⊂

{
q ∈ Xb : q 6= p and {p, q} does not impose independent

conditions on H0(Xb,Ω
N
X)
}

for b ∈ B very general.

Here we say that a closed subscheme Z ⊂ X or its ideal sheaf IZ ⊂ OX
imposes independent conditions on a coherent sheaf F or its global sections
H0(F) (resp. a linear series D ⊂ H0(F)) on X if H0(F) → H0(F ⊗ OZ)
(resp. D → H0(F ⊗OZ)) is surjective.

Proof of Proposition 2.4. Suppose that there are a pair of points p 6= q on
a general fiber Xb such that p ∼Γ q over Q and {p, q} imposes independent
conditions on H0(Xb,Ω

N
X). By a base change and shrinking B to an affine

variety, we may assume that

• there exists two disjoint sections P and Q ⊂ X of π : X → B such
that m(Pb −Qb) ∼Γ 0 for some m ∈ Z+ and all b ∈ B,
• h0(Xb,Ω

N
X) is constant for all b ∈ B and

• H0(ΩN
X) is imposed independent conditions by P tQ.
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Since P tQ imposes independent conditions on H0(ΩN
X) and ΩN

X is locally
free, the map

(2.9) H0(ΩN
X ⊗ IP ) H0(σ∗QΩN

X)
σ∗Q

is a surjection, where σP and σQ : B ↪→ X are the embeddings of P and Q
to X, respectively. Combining (2.9) with the pullback map of σQ : B ↪→ X
on differentials, we have a composition of two surjections

(2.10) H0(ΩN
X ⊗ IP ) H0(σ∗QΩN

X) H0(ΩN
B )

σ∗Q dσQ

where dσP and dσQ are the pullback maps induced by σP and σQ on the

differentials, respectively. Therefore, there exists s ∈ H0(ΩN
X) such that

(2.11) σ∗P s = 0 and (dσQ)σ∗Qs 6= 0.

It follows that

(2.12) 〈δZ, s〉 = (dσP )σ∗P s− (dσQ)σ∗Qs = −(dσQ)σ∗Qs 6= 0

for Z = P −Q. On the other hand, δZ = 0 by Lemma 2.3. Contradiction.
The above argument shows that no irreducible component of

(2.13)

SX,Γ =
{

(b, p, q) : b ∈ B and p 6= q ∈ Xb satisfy that p ∼Γ q over Q

and {p, q} imposes independent conditions

on H0(Xb,Ω
N
X)
}

dominates B via the projection ξ : SX,Γ → B. Note that SX,Γ is a locally
noetherian subscheme of X×BX. Therefore, for b ∈ B\ξ(SX,Γ) very general,
(2.8) holds. �

Remark 2.5. Note that the right hand side (RHS) of (2.8) is a subscheme
that does not depend on the choice of the triple (Γ, 0,∞).

3. Positivity of the sheaf of holomorphic N-forms

3.1. A key lemma. Let us first review some basic notions on global genera-
tion and very ampleness of coherent sheaves. A coherent sheaf V on a variety
X is globally generated (resp. very ample) if the map H0(V )→ H0(V ⊗OZ)
is surjective for all 0-dimensional subschemes Z ⊂ X of length h0(OZ) = 1
(resp. 2), i.e., V is imposed independent conditions by all 0-subschemes of
length 1 (resp. 2). More generally, we say that a linear series D ⊂ H0(V ) is
globally generated (resp. very ample) if the map D → H0(V ⊗OZ) is surjec-
tive for all 0-dimensional subschemes Z ⊂ X of length h0(OZ) = 1 (resp. 2).
The hypothesis in Proposition 2.4 that ΩN

X ⊗OXb is imposed independent
conditions by two distinct points is a weak version of very-ampleness, which
is technically easier to treat and suffices for our purpose. We call V weakly
very ample if H0(V ) is imposed independent conditions by all pairs of two
distinct points on X.
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Let us go through some basic facts on these notions:

• A quotient of a globally generated (resp. (weakly) very ample) co-
herent sheaf is also globally generated (resp. (weakly) very ample).
More generally, if a coherent sheaf V on a variety X is imposed in-
dependent conditions by a 0-dimensional subscheme Z ⊂ X, so is a
quotient Q of V .
• For coherent sheaves V and W on a variety X, if V is globally gen-

erated and W is imposed independent conditions by a 0-dimensional
subscheme Z ⊂ X, then V ⊗W is imposed independent conditions
by Z. In particular,

– if V is globally generated and W is globally generated (resp.
(weakly) very ample), V ⊗W is also globally generated (resp.
(weakly) very ample);

– if V is globally generated (resp. (weakly) very ample), so are
V ⊗N , SymN V and ∧NV for all N ≥ 1.

• Let

(3.1) 0 U V W 0
η

be a short exact sequence of coherent sheaves on a variety X, if
the map η ◦ Γ : Γ(V ) → Γ(W ) induced by η is surjective and both
U and W are imposed independent conditions by a 0-dimensional
subscheme Z ⊂ X, the same is true for V . Thus, if η ◦Γ is surjective
and both U and W are globally generated (resp. (weakly) very
ample), V is also globally generated (resp. (weakly) very ample).
Here we write Γ(A) = H0(A).

Basically, if we have a short exact sequence (3.1), the global generation
(resp. very-ampleness) of V implies that of W ; the global generation (resp.
very-ampleness) of U and W implies that of V under the extra hypothesis
that η ◦ Γ is surjective. The hard question is how to tell whether a 0-
dimensional scheme Z imposes independent conditions on U if it does on V .
The following key lemma gives us a criterion for that.

Lemma 3.1. Let

(3.2)

0 A1 A2 A3

0 B1 B2 B3

α1 α2

η

α3

be a commutative diagram of sheaves over a topological space X whose rows
are left exact. Suppose the map α2 ◦ Γ is surjective. Then the map α1 ◦ Γ is
surjective if and only if

(3.3) η(ker(α2 ◦ Γ)) = η ◦ Γ(A2) ∩ ker(α3 ◦ Γ).
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Proof. This follows from the diagram

(3.4)

0 0

E F

0 Γ(A1) Γ(A2) G 0

0 Γ(B1) Γ(B2) Γ(B3)

0

α1 α2

η

α3

and the snake lemma, where E = ker(α2 ◦ Γ), F = η ◦ Γ(A2) ∩ ker(α3 ◦ Γ)
and G = η ◦ Γ(A2). Of course, this lemma can be formulated and proved in
abelian categories for left exact functors. �

A typical way to apply the above lemma is the following: if U, V and
W are locally free in (3.1) and V is globally generated, then U is globally
generated if and only if

(3.5) η ◦ Γ(V ⊗ Ip) = η ◦ Γ(V ) ∩ Γ(W ⊗ Ip)
for all p ∈ X.

3.2. Sheaf of holomorphic N-forms. The other component of Voisin’s
proof is the positivity of the sheaf of holomorphic N -forms. More precisely,
we are considering the global generation and very-ampleness of the sheaf
∧NΩX = ΩN

X when restricted to a general fiber of a family π : X → B over
B of dimB = N . Voisin proved [V1, Proposition 3.4] and [V2, Corollary
1.2]:

Theorem 3.2 (C. Voisin). Let X ⊂ B × Pn+k be a versal family of com-
plete intersections of type (d1, d2, ..., dk) in Pn+k over a smooth variety B of
dimB = N . Then for a general point b ∈ B,

(3.6) ΩN
X ⊗ π∗K−1

B
∼= TnX ⊗KX/B

is globally generated on Xb if
∑

(di − 1) ≥ 2n + 1 and very ample on Xb

if
∑

(di − 1) ≥ 2n + 2, where π is the projection X → B, TX = Ω∨X is the
holomorphic tangent bundle of X and TnX = ∧nTX .

Let us go over Voisin’s proof of the above theorem. The key fact is that
TX(1) is globally generated [V2, Proposition 1.1]:

Theorem 3.3 (Clemens). For a versal family X ⊂ Y = B ×P of complete
intersections in P = Pn+k over a smooth variety B, TX(1) = TX ⊗ OX(1)
is globally generated on a general fiber Xb, where OP (1) is the hyperplane
bundle on P .
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This theorem was originally due to Herbert Clemens [C]. We will give a
proof following closely the argument of Lawrence Ein in [E1] and [E2].

Proof of Theorem 3.3. We have the so-called adjunction sequence

(3.7) 0 TX TY ⊗OX NX 0
η

associated to X ⊂ Y , where NX is the normal bundle of X in Y . By (3.3)
in Lemma 3.1, TX(1)⊗OXb is globally generated if

(3.8) TY (1)⊗OXb is globally generated

and

(3.9) η ◦ Γb(TY (1)⊗ Ip) = η ◦ Γb(TY (1)) ∩ Γb(NX(1)⊗ Ip)

where we use the notation Γb for Γb(F) = H0(Xb,F).
Obviously, (3.8) follows immediately from the fact that

(3.10) TP (1) and OP (1) are globally generated,

while (3.9) follows if we can prove that the map

(3.11)

H0(Xb, TY (1)⊗ Ip) H0(Xb,NX(1)⊗ Ip)

H0(NXb(1)⊗ Ip)

is surjective for all p ∈ Xb, where NXb is the normal bundle of Xb in P .
The surjectivity of the map (3.11) comes from the surjectivity of two maps

(3.12) H0(NXb)⊗H0(OXb(1)⊗ Ip) H0(NXb(1)⊗ Ip)

and

(3.13) H0(Xb, TP )⊕ TB,b H0(Xb, TY ) H0(NXb)

via the diagram

(3.14)

H0(Xb, TY )⊗H0(OXb(1)⊗ Ip) H0(Xb, TY (1)⊗ Ip)

H0(NXb)⊗H0(OXb(1)⊗ Ip) H0(NXb(1)⊗ Ip),

where TB,b is the holomorphic tangent space of B at b and the map (3.13)
is induced by the Kodaira-Spencer map of the family X/B ⊂ Y/B.

Finally, (3.12) follows from the fact that

(3.15) H0(OP (d))⊗H0(OP (1)⊗ Ip) H0(OP (d+ 1)⊗ Ip)

is surjective for all p ∈ P and d ≥ 0 and (3.13) is a consequence of the
hypothesis that X/B is versal. �
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To put it in a nutshell, the global generation of TX(1)⊗OXb comes down
to three easy-to-verify facts (3.10), (3.12) and (3.13). Thus, we can put
Theorem 3.3 in a more general setting:

Theorem 3.4. Let P be a smooth projective variety, X be a smooth closed
subvariety of Y = B×P that is flat over a smooth variety B and let L be a
line bundle on the fiber Xb of X/B over a point b ∈ B. Suppose that

(3.16) TP ⊗ L and L are globally generated on Xb,

(3.17) H0(NXb)⊗H0(L⊗ Ip) H0(NXb ⊗ L⊗ Ip)

is surjective for all p ∈ Xb and the Kodaira-Spencer map

(3.18) TB,b H0(NXb)/H0(Xb, TP )

is surjective. Then TX ⊗ L is globally generated on Xb. In addition,

(3.19) H1(Xb, TX ⊗ L) = H1(Xb, TX ⊗ L⊗ Ip) = 0

for all p ∈ Xb if H1(Xb, TP ⊗ L) = H1(Xb, L) = 0.

Note that the map (3.18) is the Kodaira-Spencer map associated to the
family X/B ⊂ Y/B, as given in the following diagram

(3.20)

TB,b

0 H0(TXb) H0(Xb, TP ) H0(NXb) H1(TXb).

The surjectivity of (3.18) simply says that B dominates the versal deforma-
tion space of Xb ⊂ P .

Once we have the global generation of TX(1), Theorem 3.2 follows easily
from the fact

(3.21) TnX ⊗KX/B = ∧n(TX(1))⊗OX
(∑

(di − 1)− (2n+ 1)
)
.

Indeed, we can put Theorem 3.2 in a more general form as 3.4:

Theorem 3.5. Under the same hypotheses of Theorem 3.4, TnX ⊗ KX/B

is globally generated (resp. very ample) on Xb if KXb ⊗ L−n is globally
generated (resp. very ample).

Of course, combining Proposition 2.4 and Theorem 3.5, we arrive at the
following:

Theorem 3.6. Under the same hypotheses of Theorem 3.4, we assume that
(3.16), (3.17) and (3.18) hold and KXb⊗L−n is very ample for b ∈ B general
and n = dimXb. Then RXb,p,Γ = ∅ for b ∈ B very general and all p ∈ Xb,
where Γ is a fixed smooth projective curve with two fixed points 0 6=∞.

This implies Theorem 1.2.
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3.3. Global generation of T 2
X(1). In order to prove part of Conjecture

1.3, e.g., that no two points on a very general sextic surface are rationally
equivalent, we need to show that

(3.22)
ΩN
X ⊗ π∗K−1

B
∼= TnX ⊗OX

(∑
(di − 1)− (n+ 1)

)
∼= TnX(n)⊗OX

(∑
(di − 1)− (2n+ 1)

)
is imposed independent conditions by two distinct points on a general fiber
Xb when

∑
(di − 1) ≥ 2n + 1. Namely, we need improve Voisin’s theorem

3.3 to show that TnX(n) is weakly very ample. Of course, if this is true for
TmX (m) for some m ≤ n, it is true for TnX(n). So we conjecture

Conjecture 3.7. Let X ⊂ B×Pn+k be a versal family of complete intersec-
tions of type (d1, d2, ..., dk) in Pn+k over a smooth variety B of dimB = N .
Then for a general point b ∈ B, H0(Xb, T

2
X(2)) is imposed independent con-

ditions by all pairs of points p 6= q ∈ Xb.

Voisin actually had a stronger conjecture [V2, Question 2.1]:

Conjecture 3.8. Let X ⊂ B×Pn+k be a versal family of complete intersec-
tions of type (d1, d2, ..., dk) in Pn+k over a smooth variety B of dimB = N .
Then for a general point b ∈ B, T 2

X(1) = (∧2TX)⊗OX(1) is globally gener-
ated on Xb if Xb is of general type.

Clearly, Voisin’s conjecture implies that T 2
X(2) = T 2

X(1) ⊗ OX(1) is very
ample on Xb and hence our conjecture 3.7. In addition, it implies that ΩN

X is
globally generated when

∑
(di − 1) ≥ 2n. Unfortunately, both of the above

conjectures fail.
Basically, we are considering whether TmX ⊗ L is imposed independent

conditions by a 0-dimensional subscheme Z ⊂ Xb for a line bundle L. Using
Lemma 3.1 again, we can obtain the following criterion:

Theorem 3.9. Let Y be a smooth projective family of varieties over a
smooth variety B, X be a smooth closed subvariety of Y that is flat over
B, L be a line bundle on Xb for a point b ∈ B and Z be a 0-dimensional
subscheme of Xb. Suppose that

(3.23) H0(Xb, T
m
Y ⊗ L) is imposed independent conditions by Z.

Then H0(Xb, T
m
X ⊗L) is imposed independent conditions by Z if and only if

(3.24) ηm ◦ Γ(TmY ⊗L⊗ IZ) = ηm ◦ Γ(TmY ⊗L) ∩ Γ(Tm−1
Y ⊗NX ⊗L⊗ IZ),

where ηm : TmY ⊗OX → Tm−1
Y ⊗NX is the map

(3.25) ηm(ω1 ∧ ω2 ∧ ... ∧ ωm) =
m∑
k=1

(−1)k+1η(ωk)⊗
∧
i 6=k

ωi

induced by η : TY ⊗OX → NX with NX the normal bundle of X in Y .
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Proof. By the adjunction sequence (3.7), we obtain a left exact sequence

(3.26) 0 TmX ⊗ L TmY ⊗ L Tm−1
Y ⊗NX ⊗ L

ηm

on Xb. Since TmY ⊗ L is imposed independent conditions by Z, we conclude
the same for TmX ⊗ L if and only if (3.24) holds by (3.3) in Lemma 3.1. �

Note that ηm is actually the map in the generalized Koszul complex

(3.27)
∧mTY ⊗OX

ηm−−→ ∧m−1TY ⊗NX −→ ∧m−2TY ⊗ Sym2NX
−→ ... −→ TY ⊗ Symm−1NX −→ SymmNX −→ 0

of ∧m−•TY ⊗ Sym•NX induced by η.
We are considering the very-ampleness of TmX (l) for X ⊂ Y = B × P for

P = Pr. By the Euler sequence

(3.28)

0 OP OP (1)⊕(r+1) TP 0

E

on P , we have the diagram

(3.29)

0 0

0 OX OX

0 GX EY ⊗OX NX 0

0 TX TY ⊗OX NX 0

0 0

ξ

η

where

(3.30) EY = π∗BTB ⊕ π∗PE

with πB : Y → B and πP : Y → P the projections of Y onto B and P ,
respectively. Since TX is a quotient of GX , TmX (l) is imposed independent
conditions by two distinct points on Xb if GmX (l) is. Thus, we have the
following easy corollary of Theorem 3.9:

Corollary 3.10. Let P = Pr, X be a smooth closed subvariety of Y = B×P
flat over B, and Z be a 0-dimensional subscheme of Xb for a point b ∈ B.
Suppose that

(3.31) Z imposes independent conditions on OP (l).
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Then Z imposes independent conditions on H0(Xb, T
m
X (l)) if

(3.32) ξm ◦ Γb(EmY (l)⊗ IZ) = ξm ◦ Γb(EmY (l)) ∩ Γb(Em−1
Y (l)⊗NX ⊗ IZ),

where ξm : EmY ⊗ OX → E
m−1
Y ⊗ NX is the map induced by ξ. In addition,

the converse holds if

(3.33) H1(Xb, T
m−1
X (l)) = 0

and Z imposes independent conditions on H0(Xb, T
m−1
X (l)).

Proof. This follows directly from the diagram (3.29) and Theorem 3.9. The
converse follows from the exact sequence

(3.34) 0 Tm−1
X (l) GmX (l) TmX (l) 0.

�

For a versal family X of complete intersections, we have already proved
(3.33) for m = 2 and l ≥ 1 by (3.19) in Theorem 3.4. So T 2

X(2) is weakly
very ample if and only if

(3.35) ξ2 ◦ Γb(E2
Y (2)⊗ IZ) = ξ2 ◦ Γb(E2

Y (2)) ∩ Γb(EY (2)⊗NX ⊗ IZ)

for all Z = {p1 6= p2} ⊂ Xb and T 2
X(1) is globally generated if and only if

(3.36) ξ2 ◦ Γb(E2
Y (1)⊗ Ip) = ξ2 ◦ Γb(E2

Y (1)) ∩ Γb(EY (2)⊗NX ⊗ Ip)
for all p ∈ Xb. Unfortunately, neither (3.35) nor (3.36) holds for hypersur-
faces by a direct computation, although we will not go through the details
here as it is not the main purpose of this paper.

3.4. Differential map dσ. Since T 2
X(2) fails to be weakly very ample, we

cannot apply Proposition 2.4 to show that no two points on a general sextic
surface are Γ-equivalent. It is very likely that TnX(n) fails to be weakly very
ample for n > 2 as well. So we are unable to prove Conjecture 1.3 for∑

(di − 1) = 2n+ 1 in this way.
A closer examination of the proof of Proposition 2.4 shows that we do

not really need ΩN
X to be weakly very ample on Xb. We only need find

s ∈ H0(U, π∗Ω
N
X) satisfying (2.7). This is much weaker than the require-

ment that p1 = σ1(b) and p2 = σ2(b) impose independent conditions on
H0(Xb,Ω

N
X) for b general. For one thing, (dσ1)σ∗1s− (dσ2)σ∗2s = 0 imposes

only one condition on Γb(Ω
N
X) = H0(Xb,Ω

N
X).

Let dσi ◦ Γb be the map induced by dσi on Γb(Ω
N
X) as in

(3.37)

Γb(T
n
X ⊗KX)

Γb(Ω
N
X) Γb

(
Kσ1(B)

)
⊕ Γb

(
Kσ2(B)

)
.

dσ1⊕dσ2

Clearly, (2.7) holds for some s ∈ H0(U, π∗Ω
N
X) if

(3.38) ker(dσ1 ◦ Γb) 6= ker(dσ2 ◦ Γb)
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holds at a general point b ∈ B. More precisely, as long as (3.38) holds at
a point b ∈ B such that h0(Xt,Ω

N
X) is locally constant for t in an open

neighborhood of b, we can find a section sb ∈ Γb(Ω
N
X) with the property

(3.39) (dσ1)sb − (dσ2)sb 6= 0

and this sb can be extended to a section s ∈ H0(U, π∗Ω
N
X) over an open

neighborhood U of b satisfying (2.7).
Therefore, to show that σi(b) are not Γ-equivalent over Q on a general

fiber Xb, we just have to prove (3.38). Let us formalize this observation in
the following proposition:

Proposition 3.11. Let X be a smooth projective family of varieties over a
smooth variety B of dimB = N and let σi : B → X be two disjoint sections
of X/B for i = 1, 2. Then σ1(b) and σ2(b) are not Γ-equivalent over Q on
Xb for b ∈ B general if (3.38) holds at a point b where h0(Xt,Ω

N
X) is locally

constant in t.

3.5. Criterion for two fixed sections. To apply Proposition 3.11, we
need an explicit description of the differential maps dσi. They can be made
very explicit if X ⊂ Y = B × P is a family of varieties in a projective space
P passing through two fixed points pi ∈ P and σi(b) ≡ pi for i = 1, 2. On
the other hand, for an arbitrary family X ⊂ Y with two sections σi over B,
we can always apply an automorphism λ ∈ B×Aut(P ), after a base change,
fiberwise to Y/B such that λ ◦ σi(b) ≡ pi for two fixed points pi ∈ P ; thus,
to test (3.38) for a general fiber Xb of X/B, it suffices to test it for a general

fiber X̂b of X̂/B, X̂ = λ(X) and σ̂i = λ ◦ σi. Let us first consider families
X ⊂ B × P with two fixed sections σi(b) ≡ pi.

To set it up, we let P = Pr and fix two points p1 6= p2 in P . We let
X ⊂ Y = B × P be a closed subvariety of Y that is flat over B with fibers
Xb containing p1 and p2 for all b ∈ B. We assume that X and B are smooth
of dimX = N + n and dimB = N , respectively. We have two sections
σi : B → X sending σi(b) = pi for all b ∈ B and i = 1, 2.

To state our next proposition on the differential map dσ, we need to
introduce the filtration F •ΩX associated to the fibration X/B.

For a surjective morphism f : W → B with B smooth, we have a filtration

(3.40)

Ωm
W = F 0Ωm

W ⊃ F 1Ωm
W ⊃ ... ⊃ Fm+1Ωm

W = 0

with GrpFΩm
W =

F pΩm
W

F p+1Ωm
W

= f∗ (∧pΩB)⊗ ∧m−pΩW/B

for Ωm
W = ∧mΩW derived from the short exact sequence

(3.41) 0 f∗ΩB ΩW ΩW/B 0.

Note that F p is an exact functor.
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For πB : Y → B with Y = B × P , F pΩm
Y is simply that

(3.42) F pΩm
Y =

⊕
i≥p

π∗BΩi
B ⊗ π∗PΩm−i

P

and we have natural projections Ωm
Y → F pΩm

Y .

Proposition 3.12. Let X ⊂ Y = B × P be a smooth projective family of
varieties in a smooth projective variety P passing through a fixed point p ∈ P
over a smooth variety B with the section σ : B → X given by σ(b) = p for
b ∈ B. Then the diagram
(3.43)

ΩN
X ΩN+k

Y ⊗ det(NX) ΩN+k+1
Y ⊗ det(NX)⊗NX

ΩN
σ(B) FNΩN+k

Y ⊗ det(NX)
∣∣∣
σ(B)

FNΩN+k+1
Y ⊗ det(NX)⊗NX

∣∣∣
σ(B)

dσ

commutes and has left exact rows, where N = dimB, k = dimY − dimX,
det(NX) = ∧kNX and the vertical maps in the second and third columns
are induced by the projections Ω•Y → FNΩ•Y followed by the restrictions to
σ(B).

Proof. The rows of (3.43) are induced by Koszul complex (3.27) and hence
left exact.

We want to point out that the diagram

(3.44)

Ωm
Y Ωm+1

Y ⊗NX

F lΩm
Y F lΩm+1

Y ⊗NX

η

does not commute in general. However, it commutes when we restrict the
bottom row to σ(B). That is, we claim that the diagram

(3.45)

Ωm
Y Ωm+1

Y ⊗NX

F lΩm
Y

∣∣∣
σ(B)

F lΩm+1
Y ⊗NX

∣∣∣
σ(B)

η

ρm ρm+1

ησ

commutes. Of course, this implies that the right square of (3.43) commute.
Let (x1, x2, ..., xr) and (t1, t2, ..., tN ) be the local coordinates of P and B,

respectively. Let p = {x1 = x2 = ... = xr = 0} and

(3.46) X = {f1(x, t) = f2(x, t) = ... = fk(x, t) = 0}.
Then η is given by

(3.47) η(ω) = (ω ∧ df1, ω ∧ df2, ..., ω ∧ dfk).
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Since p ∈ Xb for all b ∈ B, we have fi(0, t) ≡ 0. Hence

(3.48)
∂fi
∂tj

∣∣∣∣
x=0

= 0

for all t, i = 1, 2, ..., k and j = 1, 2, ..., N . It follows that

(3.49)

ρm+1 ◦ η(ω1) = ρm+1(ω1 ∧ df1, ω1 ∧ df2, ..., ω1 ∧ dfk)
= (ρm+1(ω1 ∧ df1), ρm+1(ω1 ∧ df2), ..., ρm+1(ω1 ∧ dfk))
= 0 = ησ ◦ ρm(ω1)

for all local sections

(3.50) ω1 ∈ H0(U,
⊕
i<l

π∗BΩi
B ⊗ π∗PΩm−i

P ) ⊂ H0(U,Ωm
Y ),

where U is an open subset of Y . Every ω ∈ H0(U,Ωm
Y ) can be written as

(3.51) ω = ω1 + ω2

with ω1 given in (3.50) and ω2 ∈ H0(U,F lΩm
Y ). It is clear that

(3.52) ρm+1 ◦ η(ω2) = ησ ◦ ρm(ω2).

Combining (3.49) and (3.52), we conclude that

(3.53) ρm+1 ◦ η(ω) = ησ ◦ ρm(ω)

and hence the diagram (3.45) commutes. It remains to prove that the left
square of (3.43) commutes.

Note that ΩN
X can be identified with the image of the map

(3.54) ΩN
Y ⊗OX ΩN+k

Y ⊗ det(NX)θ

given by

(3.55) θ(ω) = ω ∧ df1 ∧ df2 ∧ ... ∧ dfk.
By (3.48) again, we see that the diagram

(3.56)

ΩN
Y ⊗OX ΩN+k

Y ⊗ det(NX)

FNΩN
Y ⊗OX

∣∣∣
σ(B)

FNΩN+k
Y ⊗ det(NX)

∣∣∣
σ(B)

θ

dσ

commutes. Thus, the diagram

(3.57)

ΩN
Y ⊗OX ΩN

X ΩN+k
Y ⊗ det(NX)

FNΩN
Y ⊗OX

∣∣∣
σ(B)

ΩN
σ(B) FNΩN+k

Y ⊗ det(NX)
∣∣∣
σ(B)

θ

dσ dσ
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commutes. �

Setting m = n and L = KX in (3.26), we have
(3.58)

TnX ⊗KX TnY ⊗KX Tn−1
Y ⊗KX ⊗NX

ΩN
X ΩN+r−n

Y ⊗ det(NX) ΩN+1+r−n
Y ⊗ det(NX)⊗NX

ηn

where det(NX) = ∧r−nNX .
Note that

(3.59) FNΩN+1
Y = π∗BΩN

B ⊗ π∗PΩP and FNΩN+2
Y = π∗BΩN

B ⊗ π∗PΩ2
P .

Combining (3.58), (3.43) and (3.59), we obtain commutative diagrams

(3.60)

TnX ⊗KX TnY ⊗KX Tn−1
Y ⊗KX ⊗NX

Kσi(B) π∗PT
n
P ⊗KX

∣∣∣
σi(B)

π∗PT
n−1
P ⊗KX ⊗NX

∣∣∣
σi(B)

dσi
αn,i

ηn

αn−1,i

with left exact rows for i = 1, 2. By the above diagram, we have

(3.61) ker(dσi ◦ Γb) = ker(αn,i ◦ Γb) ∩ ker(ηn ◦ Γb)

for i = 1, 2. Therefore, (3.38) is equivalent to

(3.62) ker(αn,1 ◦ Γb) ∩ ker(ηn ◦ Γb) 6= ker(αn,2 ◦ Γb) ∩ ker(ηn ◦ Γb) .

More explicitly, we can write Γb(T
n
Y ⊗KX) as

(3.63) Γb(T
n
Y ⊗KX) = Γb(π

∗
PT

n
P ⊗KX)⊕

∑
j<n

Γb(π
∗
PT

j
P ⊗KX)⊗ Tn−jB,b .

Then the kernel of αn,i ◦ Γb is

(3.64)

ker(αn,i ◦ Γb) = Γb(π
∗
PT

n
P ⊗KX(−pi))

⊕
∑
j<n

Γb(π
∗
PT

j
P ⊗KX)⊗ Tn−jB,b

for i = 1, 2, where KX(−pi) = KX ⊗ Ipi for Ipi the ideal sheaf of pi. So
(3.62) is equivalent to
(3.65)

ker(ηn ◦ Γb) ∩ (Γb(π
∗
PT

n
P ⊗KX(−p1))⊕

∑
j<n

Γb(π
∗
PT

j
P ⊗KX)⊗ Tn−jB,b )

6= ker(ηn ◦ Γb) ∩ (Γb(π
∗
PT

n
P ⊗KX(−p2))⊕

∑
j<n

Γb(π
∗
PT

j
P ⊗KX)⊗ Tn−jB,b )

Combining it with Proposition 3.11, we obtain the following criterion:



18 XI CHEN, JAMES D. LEWIS, AND MAO SHENG

Proposition 3.13. Let X ⊂ Y = B × P be a smooth projective family of
n-dimensional varieties in a projective space P passing through two fixed
point p1 6= p2 ∈ P over a smooth variety B. Then p1 and p2 are not Γ-
equivalent over Q on Xb for b ∈ B general if (3.65) holds at a point b where
h0(Xt, T

n
X ⊗KX) is locally constant in t.

Remark 3.14. Since X ⊂ B×P is a family of varieties in P passing through
pi, η(v) is a section in H0(NXb) vanishing at pi for all tangent vectors
v ∈ TB,b and i = 1, 2. It follows that

(3.66)

ηn

n−1∑
j=0

Γb(π
∗
PT

j
P ⊗KX)⊗ Tn−jB,b


⊂

2⋂
i=1

ker(αn−1,i ◦ Γb) = Γb(π
∗
PT

n−1
P ⊗KX ⊗NX(−p1 − p2))

⊕
n−2∑
j=0

Γb(π
∗
PT

j
P ⊗KX ⊗NX)⊗ Tn−1−j

B,b .

Let us apply Proposition 3.13 to complete intersections in P = Pn+k of
type (d1, d2, ..., dk). When

∑
(di − 1) = 2n + 1, we have KX = OX(n).

More general, let us consider a smooth projective family X ⊂ Y = B×P of
varieties of dimension n in P with KX(−n) globally generated on each fiber
Xb. In this case, we have the following corollary of Proposition 3.13.

Corollary 3.15. Let X ⊂ Y = B × P be a smooth projective family of
n-dimensional varieties in a projective space P passing through two fixed
point p1 6= p2 ∈ P over a smooth variety B and let WX,b be the subspace of
Γb(TP (1)) defined by

(3.67) WX,b =
{
ω ∈ Γb(TP (1)) : η(ω) ∈ η

(
Γb(O(1))⊗ TB,b

)}
,

where the map η on Γb(TP (1)) and Γb(O(1))⊗TB,b are given by the diagram

(3.68)

Γb(TY (1)) Γb(TP (1))⊕ Γb(O(1))⊗ TB,b

Γb(NX(1))

η

Suppose that there exists a point b ∈ B such that h0(Xt, T
n
X ⊗KX) is con-

stant for t in an open neighborhood of b, each point pi imposes independent
conditions on both KXb(−n) and TX(1)⊗OXb, i.e., the maps

(3.69) Γb(KX(−n)) KX(−n)⊗Opi and

(3.70) Γb(TX(1)) TX(1)⊗Opi
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are surjective for i = 1, 2 and

(3.71)
{
ω ∈WX,b : ω(p1) = 0

}
6=
{
ω ∈WX,b : ω(p2) = 0

}
.

Then p1 and p2 are not Γ-equivalent over Q on Xb for b ∈ B general.

Proof. By (3.71), there exists ω ∈WX,b such that ω(pi) = 0 and ω(p3−i) 6= 0
for i = 1 or 2. Without loss of generality, let us assume that ω1(p1) = 0 and
ω1(p2) 6= 0 for some ω1 ∈WX,b.

It is easy to see that WX,b is the image of the projection from Γb(TX(1))
to Γb(TP (1)) via the diagram

(3.72)

Γb(TX(1)) Γb(TY (1)) Γb(NX(1))

Γb(TP (1))

η

where Γb(TX(1)) can be identified with ker(η). In other words, for every
ω ∈WX,b, there exists τ ∈ Γb(O(1))⊗TB,b such that η(ω+τ) = 0 and hence
ω + τ ∈ Γb(TX(1)).

By (3.70), Γb(TX(1)) generates the vector space TX(1) ⊗ Op2 . On the
other hand, by the diagram

(3.73)

TXb(1)⊗Op2 TX(1)⊗Op2 TB,b

TYb(1)⊗Op2 TY (1)⊗Op2 TB,b

TP (1)⊗Op2

we see that the image of the projection TX(1) ⊗Op2 → TP (1) ⊗Op2 is the
same as the image of the map TXb(1) ⊗ Op2 → TYb(1) ⊗ Op2 and thus has
dimension n. Therefore,

(3.74) dim{ω(p2) : ω ∈WX,b} = n.

And since ω1(p2) 6= 0, we can find ω2, ..., ωn ∈ WX,b such that {ωj(p2)} are
linearly independent. On the other hand, ω1(p1) = 0 and hence {ωj(p1)}
are linearly dependent. In other words,

(3.75)

{
ω1(p1) ∧ ω2(p1) ∧ ... ∧ ωn(p1) = 0

ω1(p2) ∧ ω2(p2) ∧ ... ∧ ωn(p2) 6= 0.

Let η(ωj + τj) = 0 for some τj ∈ Γb(O(1))⊗ TB,b and j = 1, 2, ..., n. Then

(3.76)
n∧
j=1

(ωj + τj)⊗ s ∈ ker(ηn ◦ Γb)
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for all s ∈ Γb(KX(−n)). By (3.75), we have

(3.77)

n∧
j=1

ωj ⊗ s ∈ Γb(π
∗
PT

n
P ⊗KX(−p1)) and

n∧
j=1

ωj ⊗ s 6∈ Γb(π
∗
PT

n
P ⊗KX(−p2))

provided that s(p2) 6= 0. The combination of (3.76) and (3.77) yields (3.65).
�

Since the validity of (3.71) is determined by the restriction of WX,b to
Z = {p1, p2}, we may let WX,b,Z be the subspace of H0(Z, TP (1)) given by

(3.78)
WX,b,Z = WX,b ⊗H0(OZ)

=
{
ω
∣∣
Z

: ω ∈ Γb(TP (1)) and η(ω) ∈ η
(
Γb(O(1))⊗ TB,b

)}
and reformulate (3.71) as

(3.79) WX,b,Z ∩H0(Z, TP (1)⊗ Ip) 6= 0

for some p ∈ supp(Z) = {p1, p2}.

3.6. Criterion for two varying sections. So far we have obtained the
key criterion, Corollary 3.15, for the Γ-equivalence of two fixed sections of
X/B in the ambient space P . To apply it to two arbitrary sections of X/B,
we need to use an automorphism λ ∈ Aut(Y/B) to move these two sections
to two fixed points in P , as pointed out before. This line of argument leads
to the following:

Proposition 3.16. Let X ⊂ Y = B × P be a smooth projective family
of n-dimensional varieties in a projective space P over the N -dimensional
polydisk B = SpecC[[tj ]] and let σi : B → X be two disjoint sections of
X/B with pi = σi(b) at the origin b ∈ B for i = 1, 2. Let λ ∈ B × Aut(P )
be an automorphism of Y preserving the base B, satisfying that λb = id and
λ(σi(t)) ≡ pi for i = 1, 2 and all t ∈ B and given by

(3.80) λ


x0

x1
...
xr

 = Λ


x0

x1
...
xr

 ,
where (x0, x1, ..., xr) are the homogeneous coordinates of P and Λ = Λ(t) is
an (r + 1)× (r + 1) matrix over C[[tj ]] satisfying Λ(0) = I. Let WX,b,Z,λ be
the subspace of H0(Z, TP (1)) defined by

(3.81)
WX,b,Z,λ =

{
ω
∣∣
Z

+ Lλ(τ) : ω ∈ Γb(TP (1)), τ ∈ Γb(O(1))⊗ TB,b,

η(ω + τ) = 0
}
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for Z = {p1, p2}, where Lλ : π∗BTB,b → TP ⊗OZ is the map given by

(3.82) Lλ

(
∂

∂tj

)
=
[
x0 x1 ... xr

] ∂ΛT

∂tj

∣∣∣∣
t=0


∂/∂x0

∂/∂x1
...

∂/∂xr

 .
Suppose that

• h0(Xt, T
n
X ⊗KX) is constant over B,

• KXb(−n) and TX(1) ⊗ OXb are imposed independent conditions by
each point pi for i = 1, 2,
• and

(3.83) WX,b,Z,λ ∩H0(Z, TP (1)⊗ Ip) 6= 0

for some p ∈ supp(Z).

Then σ1(t) and σ2(t) are not Γ-equivalent over Q on Xt for t ∈ B general.

Proof. Note that WX,b,Z,λ = WX,b,Z if Lλ = 0, i.e., σi(t) ≡ pi.
Let X̂ = λ(X) ⊂ Y = B×P . Obviously, X̂ is a smooth projective families

of n-dimensional varieties in P over B passing through the two fixed points
p1 6= p2.

We define the map η̂ : TY ⊗OX̂ → NX̂ and the space W
X̂,b
⊂ Γb(TP (1))

for X̂ ⊂ Y = B×P in the same way as η and WX,b. Note that since λb = id,

Xb = X̂b and we may use Γb(•) to refer both H0(Xb, •) and H0(X̂b, •).
Let us consider the commutative diagram:

(3.84)

Γb(TX(1)) Γb(TY (1)) Γb(NX(1))

Γb(TX̂(1)) Γb(TY (1)) Γb(NX̂(1))

Γb(TP (1))

(dλ)∗∼= (dλ)∗∼=

η

πP,∗

η̂

As pointed out in the proof of Corollary 3.15, WX,b is simply the image
of the projection from Γb(TX(1)) to Γb(TP (1)) when Γb(TX(1)) is identified

with the kernel of η : Γb(TY (1))→ Γb(NX(1)). The same holds for X̂. That
is, W

X̂,b
is simply the image of the projection from Γb(TX̂(1)) to Γb(TP (1))

when Γb(TX̂(1)) is identified with the kernel of η̂ : Γb(TY (1))→ Γb(NX̂(1)).
We may regard W

X̂,b
as the image of Γb(TX(1)) under the map πP,∗◦(dλ)∗

in the above diagram. Note that πP,∗◦(dλ)∗ is not the same as the projection
πP,∗ : Γb(TY (1))→ Γb(TP (1)), i.e.,

(3.85) πP,∗ ◦ (dλ)∗ 6= πP,∗.

Indeed, we have

(3.86) (dλ)∗(ω + τ) = (ω + L̂λ(τ)) + τ
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for ω ∈ Γb(TP (1)) and τ ∈ Γb(O(1))⊗ TB,b, where

(3.87) L̂λ : π∗BTB π∗PTP

is a homomorphism induced by (dλ)∗ : TY → TY . Thus,

(3.88) πP,∗ ◦ (dλ)∗(ω + τ) = ω + L̂λ(τ) 6= ω = πP,∗(ω + τ).

It follows that

(3.89)

W
X̂,b

= πP,∗ ◦ dλ ◦ Γb(TX(1))

=
{
ω + L̂λ(τ) : ω ∈ Γb(TP (1)), τ ∈ Γb(O(1))⊗ TB,b,

η(ω + τ) = 0
}
.

We claim that Lλ and WX,b,Z,λ are exactly the restrictions of L̂λ and W
X̂,b

to Z, respectively. Indeed, the differential map dλ : TY → TY is given by

(3.90)

(dλ)∗

(
∂

∂xi

)
=

∂

∂xi

(dλ)∗

(
∂

∂tj

)
=

∂

∂tj
+ L̂λ

(
∂

∂tj

)

=
∂

∂tj
+
[
x0 x1 ... xr

] ∂ΛT

∂tj


∂/∂x0

∂/∂x1
...

∂/∂xr


at b. Therefore, Lλ is the restriction of L̂λ to Z and henceW

X̂,b,Z
= WX,b,Z,λ.

In conclusion, the hypothesis (3.83) on WX,b,Z,λ translates to

(3.91)
{
ω ∈W

X̂,b
: ω(p1) = 0

}
6=
{
ω ∈W

X̂,b
: ω(p2) = 0

}
.

Then by Corollary 3.15, σ1(t) and σ2(t) are not Γ-equivalent over Q on a
general fiber Xt of X/B. �

Remark 3.17. In the above proof, it is easy to see that

(3.92) η̂

(
∂

∂xi

)
= η

(
∂

∂xi

)
and η̂

(
∂

∂tj

)
= η

(
∂

∂tj
− L̂λ

(
∂

∂tj

))
.

Since X̂t passes through p1 and p2, η̂(τ) vanishes at pi and hence Lλ satisfies

(3.93) η(Lλ(τ)) = η(τ)
∣∣∣
Z

for all τ ∈ TB,b.

There is a more intrinsic way to define Lλ: for every t ∈ B, we consider
the line joining the two points σi(t); we may regard σi(t) as the image of
two fixed points on P1 mapped to this line and thus interpret Lλ in terms
of the deformation of this map P1 → P . We can put the above proposition
in the following equivalent form.
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Proposition 3.18. Let X ⊂ Y = B × P be a smooth projective family of
n-dimensional varieties in a projective space P over a smooth variety B and
let v : S = B × P1 ↪→ Y be a closed immersion preserving the base B such
that v∗OY (1) = OS(1) and there are two fixed points p1 6= p2 on P1 with
vb(pi) ∈ Xb for all b ∈ B. Let WX,b,Z,λ be the subspace of H0(Z, v∗bTP (1))
defined by

(3.94)

WX,b,Z,λ =
{
v∗bω

∣∣
Z

+ Lλ(v∗b τ) : ω ∈ Γb(TP (1)),

τ ∈ Γb(O(1))⊗ TB,b,

η(ω + τ) = 0
}

for Z = {p1, p2}, where Lλ : π∗S,BTB,b → v∗bTP ⊗ OZ is the map induced by
TS → v∗TY with πS,B the projection S → B.

Suppose that KXb(−n) and TX(1)⊗OXb are imposed independent condi-
tions by each point vb(pi) for i = 1, 2 and

(3.95) WX,b,Z,λ ∩H0(Z, v∗bTP (1)⊗ Ip) 6= 0

for some p ∈ Z and b ∈ B general. Then vb(p1) and vb(p2) are not Γ-
equivalent over Q on Xb for b ∈ B general.

Note that the hypothesis v∗OY (1) = OS(1) simply means that v maps
S/B fiberwise to lines in P .

Using Proposition 3.16 or 3.18, we obtain the following criterion for the
Γ-inequivalence of all pairs of distinct points on Xb.

Corollary 3.19. Let X ⊂ Y = B × P be a smooth projective family of
n-dimensional varieties in a projective space P over a smooth variety B
and let WX,b,Z,λ be the subspace of H0(Z, TP (1)) defined by (3.81) for a
0-dimensional subscheme Z ⊂ Xb and Lλ ∈ Hom(π∗BTB,b, TP ⊗OZ).

Suppose that KXb(−n) and TX(1) ⊗ OXb are globally generated on Xb

and (3.83) holds for a general point b ∈ B, all pairs Z = {p1, p2} of distinct
points p1 6= p2 on Xb, some p ∈ supp(Z) and all Lλ ∈ Hom(π∗BTB,b, TP⊗OZ)
satisfying (3.93). Then no two distinct points on Xb are Γ-equivalent over
Q for b ∈ B very general.

We believe that the above corollary will find application in the future.
However, we will not use it to prove our main theorem 1.4; instead, we will
apply Proposition 3.16 directly, i.e., apply it to families X ⊂ B × Pn+1 of
hypersurfaces of degree 2n + 2 in Pn+1. In this case, both KX(−n) = OX
and TX(1) are globally generated on Xb if X/B is versal. So it suffices to
verify (3.83), which we will carry out in the next section.

4. Hypersurfaces of degree 2n+ 2 in Pn+1

4.1. Versal deformation of the Fermat hypersurface. In this section,
we are going to prove our main theorem 1.4 using the criteria developed in
the previous section.
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To start, let us choose a versal family of hypersurfaces in Pn+1. Let
X ⊂ Y = B × P be the family of hypersurfaces of degree d in P = Pn+1

given by

(4.1) F (x0, x1, ..., xn, tf ) = xd0 + xd1 + ...+ xdn+1 +
∑
f∈Jd

tff = 0,

where (x0, x1, ..., xn+1) are the homogeneous coordinates of Pn+1, Jd is the
set of monomials in xi given by

(4.2)

Jd =
{
xm0

0 xm1
1 ...x

mn+1

n+1 : m0,m1, ...,mn+1 ∈ N,
m0 +m1 + ...+mn+1 = d and

m0,m1, ...,mn+1 ≤ d− 2
}

and (tf ) are the coordinates of the affine space B = SpanC Jd
∼= AN for

(4.3) N = h0(OP (d))− h0(TP )− 1 =

(
d+ n+ 1

n+ 1

)
− (n+ 2)2.

We may regard X/B as a versal deformation of the Fermat hypersurface.
At a general point b ∈ B, X/B is obviously versal, i.e., the Kodaira-

Spencer map

(4.4)

TB,b H0(NXb)/η(H0(Xb, TP ))

H1(TXb)

∼

is an isomorphism, where η is the map in

(4.5) 0 TX TY ⊗OX NX 0.
η

More explicitly, (4.4) is equivalent to saying

(4.6) Span

{
xi
∂F

∂xj

}
⊕ Span Jd = H0(NXb) = H0(Xb,O(d))

for b ∈ B general.
Let E = OP (1)⊕n+2 be the Euler bundle on P . Then

(4.7) H0(TP ) ∼=
H0(E)

(α)
= Span

{
xi

∂

∂xj

}
/(α)

by the Euler sequence (3.28) and

(4.8) η

(
∂

∂xj

)
=
∂F

∂xj
and η

(
∂

∂tf

)
=
∂F

∂tf
= f

for j = 0, 1, 2, ..., n+ 1 and f ∈ Jd, where

(4.9) α =
n+1∑
i=0

xi
∂

∂xi
.
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We are going to show that no two distinct points on a very general fiber
Xb of X/B are Γ-equivalent over Q when d = 2n+2 ≥ 6. To set it up, we fix
a general point b ∈ B. Let us assume that there exist two disjoint sections
σi : B → X in an analytic open neighborhood of b such that σ1(t) and σ2(t)
are Γ-equivalent over Q for all t. We let λ ∈ B×Aut(P ) be an automorphism
of Y such that λb = id and λ(σi(t)) ≡ pi = σi(b) for i = 1, 2 and let Lλ be
defined accordingly by (3.82). It comes down to the verification of (3.83).

Definition 4.1. Let Z be a 0-dimensional scheme of length 2 in P = Pn+1

with homogeneous coordinates (x0, x1, ..., xn+1). We call Z generic with
respect to the homogeneous coordinates (xi) if

(4.10) H0(OZ(1)) = Span{xj : j 6= i} for every i = 0, 1, . . . , n+ 1.

Otherwise, we call Z special with respect to (xi). We call Z very special
with respect to (xi) if

(4.11) #{xi : xi ∈ H0(IZ(1))} = n = h0(OP (1))− 2

where IZ is the ideal sheaf of Z in P .

Remark 4.2. Clearly, these notions depend on the choice of homogeneous
coordinates of P . More generally, we can define these terms with respect to
a basis of H0(L) for an arbitrary very ample line bundle L on P .

When the choice of homogeneous coordinates is clear, we simply say Z is
generic (resp. special/very special).

Obviously, being very special implies being special.
There always exist i 6= j such that xi and xj span H0(OZ(1)) since OP (1)

is very ample. Without loss of generality, we usually make the assumption
that (i, j) = (0, 1), i.e.,

(4.12) H0(OZ(1)) = Span{x0, x1}.

Under the hypothesis of (4.12), Z is special if and only if

(4.13) Span{x0, x1} = H0(OZ(1)) ) Span{x1, x2, ..., xn+1}.

Furthermore, by re-arranging x2, ..., xn+1, we may assume that there exists
1 ≤ a ≤ n+ 1 such that

(4.14) x1, ..., xa 6∈ H0(IZ(1)) and xa+1, ..., xn+1 ∈ H0(IZ(1)).

Of course, Z is very special if and only if a = 1.

We are considering two cases: with respect to (xj),

Generic case: Z = {σ1(b), σ2(b)} = {p1, p2} is generic or
Special case: Z = {σ1(b), σ2(b)} is special for all b ∈ B.

4.2. A basis for WX,b. For convenience, we identify the tangent space TB,b
with Span Jd. Then η(f) = f for all f ∈ Span Jd.

We start the proof of (3.83) by studying the space WX,b defined by (3.67).
It has a basis given by:
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Lemma 4.3. Let P = Pn+1 and X ⊂ Y = B×P be the family of hypersur-
faces in P given by (4.1) over B = SpanJd for d ≥ 3. Then

(4.15)
WX,b =

{
ω ∈ H0(Xb, E(1)) : η(ω) ∈ Span Jd+1

}
= Span

{
ωijk : 0 ≤ i, j, k ≤ n+ 1, i ≤ j and i, j 6= k

}
has dimension

(4.16) dimWX,b = (n+ 2)

(
n+ 2

2

)
for b = (tf ) in an open neighborhood of 0, where

(4.17)

ωijk = xixj
∂

∂xk
for i 6= j 6= k and

ωiik = x2
i

∂

∂xk
−
∑
j 6=i

cijkxixj
∂

∂xi
for i 6= k

with

(4.18) cijk =
d− 1

d!

(
∂dF

∂xd−2
i ∂xj∂xk

)
=

{
2d−1tf if i 6= j = k

d−1tf if i 6= j 6= k

for f = xd−2
i xjxk. Here we consider η as a map H0(E(1))→ H0(O(d+ 1))

given by (4.8).

Proof. We have

(4.19) η

(
xixj

∂

∂xk

)
= xixj

∂F

∂xk
= dxixjx

d−1
k +

∑
f∈Jd

tfxixj
∂f

∂xk
.

It is easy to check that

(4.20) η(ωijk) = xixj
∂F

∂xk
∈ Span Jd+1

for i 6= j 6= k and

(4.21) η(ωiik) = x2
i

∂F

∂xk
−
∑
j 6=i

d− 1

d!
xixj

(
∂dF

∂xd−2
i ∂xj∂xk

)
∂F

∂xi
∈ Span Jd+1

for i 6= k. Hence ωijk ∈ WX,b for all i, j 6= k.
To show that {ωijk : i ≤ j and i, j 6= k} forms a basis of WX,b in an open

neighborhood of 0, it suffices to verify this for b = 0: clearly,

(4.22)
{
ωijk

∣∣∣
b=0

: i ≤ j and i, j 6= k
}

=

{
xixj

∂

∂xk
: i ≤ j and i, j 6= k

}
is a basis of WX,0. Therefore, (4.15) and (4.16) follow. �

Clearly, WX,b is the image of WX,b under the map

(4.23) H0(Xb, E(1)) H0(Xb, TP (1)).
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More precisely, let ŴX,b be the lift of WX,b in H0(Xb, E(1)). Then

(4.24) ŴX,b =WX,b ⊕ α⊗H0(O(1))

where WX,b ∩ α⊗H0(O(1)) = 0 because

(4.25) Span Jd+1 ∩ η
(
α⊗H0(O(1))

)
= SpanJd+1 ∩ F ⊗H0(O(1)) = 0.

4.3. An observation on Lλ. We observe the following:

Lemma 4.4. Let P = Pn+1 and X ⊂ Y = B × P be the family of hyper-
surfaces in P given by (4.1) over B = SpanJd. For b ∈ B, a 0-dimensional
subscheme Z ⊂ Xb of length 2 and Lλ ∈ Hom(π∗BTB,b, TP ⊗OZ), if

(4.26) Lλ (f) 6= 0 for some f ∈ H0(IZ(1))⊗ Span Jd−1 ⊂ Span Jd,

then (3.83) holds.

Proof. Obviously, (4.26) holds for some f = lg with l ∈ H0(IZ(1)) and
g ∈ Jd−1.

For each point p ∈ supp(Z), we choose lp ∈ H0(OP (1)) such that lp(p) = 0
and lp 6∈ H0(IZ(1)) and let

(4.27) τp = lp ⊗ f − l ⊗ lpg ∈ H0(OXb(1))⊗ TB,b.

Then η(τp) = 0 so Lλ(τp) ∈WX,b,Z,λ. Clearly,

(4.28) Lλ(τp) = lpLλ (f)− lLλ (lpg) = lpLλ (f)

since l ∈ H0(IZ(1)). Then by our choice of lp, Lλ(τp) vanishes at p.
If Lλ(τp) 6= 0, then (3.83) follows. Otherwise,

(4.29) lpLλ (f) = 0.

Since lp 6∈ H0(IZ(1)), (4.29) implies that Lλ (f) vanishes at all p ∈ supp(Z).
If Z consists of two distinct points, then we must have

(4.30) Lλ (f) = 0,

which contradicts our hypothesis (4.26).
If Z is supported at a single point p, then Lλ (f) vanishes at p. Applying

the same argument to τq = lq⊗f−l⊗lqg for some lq ∈ H0(OP (1)) satisfying
lq(p) 6= 0, we have

(4.31) Lλ(τq) = lqLλ (f)− lLλ (lqg) = lqLλ (f) ∈WX,b,Z,λ

vanishing at p. Again, we have either (3.83) or (4.30) since lq(p) 6= 0. �

Let us assume that (4.30) holds for all f ∈ H0(IZ(1))⊗Span Jd−1. Other-
wise, we are done by the above lemma. Then Lλ : TB,b → H0(Z, TP ) factors
through

(4.32)
Span Jd

H0(IZ(1))⊗ Span Jd−1
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and it can be regarded as a map

(4.33)
Span Jd

H0(IZ(1))⊗ Span Jd−1
H0(Z, TP ).

Lλ

4.4. The space H0(IZ(1))⊗ Span Jd−1. Let us figure out the space (4.32).
Obviously,

(4.34) H0(IZ(1))⊗ Span Jd−1 ⊂ Span Jd ∩H0(IZ(1))⊗H0(OP (d− 1)).

Furthermore, since H0(IZ(1))⊗H0(OP (d− 1)) is the kernel of the map

(4.35)

H0(OP (d)) SymdH0(OZ(1))

SymdH0(OP (1))

ξ

we may write (4.34) as

(4.36) H0(IZ(1))⊗ Span Jd−1 ⊂ Span Jd ∩ ker(ξ).

Actually, this inclusion is an equality for Z generic:

Lemma 4.5. Let P = Pn+1, Jd be defined in (4.2) and Z be a 0-dimensional
subscheme of P of length 2. If d ≥ 4 and Z is generic with respect to (xi),
then

(4.37)
H0(IZ(1))⊗ Span Jd−1 = SpanJd ∩H0(IZ(1))⊗H0(OP (d− 1))

= SpanJd ∩ ker(ξ).

Or equivalently, H0(IZ(1))⊗ Span Jd−1 is the kernel of the map

(4.38) Span Jd SymdH0(OZ(1)).
ξ

In addition,

(4.39)
Span Jd

H0(IZ(1))⊗ Span Jd−1
SymdH0(OZ(1))

ξ
∼

is an isomorphism.

Proof. To prove (4.37), it suffices to find a subset S ⊂ Jd such that

(4.40) Span Jd = H0(IZ(1))⊗ Span Jd−1 + Span(S)

and

(4.41) H0(IZ(1))⊗H0(OP (d− 1)) ∩ Span(S) = 0.

Let us assume (4.12). By (4.10), H0(OZ(1)) = Span{x1, x2, ..., xn+1} and
hence there exists i 6= 0, 1 such that

(4.42) H0(OZ(1)) = Span{x1, xi}.
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Similarly, we have H0(OZ(1)) = Span{x0, x2, ..., xn+1} and hence there ex-
ists j 6= 0, 1 such that

(4.43) H0(OZ(1)) = Span{x0, xj}.

Then we let

(4.44)

S =
{
xd−3

0 x3
i , x

d−3
0 x2

ix1, x
d−3
0 xix

2
1,

xd−3
0 x3

1, x
d−4
0 x4

1, ..., x
3
0x
d−3
1 ,

x2
0x
d−3
1 xj , x0x

d−3
1 x2

j , x
d−3
1 x3

j

}
.

By (4.12), (4.42) and (4.43), for every k,

(4.45)

xk ∈ H0(IZ(1)) + Span{x0, x1},
xk ∈ H0(IZ(1)) + Span{x1, xi}, and

xk ∈ H0(IZ(1)) + Span{x0, xj}.

Then (4.40) follows.
To see (4.41), we just have to show that ker(ξ) ∩ Span(S) = 0, which is

equivalent to

(4.46) ξ (Span(S)) = SymdH0(OZ(1))

since |S| = dim SymdH0(OZ(1)) = d+1. Again it is easy to see from (4.12),
(4.42) and (4.43) that

(4.47)
ξ (Span(S)) = ξ

(
Span{xd−k0 xk1 : k = 0, 1, . . . , d}

)
= SymdH0(OZ(1)).

This also proves that (4.39) is an isomorphism. �

When Z is special, H0(IZ(1)) ⊗ Span Jd−1 is no longer the kernel of the
map (4.38). Instead, we have the following result when Z is special but not
very special.

Lemma 4.6. Let P = Pn+1, Jd be defined in (4.2) and Z be a 0-dimensional
subscheme of P of length 2. Suppose that d ≥ 4, Z satisfies (4.13) and
{x2, ..., xn+1} 6⊂ H0(IZ(1)). Then

(4.48)

Span Jd ∩ ker(ξ) = H0(IZ(1))⊗ Span Jd−1

+ Span
{
xd−2

0 xi(xj − cjx1) : i ≥ 1, j ≥ 2

and xj − cjx1 ∈ H0(IZ(1))
}
.

Proof. We leave the verification of (4.48) to the readers. �
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4.5. Special case. Let us first prove (3.83) when Z is special for all b.
Without loss of generality, let us assume that Z = {p1, p2} satisfies (4.13)
and (4.14) for b general and some a.

We claim that Lλ : π∗BTB,b → TP ⊗ OZ factors through a sub-sheaf GZ
of TP ⊗ OZ , i.e., Lλ ∈ Hom(π∗BTB,b,GZ) for the sub-sheaf GZ of TP ⊗ OZ
generated by the global sections

(4.49) H0(GZ) = Span

{
xi

∂

∂xj
: j = 0 or 2 ≤ i, j ≤ a

}
.

In addition, if x0 vanishes at one of pi for b general, GZ is generated by

(4.50) H0(GZ) = Span

{
xi

∂

∂xj
: i = j = 0 or 2 ≤ i, j ≤ a

}
.

To see this, we notice that (1, 0, ..., 0) 6∈ Xb for all b. So

(4.51) x1(pi) 6= 0 for i = 1, 2.

Otherwise, if x1 = 0 at some p ∈ Z, then x2 = x3 = ... = xn+1 = 0 at p by
(4.13) and p = (1, 0, ..., 0).

Thus, we may choose λ to be given by

(4.52) λ


x0

x1
...

xn+1

 =


g1(t) g2(t)

1
A(t)

In−a+1


︸ ︷︷ ︸

Λ


x0

x1
...

xn+1


locally at b, for some g1(t), g2(t) and A(t) satisfying g1(b) = 1, g2(b) = 0
and A(b) = Ia−1, where Im is the m×m identity matrix. Then by (3.82),

(4.53) Lλ (τ) ∈ H0(GZ)

for all τ ∈ TB,b with GZ generated by (4.49).
When x0 vanishes at one of pi for b general, g2(t) ≡ 0 in (4.52) and thus

we have (4.50). This proves our claim that Lλ factors through GZ given by
(4.49) or (4.50).

Let Λ ⊂ P be the line joining p1 and p2. Then the map ξ in (4.35) is
simply the restriction to Λ as in

(4.54)

H0(OP (m)) H0(OΛ(m))

SymmH0(OZ(1))

ξ

ξ

for m ∈ N. We will use SymmH0(OZ(1)) and H0(OΛ(m)) interchangeably
under this setting. We also use ξ to denote the induced map

(4.55) H0(OXb(m))
H0(OΛ(m))

ξ(F )⊗H0(OΛ(m− d))

ξ
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where quotient by ξ(F ) is necessary; otherwise it is not well defined as ξ(F )
is not zero in H0(OΛ(d)) unless Xb contains the line Λ.

We further abuse the notations by using ξ for the maps induced by the
restriction H0(E(m))→ H0(Λ, E(m)):

(4.56)

H0(E(m)) H0(Xb, E(m)) H0(Λ, E(m))

H0(Xb, TP (m)) H0(Λ, TP (m))

H0(O(m+ d)) H0(OXb(m+ d))
H0(OΛ(m+ d))

ξ(F )⊗H0(OΛ(m))

η

ξ

ξ

η η

ξ

for m ≤ d − 2, where we also abuse the notation η by using it for three
different maps, all defined by (4.8).

Next, let us consider the images of the spaces WX,b ⊂ H0(Xb, E(1)) and
WX,b ⊂ H0(Xb, TP (1)) under ξ, where ξ(WX,b) and ξ(WX,b) are considered
as the subspaces of H0(Λ, E(1)) and H0(Λ, TP (1)), respectively.

Lemma 4.7. Let P = Pn+1 and X ⊂ Y = B × P be the family of hy-
persurfaces in P given by (4.1) over B = Span Jd for n ≥ 2 and d ≥ 4.
For b ∈ B general and all 0-dimensional subschemes Z ⊂ Xb of length 2
satisfying (4.13),

(4.57) ξ(WX,b) ⊃
{
x2

1

∂

∂xi

}
∪
{
x0x1

∂

∂xj
: j ≥ 1

}
and

(4.58) ξ (WX,b) = H0(Λ, TP (1))

if {x2, ..., xn+1} 6⊂ H0(IZ(1)) and

(4.59)

ξ (WX,b) = Span

{
x0x1

∂

∂xk
: k 6= 0, 1

}
∪
{
x2

0

∂

∂xk
− c01kx0x1

∂

∂x0
: k 6= 0

}
∪
{
x2

1

∂

∂xk
− c10kx0x1

∂

∂x1
: k 6= 1

}
⊂ H0(Λ, E(1))

if {x2, ..., xn+1} ⊂ H0(IZ(1)), where Λ ⊂ P is the line cutting out Z on Xb,
ξ is the map defined in (4.56) and cijk are the numbers given by (4.18).

Proof. Let us first deal with the case that {x2, ..., xn+1} 6⊂ H0(IZ(1)), i.e.,
Z is special but not very special. Note that under the hypothesis of (4.13),
all x2, ..., xn+1 are multiples of x1 in H0(OΛ(1)).
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We write u1 ≡ u2 if ξ(u1 − u2) ∈ ξ(WX,b). Of course, ωijk ≡ 0 for ωijk
given by (4.17). Under this notation, (4.57) is equivalent to

(4.60)

x2
1

∂

∂x0
≡ x2

1

∂

∂x1
≡ x2

1

∂

∂x2
≡ ... ≡ x2

1

∂

∂xn+1

≡ x0x1
∂

∂x1
≡ x0x1

∂

∂x2
≡ ... ≡ x0x1

∂

∂xn+1
≡ 0.

Without loss of generality, let us assume that x2 6∈ H0(IZ(1)). Then
x2 = ax1 in H0(OΛ(1)) for some a 6= 0. Therefore,

(4.61)

ω01k ≡ ω12k ≡ 0⇒ x0x1
∂

∂xk
≡ x1x2

∂

∂xk
≡ 0

⇒ x0x1
∂

∂xk
≡ x2

1

∂

∂xk
≡ 0

for k ≥ 3 and

(4.62)

ω120 ≡ ω201 ≡ ω012 ≡ 0⇒ x1x2
∂

∂x0
≡ x2x0

∂

∂x1
≡ x0x1

∂

∂x2
≡ 0

⇒ x2
1

∂

∂x0
≡ x0x1

∂

∂x1
≡ x0x1

∂

∂x2
≡ 0.

We claim that (4.61) holds for all k ≥ 1, i.e.,

(4.63)

x0x1
∂

∂xk
≡ x2

1

∂

∂xk
≡ 0 for all k ≥ 1 or equivalently

xixj
∂

∂xk
≡ 0 for all j, k ≥ 1.

If {x3, ..., xn+1} 6⊂ H0(IZ(1)), say x3 6∈ H0(IZ(1)), then

(4.64)

ω231 ≡ ω132 ≡ 0⇒ x2x3
∂

∂x1
≡ x1x3

∂

∂x2
≡ 0

⇒ x2
1

∂

∂x1
≡ x2

1

∂

∂x2
≡ 0

and together with (4.61) and (4.62), we see that (4.63) follows.
Otherwise, {x3, ..., xn+1} ⊂ H0(IZ(1)). Then by

(4.65)

ω113 ≡ 0⇒ x2
1

∂

∂x3
− (c103x0 + c123x2)x1

∂

∂x1
≡ 0

x2
1

∂

∂x3
≡ x0x1

∂

∂x1
≡ 0

we conclude that

(4.66) x1x2
∂

∂x1
≡ 0⇒ x2

1

∂

∂x1
≡ 0

as long as c123 6= 0, which is obvious for b ∈ B general. Similarly, by
considering ω223, we obtain

(4.67) x2
1

∂

∂x2
≡ 0.
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This concludes the proof of (4.63), which, combined with (4.62), yields (4.60)
and hence (4.57).

Next, let us prove (4.58). Note that by (4.24), we have the diagram

(4.68)

WX,b H0(Λ, E(1))

WX,b H0(Λ, TP (1))

ξ

ξ

and hence

(4.69) ξ(WX,b) =
ξ(WX,b)

α⊗H0(OΛ(1))

for α given by (4.9).
Let us write u1 ≡ u2 (mod α) if u1 − u2 ∈ ξ(WX,b). Then (4.58) is

equivalent to

(4.70) xixj
∂

∂xk
≡ 0 (mod α)

for all i, j, k. Since H0(OΛ(1)) = Span{x0, x1}, it is enough to prove (4.70)
for 0 ≤ i, j ≤ 1.

Obviously,

(4.71) xiα ≡ 0 (mod α)⇒ xix0
∂

∂x0
≡ −xi

n+1∑
j=1

xj
∂

∂xj
(mod α)

for all i. Combining (4.62), (4.63) and (4.71), we obtain

(4.72) x2
0

∂

∂x0
≡ x0x1

∂

∂x0
≡ x2

1

∂

∂x0
≡ 0 (mod α)⇒ xixj

∂

∂x0
≡ 0 (mod α)

for all i, j.
Finally, by (4.72),

(4.73) ω00k ≡ 0⇒ x2
0

∂

∂xk
−
n+1∑
j=1

c0jkx0xj
∂

∂x0
≡ 0⇒ x2

0

∂

∂xk
≡ 0 (mod α)

for all k ≥ 1. Combining (4.63), (4.72) and (4.73), we conclude (4.58).
When {x2, ..., xn+1} ⊂ H0(IZ(1)), i.e., Z is very special, (4.59) follows

directly from the fact that ξ(WX,b) = Span {ξ(ωijk)}. �

We want to call attention to the subtle difference and relation between
ξ(WX,b) and ξ(WX,b) in the above lemma and also Lemma 4.9 below. By
(4.68), ξ(WX,b) is the image of ξ(WX,b) under H0(Λ, E(1)) � H0(Λ, TP (1)).
However, ξ(WX,b) is not necessarily the lift of ξ(WX,b) in H0(Λ, E(1)). In
particular, when Z is special but not very special, we have (4.58) but it is
easy to check that ξ(WX,b) 6= H0(Λ, E(1)).

Let us go back to the proof of (3.83) for Z special. Since x0 and x1 span
H0(OZ(1)), we can choose p ∈ Z such that x0 6= 0 at p. To prove (3.83), let
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us consider ω ∈ WX,b such that ω(p) = 0. Note that η(ω) ∈ Span Jd+1 by
the definition of WX,b and η(ω) also vanishes at p. We claim that

(4.74) η(ω) ∈ H0(Ip(1))⊗ Span Jd.

This follows from the lemma below.

Lemma 4.8. Let P = Pn+1 and Jd be defined in (4.2) for d ≥ 3. Then

(4.75) SpanJd+1 ∩H(Ip(d+ 1)) = H0(Ip(1))⊗ Span Jd

for every point p ∈ P satisfying

(4.76) p 6∈ {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)}.
Furthermore, for every 0-dimensional subscheme Z ⊂ P of length 2, a point
p ∈ supp(Z) satisfying (4.76) and s ∈ H0(Ip(1))\H0(IZ(1)),

(4.77) Span Jd+1 ∩H(Ip(d+ 1)) = H0(IZ(1))⊗ Span Jd + s⊗ Span Jd.

Proof. By (4.76), there exist i 6= j such that neither xi nor xj vanishes at p.
Without loss of generality, let us assume that x0 6= 0 and x1 6= 0 at p.

It is obvious that

(4.78)
Span Jd+1 ∩H(Ip(d+ 1)) ⊃ H0(Ip(1))⊗ Span Jd and

dim (SpanJd+1 ∩H(Ip(d+ 1))) = dim Span Jd+1 − 1.

Therefore, to show (4.75), it suffices to show that

(4.79) Span Jd+1 = H0(Ip(1))⊗ Span Jd + Span
{
x2

0x
d−1
1

}
which follows from the fact that

(4.80) xk ∈ H0(Ip(1)) + Span {x0} and xk ∈ H0(Ip(1)) + Span {x1}
for all k.

To see (4.77), we observe that for all l ∈ H0(Ip(1)) and f ∈ Span Jd, lf
can be written as

(4.81) lf = (l − cs)f + csf ∈ H0(IZ(1))⊗ Span Jd + s⊗ Span Jd,

where c is a constant such that l − cs ∈ H0(IZ(1)). �

Note that by (4.1), p ∈ Z always satisfies (4.76).
Suppose that a = 1 in (4.14), i.e., Z is very special. By Lemma 4.7,

(4.82)


x2

0

∂

∂xk
− c01kx0x1

∂

∂x0
∈ ξ(WX,b)

x2
1

∂

∂xk
− c10kx0x1

∂

∂x1
∈ ξ(WX,b)

⇒ (c10kx
2
0 − c01kx

2
1)

∂

∂xk
∈ ξ(WX,b)

for k = 2, 3. Since x2 = ... = xn+1 = 0 at p 6= (1, 0, ..., 0), (0, 1, 0, ..., 0),
neither x0 nor x1 vanishes at p. Hence there exist numbers rk such that
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c10kx
2
0 − c10kx

2
1 − rkx0x1 vanishes at p. For b general, the numbers cijk are

general. In particular,

(4.83) det

[
c102 c012

c103 c013

]
6= 0.

Therefore, at least one of c102x
2
0−c102x

2
1−r2x0x1 and c103x

2
0−c103x

2
1−r3x0x1

does not vanish on Z. Without loss of generality, let us assume that

(4.84)
(
c102x

2
0 − c102x

2
1 − r2x0x1

) ∣∣∣
Z
6= 0.

Therefore, we may choose ω ∈ WX,b such that

(4.85)
ξ(ω) =

(
c102x

2
0 − c102x

2
1 − r2x0x1

) ∂

∂x2
,

ω(p) = 0 and ω
∣∣∣
Z
6= 0.

Let us write

(4.86) ξ(ω) =
(
c102x

2
0 − c102x

2
1 − r2x0x1

) ∂

∂x2
= s1s2

∂

∂x2

where s1s2 is the factorization of c102x
2
0−c102x

2
1−r2x0x1 with si ∈ H0(OP (1))

satisfying s1(p) = 0 and s1s2 6= 0 on Z.
Since ω(p) = 0, τ = η(ω) vanishes at p as well. So by Lemma 4.8,

τ ∈ H0(Ip(1))⊗Span Jd. When we regard τ as a vector in H0(Ip(1))⊗TB,b,
we have

(4.87) Lλ(τ) = s1γ

for some

(4.88) γ ∈ H0(GZ) = Span

{
x0

∂

∂x0
, x1

∂

∂x0

}
by (4.49). Then

(4.89) ω − Lλ(τ) = s1

(
s2

∂

∂x2
− γ
)
∈WX,b,Z,λ.

Obviously, ω − Lλ(τ) vanishes at p. But since s1s2 6= 0 on Z and γ lies in
the subspace (4.88) of H0(Z, TP ), it is easy to see that ω − Lλ(τ) does not
vanish in H0(Z, TP (1)). This finishes the proof for (3.83) when Z is very
special.

Suppose that 2 ≤ a ≤ n in (4.14). Then by (4.58), ξ maps WX,b surjec-
tively onto H0(Λ, TP (1)). So we can choose ω ∈ WX,b such that

(4.90) ξ(ω) = sx1
∂

∂xn+1

in H0(Λ, TP (1)) for some s ∈ H0(Ip(1))\H0(IZ(1)). Note that x1 does not
vanish on either pi ∈ Z, as explained for (4.51).
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By the same argument as before, we have

(4.91) ω − Lλ(τ) = s

(
x1

∂

∂xn+1
− γ
)
∈WX,b,Z,λ

for some γ ∈ H0(GZ). Again, ω − Lλ(τ) vanishes at p and does not vanish
in H0(Z, TP (1)) for a ≤ n by (4.49). This finishes the proof for (3.83) when
a ≤ n.

Suppose that a ≥ 2 and x0 vanishes at one of pi for b general. Then we
choose ω ∈ WX,b such that

(4.92) ξ(ω) = sx1
∂

∂x0

in H0(Λ, TP (1)) for some s ∈ H0(Ip(1))\H0(IZ(1)).
By the same argument as before, we have

(4.93) ω − Lλ(τ) = s

(
x1

∂

∂x0
− γ
)
∈WX,b,Z,λ

for some γ ∈ H0(GZ). Again, ω−Lλ(τ) vanishes at p. Note that we choose
p such that x0 6= 0 at p. So x0 must vanish at Z\{p}. By (4.50),

(4.94) γ ∈ H0(GZ) = Span

{
x0

∂

∂x0
, x1

∂

∂x2
, ..., x1

∂

∂xa

}
.

It follows that ω − Lλ(τ) 6= 0 in H0(Z, TP (1)). This finishes the proof for
(3.83) when a ≥ 2 and x0 vanishes at one of pi.

It remains to verify (3.83) when a = n + 1 in (4.14) and x0 6= 0 at both
pi. In this case,

(4.95)

H0(GZ) = Span

{
xi

∂

∂xj
: j = 0 or 2 ≤ i, j ≤ n+ 1

}
= Span

{
x1

∂

∂xj
: j = 0, 1, ..., n+ 1

}
by (4.49).

Let us choose s1 = x0 − r1x1 and s2 = x0 − r2x1 for some constants ri
such that si(pi) 6= 0 and si(p3−i) = 0 for i = 1, 2. Clearly, r1 6= r2 6= 0.

Fixing 1 ≤ k ≤ n+ 1, we let

(4.96) uk = x0
∂

∂xk
−
n+1∑
j=1

c0jkxj
∂

∂x0
.

Since ω00k = x0uk, ξ(x0uk) ∈ ξ(WX,b). And by (4.57), ξ(x1uk) ∈ ξ(WX,b).
Therefore, ξ(suk) ∈ ξ(WX,b) for all s ∈ H0(OP (1)). In particular, there
exist wik ∈ WX,b such that

(4.97) wik

∣∣∣
Λ

= siuk

∣∣∣
Λ
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in H0(Λ, E(1)) for i = 1, 2. Then by Lemma 4.8,

(4.98) η(wik)− siγik ∈ H0(IZ(1))⊗ Span Jd

for some γik ∈ Span Jd and i = 1, 2. We may write

(4.99) η(wik)− siγik =
∑

ljτj

with lj ∈ H0(OP (1)) and τj ∈ H0(IZ(1))⊗ Span Jd−1. Then

(4.100) wik − siLλ(γik)−
∑

ljLλ(τj) = si (uk − Lλ (γik)) ∈WX,b,Z,λ.

when restricted to Z, since Lλ vanishes on H0(IZ(1))⊗ Span Jd−1.
By the same argument as before, we conclude that

(4.101) (uk − Lλ (γik))
∣∣∣
pi

= 0

for i = 1, 2; otherwise, (3.83) follows. By our choice of si and ri, we see that

(4.102) Lλ (γik) = r3−ix1
∂

∂xk
−
n+1∑
j=1

c0jkxj
∂

∂x0

for i = 1, 2. In particular,

(4.103) Lλ (γ1k − γ2k) = (r2 − r1)x1
∂

∂xk
6= 0.

So x1(∂/∂xk) lies in the image of Lλ for all k = 1, 2, ..., n+ 1.
By (4.98), η(wik)− siγik = 0 in H0(OΛ(d+ 1)) and hence

(4.104)

ξ(siγik) = ξ(η(wik)) = ξ(η(siuk)) = ξ(siη(uk))

⇒ si(γik − η(uk))
∣∣∣
Λ

= 0⇒ (γik − η(uk))
∣∣∣
Λ

= 0

⇒ ξ(γik) = ξ(η(uk))

for i = 1, 2. Therefore, ξ(γ1k − γ2k) = 0 and hence

(4.105) γ1k − γ2k ∈ Span Jd ∩ ker(ξ).

Combining (4.103) and (4.105), we conclude that

(4.106)

for each 1 ≤ k ≤ n+ 1, there exists γk ∈ Span Jd ∩ ker(ξ)

such that Lλ(γk) = x1
∂

∂xk
.

On the other hand, we know that

(4.107) Span Jd ∩ ker(ξ) = H0(IZ(1))⊗ Span Jd−1 + V

by (4.48) in Lemma 4.6 for

(4.108)
V = Span

{
xd−2

0 xi(xj − cjx1) : i ≥ 1, j ≥ 2 and

xj − cjx1 ∈ H0(IZ(1))
}
.
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And since Lλ vanishes on H0(IZ(1)) ⊗ Span Jd−1, (4.106) is equivalent to
saying that

(4.109)

{
x1

∂

∂xk
: k ≥ 1

}
⊂ Lλ(V ).

Note that for xd−2
0 xi(xj − cjx1) ∈ V ,

(4.110) η
(
x1 ⊗ xd−2

0 xi(xj − cjx1)− (xj − cjx1)⊗ xd−2
0 x1xi

)
= 0

and hence

(4.111)

Lλ

(
x1 ⊗ xd−2

0 xi(xj − cjx1)− (xj − cjx1)⊗ xd−2
0 x1xi

)
= x1Lλ

(
xd−2

0 xi(xj − cjx1)
)
− (xj − cjx1)Lλ

(
xd−2

0 x1xi

)
= x1Lλ

(
xd−2

0 xi(xj − cjx1)
)
∈WX,b,Z,λ.

It follows that x1Lλ(γ) ∈WX,b,Z,λ for all γ ∈ V . Consequently,

(4.112) Span

{
x2

1

∂

∂xk
: k ≥ 1

}
⊂WX,b,Z,λ

by (4.109).
It remains to find u ∈ H0(Λ, E) satisfying

(4.113) u ∈ Span

{
x1

∂

∂xk
: k ≥ 1

}
, u 6= 0 and x0u ∈WX,b,Z,λ.

If such u exists, u 6= 0 at both pi. Then combining (4.112) and (4.113), we
see that (x0 − r1x1)u ∈WX,b,Z,λ vanishes at p2 but not p1.

To construct u satisfying (4.113), let us consider

(4.114)

ω = c013

ω012 −
n+1∑
j=2

c02jω1j0

− c012

ω013 −
n+1∑
j=2

c03jω1j0


= c013

x0x1
∂

∂x2
−
n+1∑
j=2

c02jx1xj
∂

∂x0


− c012

x0x1
∂

∂x3
−
n+1∑
j=2

c03jx1xj
∂

∂x0


in WX,b. We choose ω in such a way that the expansion of η(ω) does not
contain monomials in Jd+1 of degree d− 1 in x0. Thus, we can write

(4.115) η(ω) =
n+1∑
i=1

xiτi
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for some τi ∈ Span Jd. Therefore, by the definition (3.81) of WX,b,Z,λ,

(4.116) ω −
n+1∑
i=1

xiLλ(τi) ∈WX,b,Z,λ

when restricted to Z. Combining it with (4.95) and (4.112), we conclude

(4.117) x0

(
c013x1

∂

∂x2
− c012x1

∂

∂x3

)
− β1x

2
1

∂

∂x0
∈WX,b,Z,λ

for some constant β1. Similarly, we have

(4.118) x0

(
c023x2

∂

∂x1
− c021x2

∂

∂x3

)
− β2x

2
1

∂

∂x0
∈WX,b,Z,λ

for some constant β2 by switching x1 and x2. Hence by (4.117) and (4.118),

(4.119)

x0

(
e1c013x1

∂

∂x2
+ e2c023x2

∂

∂x1

− (e1c012x1 + e2c021x2)
∂

∂x3

)
∈WX,b,Z,λ

for constants e1 and e2, not all zero, satisfying e1β1 + e2β2 = 0.
For b ∈ B general, c013c023 6= 0 and hence e1c013 and e2c023 cannot both

vanish. Therefore,

(4.120) u = e1c013x1
∂

∂x2
+ e2c023x2

∂

∂x1
− (e1c012x1 + e2c021x2)

∂

∂x3

satisfies (4.113).
This finishes the proof of (3.83) for Z special. Thus, if Z = {σ1(b), σ2(b)}

is special with respect to (xi) for all b ∈ B, then σ1(b) and σ2(b) are not
Γ-equivalent over Q on Xb for b ∈ B general.

4.6. Generic case. Next we will try to finish the proof of our main theorem
by proving (3.83) for Z generic. We start with a result on ξ(WX,b) for Z
generic, similar to Lemma 4.7.

Lemma 4.9. Let P = Pn+1 and X ⊂ Y = B×P be the family of hypersur-
faces in P given by (4.1) over B = SpanJd for n ≥ 2 and d ≥ 4. Then ξ is
surjective when restricted to WX,b, i.e.,

(4.121) ξ(WX,b) = H0(Λ, E(1))

for b ∈ B general and all 0-dimensional subschemes Z ⊂ Xb of length 2 that
are generic with respect to (xi), where Λ ⊂ P is the line cutting out Z on
Xb and ξ is the restriction H0(E(1))→ H0(Λ, E(1)).

Proof. Let {ωijk} be the basis of WX,b given by (4.17) with cijk given by
(4.18). For b ∈ B general, {cijk : 0 ≤ i 6= j, k ≤ n + 1} is a general set of
numbers satisfying cijk = cikj .

We write u1 ≡ u2 if ξ(u1 − u2) ∈ ξ(WX,b). Of course, we have ωijk ≡ 0
and want to show that u ≡ 0 for all u ∈ H0(E(1)).
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For starters, it is obvious that

(4.122) ωijk ≡ 0⇒ xixj
∂

∂xk
≡ 0 for all i 6= j 6= k

and

(4.123) ωiik ≡ 0⇒ x2
i

∂

∂xk
−
∑
j 6=i

cijkxixj
∂

∂xi
≡ 0 for all i 6= k.

Without loss of generality, we assume (4.12). We discuss in two cases:

(1) Suppose that

(4.124) Span{x0, x1} = Span{x1, xi} = Span{xi, x0} = H0(OZ(1))

for some i. Without loss of generality, we may assume that i = 2.
Namely, we have

(4.125) Span{x0, x1} = Span{x1, x2} = Span{x2, x0} = H0(OZ(1)).

(2) Otherwise, suppose that there does not exist xi satisfying (4.124).
Namely, for each xi, either xi ∈ Span{x0} or xi ∈ Span{x1} in
H0(OZ(1)). And since Z is generic, there must exist i 6= j 6= 0, 1
such that

(4.126) Span{x0, xi} = Span{x1, xj} = H0(OZ(1)).

Without loss of generality, we may assume that i = 3 and j = 2. In
summary, when (4.124) fails, we may assume that

(4.127)
Span{x0, x3} = Span{x1, x2} = Span{x0, x1} = H0(OZ(1)) and

{x2, ..., xn+1} ⊂ Span{x0} ∪ Span{x1} in H0(OZ(1)).

In the first case, we assume (4.125). Then for all k 6= 0, 1, 2 and all i, j,

(4.128) x0x1
∂

∂xk
≡ x1x2

∂

∂xk
≡ x0x2

∂

∂xk
≡ 0

and hence

(4.129) xixj
∂

∂xk
≡ 0

since {x0x1, x1x2, x0x2} spans H0(OΛ(2)) by (4.125).
Suppose that xk 6= 0 in H0(OZ(1)) for some 3 ≤ k ≤ n + 1. With-

out loss of generality, suppose that x3 6= 0 in H0(OZ(1)). Then at least
two pairs among {x0, x3}, {x1, x3} and {x2, x3} are linearly independent in
H0(OZ(1)). Without loss of generality, let us assume that

(4.130) Span{x0, x1} = Span{x1, x3} = Span{x3, x0} = H0(OZ(1)).

Then

(4.131) x0x1
∂

∂x2
≡ x1x3

∂

∂x2
≡ x0x3

∂

∂x2
≡ 0⇒ xixj

∂

∂x2
≡ 0
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for all i, j. That is, (4.129) holds for k = 2 as well. Thus, it holds for all
k 6= 0, 1:

(4.132) xixj
∂

∂xk
≡ 0 if k 6= 0, 1.

It remains to prove (4.129) for k = 0, 1.
By (4.123) and (4.132), we see that

(4.133) x2
k

∂

∂xi
≡ xi

∑
j 6=i

cijkxj
∂

∂xi
≡ 0 for all i = 0, 1 and k 6= 0, 1

by (4.132). Setting i = 0 in (4.133) and combining it with (4.122), we have

(4.134) x2
k

∂

∂x0
≡ x0

∑
j 6=0

c0jkxj
∂

∂x0
≡ xkxl

∂

∂x0
≡ 0 for all k > l ≥ 1.

If Span{xk, xl} = H0(OZ(1)) for some k > l ≥ 2, then

(4.135) x2
k

∂

∂x0
≡ x2

l

∂

∂x0
≡ xkxl

∂

∂x0
≡ 0⇒ xixj

∂

∂x0
≡ 0

for all i, j by (4.134). Otherwise, xk and xl are linear dependent inH0(OZ(1))
for all k > l ≥ 2. This implies that

(4.136) x3, ..., xn+1 ∈ Span{x2}

in H0(OZ(1)). Thus

(4.137) x2
2

∂

∂x0
≡ x1x2

∂

∂x0
≡ 0⇒ x0x2

∂

∂x0
≡ 0⇒ x0xj

∂

∂x0
≡ 0 for j ≥ 2

since x0 ∈ Span{x1, x2}. So we may rewrite (4.134) as

(4.138) x2
2

∂

∂x0
≡ x1x2

∂

∂x0
≡ c01kx0x1

∂

∂x0
≡ 0

for all k ≥ 2. As long as c012 6= 0, we have

(4.139) x0x1
∂

∂x0
≡ 0⇒ x2

1

∂

∂x0
≡ 0

since x0 = b1x1 + b2x2 in H0(OZ(1)) for some bi 6= 0 by (4.125). Combining
(4.138) and (4.139), we conclude that xixj(∂/∂x0) ≡ 0 for all i, j. This
proves (4.129) for k = 0. The same argument works for k = 1. This finishes
the proof of the lemma if we have (4.125) and one of x3, ..., xn+1 does not
vanish in H0(OZ(1)).
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Otherwise, while we still have (4.125), x3 = ... = xn+1 = 0 in H0(OZ(1)).
Then we have a system of linear equations:

(4.140)

x0x1
∂

∂x2
≡ x1x2

∂

∂x0
≡ x0x2

∂

∂x1
≡ 0

(c013x0x1 + c023x0x2)
∂

∂x0
≡ 0

(c103x1x0 + c123x1x2)
∂

∂x1
≡ 0

(c203x2x0 + c213x2x1)
∂

∂x2
≡ 0

x2
0

∂

∂x1
− (c011x0x1 + c021x0x2)

∂

∂x0
≡ 0

x2
0

∂

∂x2
− (c012x0x1 + c022x0x2)

∂

∂x0
≡ 0

x2
1

∂

∂x0
− (c100x1x0 + c120x1x2)

∂

∂x1
≡ 0

x2
1

∂

∂x2
− (c102x1x0 + c122x1x2)

∂

∂x1
≡ 0

x2
2

∂

∂x0
− (c200x2x0 + c210x2x1)

∂

∂x2
≡ 0

x2
2

∂

∂x1
− (c201x2x0 + c211x2x1)

∂

∂x2
≡ 0

Suppose that

(4.141) a0x0 + a1x1 + a2x2 = 0

in H0(OZ(1)) for some constants a0, a1, a2, not all zero. By our hypothesis
(4.125), ai 6= 0 for i = 0, 1, 2.

Using (4.141), we can reduce (4.140) into a system of linear equations in
x2
i (∂/∂xj) for 0 ≤ i 6= j ≤ 2. For example,

(4.142)

(c013x0x1 + c023x0x2)
∂

∂x0
≡ 0

x1x2
∂

∂x0
≡ 0

⇒
(a1x1 + a2x2)(c013x1 + c023x2)

∂

∂x0
≡ a1c013x

2
1

∂

∂x0
+ a2c023x

2
2

∂

∂x0

≡ 0.
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In this way, we obtain a more manageable system of linear equations:

(4.143)

c013

(
a1x

2
1

∂

∂x0

)
+ c023

(
a2x

2
2

∂

∂x0

)
≡ 0

c103

(
a0x

2
0

∂

∂x1

)
+ c123

(
a2x

2
2

∂

∂x1

)
≡ 0

c203

(
a0x

2
0

∂

∂x2

)
+ c213

(
a1x

2
1

∂

∂x2

)
≡ 0

a0x
2
0

∂

∂x1
+ c011

(
a1x

2
1

∂

∂x0

)
+ c021

(
a2x

2
2

∂

∂x0

)
≡ 0

a0x
2
0

∂

∂x2
+ c012

(
a1x

2
1

∂

∂x0

)
+ c022

(
a2x

2
2

∂

∂x0

)
≡ 0

a1x
2
1

∂

∂x0
+ c100

(
a0x

2
0

∂

∂x1

)
+ c120

(
a2x

2
2

∂

∂x1

)
≡ 0

a1x
2
1

∂

∂x2
+ c102

(
a0x

2
0

∂

∂x1

)
+ c122

(
a2x

2
2

∂

∂x1

)
≡ 0

a2x
2
2

∂

∂x0
+ c200

(
a0x

2
0

∂

∂x2

)
+ c210

(
a1x

2
1

∂

∂x2

)
≡ 0

a2x
2
2

∂

∂x1
+ c201

(
a0x

2
0

∂

∂x2

)
+ c211

(
a1x

2
1

∂

∂x2

)
≡ 0.

We may consider (4.143) as a system of homogeneous linear equations in
aix

2
i (∂/∂xj) for 0 ≤ i 6= j ≤ 2. It is easy to show that (4.143) has only the

trivial solution for cijk general. That is,

(4.144) aix
2
i

∂

∂xj
≡ 0⇒ x2

i

∂

∂xj
≡ 0 for all i 6= j.

Together with (4.122), we see that (4.129) holds for all i, j, k. This finishes
the proof of the lemma in the first case.

In the second case, we assume (4.127). Note that under this hypothesis,
{x0, x2} and {x1, x3} are linearly dependent in H0(OZ(1)), respectively.
Then for all k 6= 0, 1, 2, 3,

(4.145)

x0x1
∂

∂xk
≡ x0x2

∂

∂xk
≡ x1x3

∂

∂xk
≡ 0

⇒ x0x1
∂

∂xk
≡ x2

0

∂

∂xk
≡ x2

1

∂

∂xk
≡ 0.

And since {x2
0, x0x1, x

2
1} spans H0(OΛ(2)), we see that (4.129) holds for all

k ≥ 4. It remains to prove (4.129) for k = 0, 1, 2, 3. We argue in a similar
way to the first case.

Suppose that one of x4, ..., xn+1 does not vanish in H0(OZ(1)). Without
loss of generality, suppose that x4 6= 0 in H0(OZ(1)). By (4.127), x4 lies in
either Span{x0} or Span{x1}. Without loss of generality, we may assume
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that x4 6= 0 ∈ Span{x0} in H0(OZ(1)). Then

(4.146)

x1x4
∂

∂x0
≡ x2x4

∂

∂x0
≡ x1x3

∂

∂x0
≡ 0

⇒ x0x1
∂

∂x0
≡ x2

0

∂

∂x0
≡ x2

1

∂

∂x0
≡ 0 and

x0x1
∂

∂x2
≡ x0x4

∂

∂x2
≡ x1x3

∂

∂x2
≡ 0

⇒ x0x1
∂

∂x2
≡ x2

0

∂

∂x2
≡ x2

1

∂

∂x2
≡ 0.

So (4.129) holds for k = 0, 2 and hence for all k 6= 1, 3.
Let us prove (4.129) for k = 1. If xk 6= 0 ∈ Span{x1} in H0(OZ(1)) for

some k ≥ 5, then we have (4.129) for k = 1, 3 by the same argument as
above. Otherwise, xk ∈ Span{x0} for all k 6= 1, 3. Then

(4.147) x0x2
∂

∂x1
≡ x0x3

∂

∂x1
≡ 0⇒ x2

0

∂

∂x1
≡ x0x1

∂

∂x1
≡ 0

and

(4.148) x2
1

∂

∂x0
−
∑
j 6=1

c1j0x1xj
∂

∂x1
≡ 0⇒ c130x1x3

∂

∂x1
≡ 0.

As long as c130 6= 0, we have

(4.149) x1x3
∂

∂x1
≡ 0⇒ x2

1

∂

∂x1
≡ 0

which, together with (4.147), implies (4.129) for k = 1. The same argument
works for k = 3. This proves the lemma if we have (4.127) and one of
x4, ..., xn+1 does not vanish in H0(OZ(1)).

The only remaining case is that we have (4.127) and x4 = ... = xn+1 = 0
in H0(OZ(1)). In this case, we have

(4.150)

x1x2
∂

∂x0
≡ x1x3

∂

∂x0
≡ 0⇒ x0x1

∂

∂x0
≡ x2

1

∂

∂x0
≡ 0

x0x1
∂

∂x2
≡ x1x3

∂

∂x2
≡ 0⇒ x0x1

∂

∂x2
≡ x2

1

∂

∂x2
≡ 0

and

(4.151)

x2
0

∂

∂x2
−
∑
j 6=0

c0j2x0xj
∂

∂x0
≡ 0⇒ x2

0

∂

∂x2
− c022x0x2

∂

∂x0
≡ 0

x2
2

∂

∂x0
−
∑
j 6=2

c2j0x2xj
∂

∂x2
≡ 0⇒ x2

2

∂

∂x0
− c200x0x2

∂

∂x2
≡ 0.
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Suppose that x2 = ax0 in H0(OZ(1)) for some a 6= 0. Then (4.151) becomes

(4.152)

−ac022

(
x2

0

∂

∂x0

)
+ x2

0

∂

∂x2
≡ 0

a2

(
x2

0

∂

∂x0

)
− ac200

(
x2

0

∂

∂x2

)
≡ 0.

For c022c200 6= 1, (4.152) has only the trivial solution as a system of homo-
geneous linear equations in x2

0(∂/∂xk) for k = 0, 2. That is,

(4.153) x2
0

∂

∂x0
≡ x2

0

∂

∂x2
≡ 0

which, combined with (4.150), implies (4.129) for k = 0, 2. Similarly, we can
prove (4.129) for k = 1, 3. This finishes the proof of the lemma. �

By the isomorphism (4.39), Lλ actually induces a map

(4.154)

Span Jd
H0(IZ(1))⊗ Span Jd−1

H0(Z, TP )

SymdH0(OZ(1)) H0(OΛ(d))

Lλ

ξ ∼= Lλ

As before, we choose si ∈ H0(OP (1)) such that si(pi) 6= 0 and si(p3−i) = 0
for i = 1, 2. For every u ∈ H0(E), by Lemma 4.9, there exist ωi ∈ WX,b such
that

(4.155) ξ(ωi) = ξ(siu)

in H0(Λ, E(1)) for i = 1, 2. Then as (4.98), we have

(4.156) η(ωi)− siγi ∈ H0(IZ(1))⊗ Span Jd

for some γi ∈ Span Jd. It follows that

(4.157) si (u− Lλ(γi)) ∈WX,b,Z,λ

for i = 1, 2, when restricted to Z. As before, we must have

(4.158) (u− Lλ(γi))
∣∣∣
pi

= 0

for i = 1, 2; otherwise, (3.83) follows.
By (4.156), ξ (η(ωi)− siγi) = 0 and hence

(4.159)
ξ(siγi) = ξ (η(ωi)) = ξ (η(siu)) = ξ (siη(u))

⇒ si(γi − η(u))
∣∣∣
Λ

= 0⇒ (γi − η(u))
∣∣∣
Λ

= 0⇒ ξ(γi) = ξ(η(u))

for i = 1, 2. Then ξ(γ1) = ξ(γ2) and γ1 − γ2 ∈ H0(IZ(1)) ⊗ Span Jd−1 by
Lemma 4.5. Therefore, Lλ(γ1) = Lλ(γ2). Combining this with (4.158), we
conclude that

(4.160) u = Lλ(γ1) = Lλ(γ2)
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in H0(Z, TP ). This implies that the map Lλ in (4.154) is onto. Indeed, the
combination of (4.159) and (4.160) tells us exactly what Lλ is:

(4.161) Lλ(γ) = u
∣∣∣
Z

if γ
∣∣∣
Λ

= η(u)
∣∣∣
Λ

for γ ∈ TB,b = SpanJd and u ∈ H0(E). Let us see the geometric implication
of (4.161).

Let η̂ be the map given by the commutative diagram

(4.162)

H0(E) H0(OP (d))

H0(Λ, E) H0(OΛ(d)).

ξ

η

ξ

η̂

Obviously, η̂ is the restriction of η to Λ and defined in the same way as η by

(4.163) η̂

(
xi

∂

∂xj

)
= xi

∂F

∂xj

for all 0 ≤ i, j ≤ n+ 1 with everything restricted to Λ.
Since

(4.164) h0(Λ, E)− h0(OΛ(d)) = 2(n+ 2)− (d+ 1) > 0

for d = 2n+2, there exists u 6= 0 ∈ h0(Λ, E) such that η̂(u) = 0. By (4.161),
u vanishes in H0(Z, TP ). That is, u lies in the kernel of the map

(4.165) H0(Λ, E) H0(Z, TP ).
ρ

Obviously, ker(ρ) is two dimensional and α ∈ ker(ρ) for α given in (4.9).
We can make everything very explicit. If we identify Λ with P1 and let

p1 = (0, 1), p2 = (1, 0) and y be the affine coordinate of Λ\p2, then

(4.166) η̂ (ker(ρ)) = Span{f(y), yf ′(y)}

for f(y) = η̂(α) = ξ(F ) ∈ H0(OΛ(d)). Since u 6= 0 ∈ ker(ρ) and η̂(u) = 0,
we conclude that f(y) and yf ′(y) must be two linearly dependent polyno-
mials in y. This can only happen if f(y) = cym, i.e., ξ(F ) vanishes only at
p1 and p2. Namely, Xb and Λ have no intersections other than p1 and p2.
So we have reached our key conclusion:

Proposition 4.10. If there are two points p1 6= p2 on a general hypersurface
X ⊂ Pn+1 of degree 2n + 2 that are Γ-equivalent over Q, then the line Λ
joining p1 and p2 meets X only at p1 and p2.

It remains to prove the following:

Proposition 4.11. Let P = Pn+1, G(1, P ) be the Grassmannian of lines
in P and B = PH0(OP (d)) be the parameter space of hypersurfaces in P of
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degree d = 2n+ 2. For 0 < m < d, let Wm be the incidence correspondence

(4.167)
Wm =

{
(X,Λ, p1, p2) : p1 6= p2 and X.Λ = mp1 + (d−m)p2

}
⊂ B ×G(1, P )× P × P.

Then

(1) Wm is irreducible.
(2) Wm is generically finite over B via the projection π : Wm → B.
(3) For a general X ∈ B, the fiber π−1([X]) contains at least two points

(X,Λi, pi1, pi2) for i = 1, 2 such that p11 6= p21 and the line joining
p11 and p21 meet X at more than two points.

Let us see how the above proposition implies our main theorem. We
consider the incidence correspondence

(4.168)
W =

{
(X,Λ, p1, p2) : p1 6= p2 ∈ X ∩ Λ and p1 ∼Γ p2 over Q

}
⊂ B ×G(1, P )× P × P

for B = PH0(OP (d)). This is a locally noetherian scheme, a priori.
If no components of W dominate B, we are done. Otherwise, by Proposi-

tion 4.10 and 4.11, W must contain some Wm as an irreducible compo-
nent. Then by Proposition 4.11 again, for X ∈ B general, there exist
(X,Λi, pi1, pi2) ∈ Wm ⊂ W for i = 1, 2 such that p11 6= p21 and the line
joining p11 and p21 meet X at more than two points.

Since pi1 ∼Γ pi2 over Q and X.Λi = mpi1 + (d−m)pi2, we have

(4.169) dpi1 ∼Γ dpi2 ∼Γ X.Λi

over Q on X for i = 1, 2. It follows that all four points pij are Γ-equivalent
over Q. Then by Proposition 4.10 again, the line joining p11 and p21 must
meet X only at p11 and p21, which is a contradiction.

It remains to prove Proposition 4.11.

Proof of Proposition 4.11. The proof of this statement is fairly standard. To
see that Wm is irreducible of dimB, it suffices to project it to G(1, P )×P×P .
The fiber of Wm over (Λ, p1, p2) for p1 6= p2 ∈ Λ is a linear subspace of B of
dimension dimB − d. Therefore, Wm is irreducible of dimension

(4.170)

dimWm = dim
{

(Λ, p1, p2) : p1 6= p2 ∈ Λ
}

+ (dimB − d)

= dimG(1, P ) + 2− d+ dimB

= dimB + (2n+ 2− d) = dimB

for d = 2n+ 2.
To show that Wm is generically finite over B, it suffices to exhibit a

point (X,Λ, p1, p2) ∈ Wm such that Λ does not deform while preserving
the tangency conditions with X. By that we mean there does not exist a
one-parameter family of lines Λt such that Λ0 = Λ and Λt meets X at two



48 XI CHEN, JAMES D. LEWIS, AND MAO SHENG

points with multiplicities m and d−m, respectively. Such deformation of Λ
is governed by the standard exact sequence

(4.171) 0 TΛ(−p1 − p2) TP (− logX)
∣∣∣
Λ

N 0.

It is easy to find (X,Λ, p1, p2) ∈ Wm such that H0(N) = 0. We leave the
details to the readers.

Finally, to show (3), it again suffices to exhibit (X,Λi, pi1, pi2) ∈ Wm for
i = 1, 2 with the required properties and neither Λ1 nor Λ2 deforms while
preserving the tangency conditions with X. Again, it is easy to find such X
and Λi and use the exact sequence (4.171) to show that Λi do not deform.
We leave the details to the readers once more. �

This finishes the proof of our main theorem 1.4.

5. Notes on algebraic invariants

We explain here some algebraic invariants from Hodge theory, some of
which are used in [V2], and show that these invariants are the same thing as
de Rham invariants, the latter not involving Hodge theory. First some no-
tation. For a Q-MHS V , we put Γ(V ) := homMHS(Q(0), V ) and accordingly
J(V ) := Ext1

MHS(Q(0), V ).

To arrive at the invariants of interest, we must introduce a natural filtra-
tion on the Chow groups of X. Let ρ : X → S be a smooth and proper
morphism of smooth quasi-projective varieties over a finitely generated sub-
field k/Q, and let K = k(S). Fix an embedding K ↪→ C over k, and put
X := X/C = XηS ×K C.

Theorem 5.1 ([Lew1]). Let X := X/C be smooth projective of dimension
d. Then for all r ≥ 0, there is a filtration, depending on k ⊂ C,

CHr(X;Q) = F 0 ⊇ F 1 ⊇ · · · ⊇ F ν ⊇ F ν+1 ⊇
· · · ⊇ F r ⊇ F r+1 = F r+2 = · · · ,

which satisfies the following

(i) F 1 = CHr
hom(X;Q).

(ii) F 2 ⊆ kerAJ ⊗Q : CHr
hom(X;Q)→ J

(
H2r−1(X(C),Q(r))

)
.

(iii) F ν1 CHr1(X;Q) • F ν2 CHr2(X;Q) ⊂ F ν1+ν2 CHr1+r2(X;Q), where • is
the intersection product.

(iv) F ν is preserved under the action of correspondences between smooth
projective varieties over C.

(v) Let GrνF := F ν/F ν+1 and assume that the Künneth components of the
diagonal class [∆X ] = ⊕p+q=2d[∆X(p, q)] ∈ H2d(X×X,Q(d))) are algebraic
over Q. Then

∆X(2d− 2r + `, 2r − `)∗
∣∣
GrνF CHr(X,m;Q)

= δ`,ν · Identity.
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[If we assume the conjecture that homological and numerical equivalence
coincide, then (v) says that GrνF factors through the Grothendieck motive.]

(vi) Let Dr(X) :=
⋂
ν F

ν , and k = Q. If the Bloch-Beilinson conjecture on
the injectivity of the Abel-Jacobi map (⊗Q) holds for smooth quasi-projective
varieties defined over Q, then Dr(X) = 0.

It is instructive to briefly explain how this filtration comes about. Con-
sider a k-spread ρ : X → S, where ρ is smooth and proper. Let η be
the generic point of S/k, and put K := k(η). Write XK := Xη. From
[Lew1] we introduced a decreasing filtration Fν CHr(X ;Q), with the prop-

erty that GrνF CHr(X ;Q) ↪→ Eν,2r−ν∞ (ρ), where Eν,2r−ν∞ (ρ) is the ν-th graded

piece of the Leray filtration on the lowest weight part H2r
H (X ,Q(r)) of

Beilinson’s absolute Hodge cohomology H2r
H (X ,Q(r)) associated to ρ. That

lowest weight part H2r
H (X ,Q(r)) ⊂ H2r

H (X ,Q(r)) is given by the image

H2r
H (X ,Q(r)) → H2r

H (X ,Q(r)), where X is a smooth compactification of

X . There is a cycle class map CHr(X ;Q) := CHr(X/k;Q)→ H2r
H (X ,Q(r)),

which is conjecturally injective if k = Q under the Bloch-Beilinson conjec-
ture assumption, using the fact that there is a short exact sequence:

0→ J(H2r−1(X ,Q(r)))→ H2r
H (X ,Q(r))→ Γ(H2r(X ,Q(r)))→ 0.

(Injectivity would imply Dr(X) = 0.) Regardless of whether or not injectiv-
ity holds, the filtration Fν CHr(X ;Q) is given by the pullback of the Leray
filtration on H2r

H (X ,Q(r)) to CHr(X ;Q). It is proven in [Lew1] that the

term Eν,2r−ν∞ (ρ) fits in a short exact sequence:

0→ Eν,2r−ν∞ (ρ)→ Eν,2r−ν∞ (ρ)→ Eν,2r−ν∞ (ρ)→ 0,

where
Eν,2r−ν∞ (ρ) = Γ(Hν(S,R2r−νρ∗Q(r))),

Eν,2r−ν∞ (ρ) =
J(W−1H

ν−1(S,R2r−νρ∗Q(r)))

Γ(Gr0
WH

ν−1(S,R2r−νρ∗Q(r)))

⊂ J(Hν−1(S,R2r−νρ∗Q(r))).

[Here the latter inclusion is a result of the short exact sequence:

0→W−1H
ν−1(S,R2r−νρ∗Q(r))→W0H

ν−1(S,R2r−νρ∗Q(r))

→ Gr0
WH

ν−1(S,R2r−νρ∗Q(r))→ 0.]

One then has (by definition)

F ν CHr(XK ;Q) = lim
→

U⊂S/Q

Fν CHr(XU ;Q), XU := ρ−1(U)

F ν CHr(XC;Q) = lim
→

K⊂C
F ν CHr(XK ;Q)

Further, since direct limits preserve exactness,

GrνF CHr(XK ;Q) = lim
→

U⊂S/Q

GrνF CHr(XU ;Q),
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GrνF CHr(XC;Q) = lim
→

K⊂C
GrνF CHr(XK ;Q)

5.1. (Generalized) normal functions. Let us now assume that with re-
gard to the smooth and proper map ρ : X → S over a subfield k ⊂ C, and
after possibly shrinking S, that S is affine, with K = k(S). Let V ⊂ S(C)
be smooth, irreducible, closed subvariety of dimension ν − 1 (note that S
affine ⇒ V affine). One has a commutative square

XV ↪→ X (C)

ρV ↓ ↓ ρ

V ↪→ S(C),

and a commutative diagram

ξ ∈ GrνF CHr(X ;Q) 7→ GrνF CHr(XK ;Q)

↓

0 → Eν,2r−ν∞ (ρ) → Eν,2r−ν∞ (ρ) → Eν,2r−ν∞ (ρ) → 0

↓ ↓ ↓

0 → Eν,2r−ν∞ (ρV ) → Eν,2r−ν∞ (ρV ) → Eν,2r−ν∞ (ρV ) → 0

||

0

where Eν,2r−ν∞ (ρV ) = 0 follows from the weak Lefschetz theorem for locally

constant systems over affine varieties. Thus for any ξ ∈ GrνF CHr(X ;Q), we
have a “normal function” ηξ with the property that for any such smooth
irreducible closed V ⊂ S(C) of dimension ν − 1, we have a value ηξ(V ) ∈
Eν,2r−ν∞ (ρV ). Here we think of V as a point on a suitable open subset of the
Chow variety of dimension ν−1 subvarieties of S(C) and ηξ defined on that
subset. For example if ν = 1, then we recover the classical notion of normal
functions.

Definition 5.2. ηξ is called an arithmetic normal function.

Example 5.3. If S is affine of dimension ν−1. Then in this case V = S, and
ξ ∈ GrνF CHr(X ;Q) induces a “single point” normal function

ηξ(V ) = ηξ(S) ∈ J(Hν−1(S,R2r−νρ∗Q(r))).

Now let ξ ∈ Fν CHr(X ;Q) be given, and let [ξ] ∈ Eν,2r−ν∞ (ρ) be its image
via the composite

Fν CHr(X ;Q)→ Eν,2r−ν∞ (ρ)→ Eν,2r−ν∞ (ρ).
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5.2. The invariants.

Theorem 5.4 (see [K-L]). The class [ξ] depends only on ηξ, and is called
the topological invariant of ηξ.

Let us assume that S is affine. Then

OS ⊗C R
iρ∗C

∇−→ Ω1
S ⊗Riρ∗C

∇−→ · · · ,
is an acyclic resolution of R2r−νρ∗C in the analytic topology, where ∇ :=
∂ ⊗ Id is the Gauss-Manin connection. The corresponding cohomology
Hν(S,R2r−νρ∗C) is given by H0(S,−) of the middle cohomology in:

Ων−1
S ⊗R2r−νρ∗C

∇−→ Ων
S ⊗R2r−νρ∗C

∇−→ Ων+1
S ⊗R2r−νρ∗C,

which is by definition the space of de Rham invariants, and is denoted by
∇DRr,ν(X/S). As the map Eν,2r−ν∞ (ρ) ↪→ ∇DRr,ν(X/S), together with the
regularity of ∇, it follows that the de Rham invariant of an algebraic cycle
is the same as the topological invariant. It turns out that H i(S,Rjρ∗Q(r))
defines a Q-MHS [Ar], hence its complexification carries a descending Hodge
filtration F •H i(S,Rjρ∗C). In particular,

Eν,2r−ν∞ (ρ) ↪→ F rHν(S,R2r−νρ∗C),

where the latter term maps to H0(S,−) of the middle cohomology in:

(5.1) Ων−1
S ⊗ F r−ν+1R2r−νρ∗C

∇−→ Ων
S ⊗ F r−νR2r−νρ∗C

∇−→ Ων+1
S ⊗ F r−ν−1R2r−νρ∗C,

which is called the space of Mumford-Griffiths invariants, and is denoted by
∇Jr,ν(X/S). Note that there is a natural “forgetful” map ∇Jr,ν(X/S) →
∇DRr,ν(X/S), which need not be injective. Having said this, it is clear
from the above discussion that

Im
(
Eν,2r−ν∞ (ρ)→ ∇Jr,ν(X/S)

)
→ Im

(
Eν,2r−ν∞ (ρ)→ ∇DRr,ν(X/S)

)
,

is an isomorphism. Thus when it comes to the image of algebraic cycles,
the de Rham and Mumford-Griffiths invariants coincide! (All of this is
based on [L-S] and [MS].) Those cycles that have trivial Mumford-Griffiths
invariant must therefore land in Eν,2r−ν∞ (ρ). In some instances, this can be
an uncountable space. Note that

Ων−1
S ⊗ F r−ν+2R2r−νρ∗C

∇−→ Ων
S ⊗ F r−ν+1R2r−νρ∗C

∇−→ Ων+1
S ⊗ F r−νR2r−νρ∗C,

is a subcomplex of (5.1). The Mumford invariants are H0(S,−) of the middle
cohomology of the cokernel complex:

Ων−1
S ⊗Hr−ν+1,r−1(X/S)

∇̃−→ Ων
S ⊗Hr−ν,r(X/S)

∇̃−→ Ων+1
S ⊗Hr−ν−1,r+1(X/S),

and where ∇̃ is induced from ∇.
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Example 5.5. Let us put N := dimS and n the relative dimension of ρ, with
r = n. In this case we are studying the relative 0-cycles on each fiber of ρ.
This involves Fn CHn(X ;Q), where we set ν = n. Then

H0

(
S,

Ωn
S ⊗OS H0,n(X/S)

∇̃
(
Ωn−1
S ⊗OS H1,n−1(X/S)

))
is the associated space of Mumford invariants. If n = 2, it also appears
in [V2]. Note that in this case, we need ξ ∈ CH2(X ;Q) to be Abel-Jacobi
equivalent to zero fiberwise, in order that ξ ∈ F2 CH2(X ;Q).

Question 5.6. (i) Can one characterize this filtration in terms of arithmetic
normal functions?

(ii) By choosing V sufficiently general, can one characterize this filtration
in terms of the corresponding Abel-Jacobi map for a fixed general variety?
E.g. we know that F 1 CHr(X;Q) = CHr

hom(X;Q) and

F 2 CHr(X;Q) ⊆ CHr
AJ(X;Q) := kerAJX : CHr

hom(X;Q)→ Jr(X)Q.

Is it the case that F 2 CHr(X;Q) = CHr
AJ(X;Q)?

(ii)
′

What about the zero (or torsion) locus of such normal functions. I.e.,
are they sensitive to the field of definition of algebraic cycles?

Remark 5.7. •1 Special cases of Question 5.6(i) are worked out in [K-L].
Further, if both X and S are defined over k, with X = S×kX, with ρ = Pr1,
then the answer is yes, as shown in [Lew2].

•2 In the case where ν = 1, (ii) and (ii)
′

can be shown to be equivalent.
(See for example [Lew3].)

5.3. Example 5.5 revisited. Let us put N := dimS and n the relative
dimension of ρ.

Question 5.8. Does there exists a morphism of sheaves

Ωn
S ⊗OS H0,n

∇̃
(
Ωn−1
S ⊗OS H1,n−1

) → HomOS(ρ∗(∧NΩX ), ωS
)
,

induced by

(a⊗b, ρ∗(c)) ∈
(
Ωn
S⊗H0,n, ρ∗(∧NΩX )

)
7→ a∧ρ∗(ρ∗(b), c) = a∧

∫
Xt
ρ∗(b)∧c ∈ ωS,t,

where ωS is the canonical sheaf on S?

Remark 5.9. The answer is a yes if X = S ×k X, for in this case

∇̃
(
Ωn−1
S ⊗OS H

1,n−1
)

= 0.
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