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Abstract. We answer negatively an open problem of Illusie on the DR-decomposability of
the log de Rham complex of the special fiber of a semi-stable reduction over the Witt ring.
We also show that E1 degeneration of the Hodge to log de Rham spectral sequence does not
imply DR-decomposability of semi-stable varieties.

1. Introduction

The work of Deligne-Illusie [5] is fundamental in Hodge theory since it gives a new method
to establish the E1-degeneration property of the Hodge to de Rham spectral sequence. Let
k be a perfect field of positive characteristic and X0 an algebraic variety over k. We have
the following commutative diagram of Frobenius

X0
F=FX0/k//

##

X ′0
π //

��

X0

��
Spec k σ // Spec k,

The variety X0 is said to be DR-decomposable if the complex τ<pF∗Ω•X0 is quasi-isomorphic
to ⊕dimX

i=0 Ωi
X′0/k

[−i], where Ω•X0 is the de Rham complex of X0/k. The main result of
Deligne-Illusie asserts that for smooth varieties, X0 is W2 = W2(k)-liftable if and only if
it is DR-decomposable. On the other hand, if X0 is proper over k and dimX0 < p, the
DR-decomposability of X0 implies the E1-degeneration of the Hodge to de Rham spectral
sequence (for dimX0 = p, the E1-degeneration also holds by the Grothendieck duality).
Properness on X0 is required because of finite dimensionality of Hodge cohomologies.
However, it is not clear whether one can remove the assumption on the dimension of X0:
this is exactly one of the two open problems posed by Illusie [6]. It is neither clear whether
E1-degeneration would imply the DR-decomposability.

This note grew out from our study on the other open problem posed by Illusie in loc. cit,
that is about the generalization of Deligne-Illusie’s main result to semi-stable varieties over
k. Note that semi-stable varieties appear naturally in algebraic geometry as very typical
singular varieties. The problem is stated as follows: let k be as above and W = W (k) the
ring of Witt vectors. For a semi-stable reduction X overW , we set X0 = X×W k, the special
fiber of X, and F : X0 → X ′0 the relative Frobenius. Consider the complex of OX0-modules:

Ωlog •
X0 = Ω•X(logX0)|X0 .

This work was partially supported by National Natural Science Foundation of China (Grant No. 11622109,
No. 11626253) and the Fundamental Research Funds for the Central Universities.
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Problem 1.1 (Illusie, Problem 7.14 [6]). Is the complex τ<pF∗Ωlog •
X0 decomposable in D(X ′0)?

Our answer to this problem is NO. Indeed, we constructed explicit examples of semi-stable
reductions over W negating the problem, whose dimension can be arbitrary large (in the
curve case the answer is affirmative for cohomological reason) and the characteristic of k can
be arbitrary. See §3 for the construction. We also examined the E1-degeneration property
of these examples. It turns out that all examples we constructed whose dimensions are less
than or equal to the characteristic of the residue field have the E1-degeneration property.
This is a direct consequence of Theorem 4.1 and Deligne-Illusie’s decomposation theorem.
Therefore, the E1-degeneration property is NOT equivalent to the DR-decomposability in
the semi-stable (non-smooth) case. We are not aware of similar results in the smooth case.

2. DR-decomposability and log deformation

We use the log geometry as developed in the work [3] to study Problem 1.1, and the con-
struction of our examples is mainly based on a simple criterion of the DR-decomposability
in terms of the existence of a log smooth deformation over the log scheme (W2(k), 1 7→ 0)
(Theorem 2.3).

Let X be a semi-stable reduction over W . Let MX0 (resp. MSpec(k)) be the log struc-
ture on X (resp. Spec(W )) attached to the reduced normal crossing divisor X0 (resp.
Spec(k)) (Example (1.5) [3]). Then the extended morphism of log schemes f : (X,MX0)→
(Spec(W ),MSpec(k)) is smooth. Let (X0,M0) → k := (k, 1 7→ 0) be the base change of f
via the inclusion Spec(k)→ Spec(W ). When the context is clear, we denote the log scheme
(X0,M0) simply by X0 (in some other occasion, we use X to denote the underlying scheme
of a log scheme X). It is known that the morphism X0 → k is smooth, and the de Rham
complex Ω•X0/k of the log variety X0/k is naturally isomorphic to the complex Ωlog •

X0 consid-
ered in §1 (1.7 [3]). Moreover, it is known that the log structure M0 of X0 is of semi-stable
type:

Definition 2.1. ([15]) A log variety X over k is called semi-stable type if étale locally over
each closed point x ∈ X it is strict smooth over

(Spec(k(x)[x1, · · · , xr]/(x1 · · ·xr)),
r⊕
i=1

Nei, ei 7→ xi),

where the log structure is induced by the homomorphism of monoids⊕r
i=1 Nei → OX defined

by ei 7→ xi.

Let F be the absolute Frobenius of the log scheme k which is given by the commutative
diagram

k
Fk // k

N
0

OO

×p // N.
0

OO

It is easy to verify that F is liftable to the log scheme W2 := (W2, 1 7→ 0) (but not to
the log scheme (W2, 1 7→ p)!), and an obvious lifting G over W2 is given by the following
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commutative diagram:

W2
FW2 // W2

N

0

OO

×p // N,

0

OO

where FW2 is the Frobenius automorphism ofW2. A special case of the Kato’s decomposition
theorem is the following

Theorem 2.2 (Theorem 4.12 [3]). Let X/k be a log variety of semi-stable type and X ′

the base change of X via the absolute Frobenius of k. Let FX/k : X → X ′ be the relative
Frobenius. Then the complex τ<pFX/k∗Ω•X/k is decomposable if and only if X ′ is liftable to
W2.

Remark that Kato’s decomposition theorem works for a log variety of Cartier type which
is more general than semi-stable type (Definition 4.8 [3]). In the following, we show further
that X ′ is liftable to W2 if and only if X itself is liftable to W2, and hence we obtain the
following criterion for DR-decomposability:

Theorem 2.3. Notation and assumption as Theorem 2.2. Then the complex τ<pFX/k∗Ω•X/k
is decomposable if and only if X is liftable to W2.

Proof. Via the base change by G, one obtains a W2-lifting of X ′ from that of X. Since G
is not an isomorphism of log schemes, our argument is to show the converse nevertheless
is still true. Let ωX ∈ H2(X,TX/k) (resp. ωX′ ∈ H2(X ′, TX′/k)) be the obstruction class
of the lifting of X (resp. X ′) to W2. Recall that ωX is constructed as follows: Let {Ui}
be an affine cover of X. Choosing for each Ui a log smooth lifting Ui on W2, we then
have that on each overlap Uij = Ui ∩ Uj there exists an isomorphism αij : Uj|Uij → Ui|Uij.
Then ωX is represented by {(Ui ∩ Uj ∩ Uk, αijαjkαki)}. Because of the existence of G,
{(G−1(Ui∩Uj∩Uk), G∗αijαjkαki)} represents ωX′ . Thus we have that σ∗(ωX) = ωX′ through
the canonical map

H2(X ′, TX′/k) = H2(X ′, σ∗TX/k)

H2(X,TX/k)

σ∗

OO
.

The above equality uses the fact that σ∗ΩX/k = ΩX′/k and that both sheaves are locally free
(see 1.7 and Proposition 3.10 [3]). However, since σ is an isomorphism of schemes, the map
σ∗ in the vertical line is bijective. It follows immediately that ωX = 0 under the assumption
that X ′ is W2-liftable and hence X itself is W2-liftable. �

The following corollary ensures it is valid to assume k is algebraically closed in the study
of Problem 1.1.

Corollary 2.4. Let f : X → k be a smooth morphism of semistable type and k′ be a perfect
field containing k. Denote by k′ the field k′ with the induced log structure from k and by Xk′

the log base change. Then τ<pFX/k∗Ω•X/k is decomposable if and only if τ<pFXk′/k′∗Ω•Xk′/k′ is
decomposable.
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Proof. By Theorem 2.3, it is enough to show that a (W2(k′),N 7→ 0)-lifting of Xk′ in-
duces a (W2(k),N 7→ 0)-lifting of X. By the flat base change, one has the isomor-
phism H2(X,TX/k) ⊗k k′ = H2(Xk′ , TX/k′) and hence the injection α : H2(X,TX/k) →
H2(Xk′ , TX/k′). Then, by the same arguments in Theorem 2.3, the obstruction class obk to
liftingX to W2(k) is mapped to to the obstruction class obk′ of liftingXk′ to (W2(k′),N 7→ 0)
via the map α. By the condition that α(obk) = obk′ = 0, it follows that obk = 0. �

Remark 2.5. After presenting our results, Weizhe Zheng provided us a more conceptual proof
of Theorem 2.3: Denote by Lift(X) (resp.Lift(X ′)) the groupoid of liftings of X (rsep. X ′)
over W2. Let G : W2 →W2 be a lifting of the log Frobenius morphism F : k → k. Given
a lifting X(1) ∈ Lift(X), the pullback of X(1) along G gives an object in Lift(X ′). With the
obvious assignments on morphisms, one can get a functor

A : Lift(X)→ Lift(X ′).
Conversely, let X ′(1) ∈ Lift(X ′) be a lifting of X ′. Denote by i : X ′ ↪→ X ′(1) the canonical
strict closed immersion and by σ : X ′ → X the base change of F : k → k. Recall that
σ : X ′ → X is an isomorphism and MX′ ' MX ⊕Kk

Mk. One can construct the pushout
X ′(1) qX′ X of the diagram

X ′
σ //

i
��

X

X ′(1)

as follows:
• The underlying scheme X ′(1) qX′ X is defined to be X ′(1),
• the log structure of X ′(1) q′X X is defined to be MX′(1) ×MX′

MX .
With the obvious assignments on morphisms, the pushout process along σ : X ′ → X gives a
functor

B : Lift(X ′)→ Lift(X).
It is straightforward to check the following proposition.
Proposition 2.6. The functor A gives an equivalence of groupoids, and the functor B is its
quasi-inverse.

3. Examples

In this section, k is an algebraically closed field of characteristic p > 0. We proceed to
construct examples of semi-stable reductions over W whose special fibers do not admit log
deformation to W2, which negate Problem 1.1 because of Theorem 2.3.

3.1. More preparations. The first lemma is another characterization of semi-stable reduc-
tions over W = W (k).
Lemma 3.1. Let K0 be the fractional field of W . Then an W -scheme X is a semi-stable
reduction over W if and only if the following two properties hold:

(1) the generic fiber XK0 = X ×W K0 is smooth over K0,
(2) the special fiber Xk = X ×W k is a normal crossing variety over k.

Proof. See [4], 2.16. �

The second lemma is rather standard.
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Lemma 3.2. Let X/k be a log variety of semi-stable type. Assume the irreducible components
{Xi, i ∈ I} of the underlining variety X to be smooth. Let X be a smooth deformation X
over W2. Then the underlying scheme of X is written into the schematic union of closed
subschemes X = ⋃

i∈I Xis with the property that, for each nonempty J ⊆ I, the schematic
intersection ⋂j∈J Xj is a W2-lifting of ⋂j∈J Xj.

Proof. Set
Ii = Ii + pIi,

where Ii is the ideal sheaf of Xi in X. Then, Ii is an ideal sheaf of OX . We claim that
the closed subschemes Xis defined by Iis have the property in the lemma. To show this it
suffices to prove the following properties:

(1) OX /Ii is flat over W2,
(2) ⋂Ii = 0, and
(3) for each nonempty J ⊆ I, OX / ∪j∈J Ij is flat over W2.

Since ÔX ,x is faithfully flat over OX ,x for each point x ∈ X , it suffices to verify the above
claim after tensoring with ÔX ,x for every x ∈ X . By ([3] Theorem 3.5, Proposition 3.14),
there is an étale morphism U →X such that we have

U
f //

π′|U ))

Spec(W2[x1, · · · , xn]/(x1 · · ·xr))

��
Spec(W2)

,

where f is an étale morphism. As a consequence, there is an isomorphism

α : ÔX ,x
∼= W2[[x1, · · · , xn]]/(x1 · · ·xr)

such that each IiÔX ,x (whenever it is nonempty) is generated by α−1(Πj∈Ji
xj) for some

nonempty set Ji ⊆ {1, · · · , r}. Moreover, {1, · · · , r} is the disjoint union of Jis. Then the
claim follows from direct calculations. �

By the above two lemmas, we can conclude the following

Proposition 3.3. Let Z be a smooth scheme over W . Let Y0 be a smooth closed subvariety
of Z0 = Z ×W k. Set X = BlY0Z, the blowup of Z along the closed subscheme Y0. Then X
is a semi-stable reduction over W , whose special fiber X0 is a simple normal crossing divisor
consisting of two smooth components BlY0Z0 and P(NY0/Z) (the projective normal bundle of
Y0 in Z) which intersect transversally along P(NY0/Z0) (the projective normal bundle of Y0
in Z0). Furthermore, if the normal crossing variety X0 over k admits a smooth deformation
over W2, then both pairs (BlY0Z0,P(NY0/Z0)) and (P(NY0/Z),P(NY0/Z0)) are W2(k)-liftable.

Proof. The first statement follows from Lemma 3.1 (the remaining fact is fairly standard and
therefore omitted, see [8]). The second statement follows from Lemma 3.2. �

Proposition 3.4 (Cynk-van Straten, [1] Theorem 3.1). Let π : Y → X be a morphism of
schemes over k and let S = Spec(A), where A is artinian with residue field k. Assume that
OX = π∗OY and R1π∗(OY ) = 0. Then for every lifting Y → S of Y there exists a preferred
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lifting X → S making a commutative diagram
Y �
� //

��

Y

��
X �
� // X

Corollary 3.5. Notation as in Proposition 3.3. If Y0 is not W2(k)-liftable, then the special
fiber X0 of X (regarded as a log variety over k) does not admit any smooth deformation over
W2.

Proof. Use Propositions 3.3 and 3.4 which assert that the W2-liftability of P(NY0/Z) implies
that of Y0. �

3.2. Example 1. Corollary 3.5 provides direct examples: take a smooth projective variety
Y0 over k which is nonW2-liftable, and take a closed embedding Y0 ↪→ Z0 over k into a smooth
projective variety such that the codimension CodZ0Y0 ≥ 2 and Z0 admits a smooth lifting Z
over W (for example take Z0 to be a projective space of high dimension). Set X = BlY0Z,
the blowup of Z along the closed subscheme Y0. Then X is a semi-stable reduction over W
whose special fiber X0/k does not admit W2-deformation.

3.3. Example 2. Notice that Mukai [12] has obtained a nice generalization to higher
dimension of Raynaud’s classical example [16] of non W2-liftable smooth projective surface
over k. His construction, together with an idea of Liedtke-Satriano (Theorem 1.1 (a) [10]),
allows us to make concrete examples of all relative dimensions ≥ 2.

Let us recall first the following

Definition 3.6 ([12]). A smooth curve C over k of genus ≥ 2 is called a Tango-Raynaud
curve if there exists a rational function f on C such that df 6= 0 and that (df) = pD for
some ample divisor D.

A typical example of Tango-Raynaud curve is the plane curve defined by the affine poly-
nomial

G(xp)− x = ype−1,

where G is a polynomial of degree e ≥ 1 in the variable x. The following lemma is well
known.

Lemma 3.7 ([12]). Let C be a Tango-Raynaud curve, then there exists a rank two vector
bundle E on C together with a smooth curve D in the projectification PC(E) of E/C, such
that the composite D → PC(E)→ C is the relative Frobenius F0 : D → D(p) = C.

Proposition 3.8. Notation as in Lemma 3.7. Let C be a W -lifting of C and E a lifting of
E over C . For d ≥ 2, set Zd = PC (E ⊕ Od−2

C ) and Xd = BlDZd. Then Xd is a semi-stable
reduction over W of relative dimension d, whose special fiber, regarded as a log variety over
k, is non W2-liftable and therefore DR-indecomposable.

Proof. We prove the statement for d = 2 only (the proof for d ≥ 3 is the same). Denote
C0 = C, Y0 = D, Z0 = PC(E), Z = Z2.

Assume the contrary that the special fiber X0 of BlY0Z, regarded as a log variety over
k, admit a smooth deformation over W2. It follows from Proposition 3.2 that the pair
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(Z0, Y0) consisting of the component Z0 = BlY0Z0 of X0 together with the divisor Y0 =
P(NY0/Z) ∩ Z0 ⊂ X0 lift to a pair (Z1, Y1) over W2 (The scheme Z1 is not necessarily the
mod p2-reduction of Z). On the other hand, Proposition 3.4 implies that the projection
Z0 → C0 is the reduction of a certain W2-morphism Z1 → C1. Therefore, the composite
F0 : Y0 ↪→ Z0 → C0 lifts to the composite F1 : Y1 ↪→ Z1 → C1 over W2. But this leads to a
contradiction: the nonzero morphism dF1 : F ∗1 ΩC1 → ΩY1 is divisible by p and it induces a
nonzero morphism over k

dF1

p
: F ∗0 ΩC0 → ΩY0 ,

which is impossible because of the degree. Therefore, X0/k is indeed non W2-liftable as
claimed. �

4. An E1-degeneration result

This section is devoted to prove the following
Theorem 4.1. Let k be an algebraically closed field and R a DVR with the residue field k.
Let Z/R be a smooth proper R-scheme and X/R be a blow-up of X along a closed regular
center Y0 supported in Z0 = Z ×R k. If the Hodge to de Rham spectral sequence

Epq
1 = Hq(Z0,Ωp

Z0)⇒ Hp+q(Ω•Z0)
degenerates at E1 (e.g. when char(k) = 0 or dimZ0 ≤ char(k) and R is of mixed character-
istic), then the Hodge to log de Rham spectral sequence

Epq
1 = Hq(X0,∧pΩlog

X0)⇒ Hp+q(Ωlog •
X0 )

degenerates at E1.

Recall from Proposition 3.3 that X0 is a simple normal crossing divisor consisting of two
smooth components X1 = BlY0Z0 and X2 = P(NY0/Z) which intersect transversally along
D = P(NY0/Z0). The blowdown morphism of the log pairs (Z,Z0) → (X,X0) restricts
on the special fiber to a log morphism π : X0 → (Z0, 1 7→ 0) between log varieties over
(Spec(k), 1 7→ 0). This induces a canonical morphism

π∗i : Ωi
Z0 → Rπ∗

i∧
Ωlog
X0 .

Our main technical step in proving Theorem 4.1 is the following
Proposition 4.2. Let Z/R be a smooth proper R-scheme and X/R be a blow-up of X along
a closed regular center Y0 supported in Z0. Denote by π : X0 → Z0 the restriction morphism.
Then for each i, the canonical morphism

Ωi
Z0 → Rπ∗ ∧i Ωlog

X0

is an isomorphism in Db(Z0).
From Proposition 4.2, we may derive the main result of the section.

Proof of Theorem 4.1. We actually prove that the two spectral sequences
Epq

1 = Hq(Z0,Ωp
Z0)⇒ Hp+q(Ω•Z0)(1)

and
Epq

1 = Hq(X0,∧pΩlog
X0)⇒ Hp+q(Ωlog •

X0 )(2)
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are isomorphic. First recall that (1) is induced by the hypercohomology of the complex Ω•Z0
with respect to the truncated filtration

F i = τ st
≥iΩ•Z0 ,

where τ st is the stupid truncation. (2) is induced by the hypercohomology of the complex
Ωlog•
X0 with respect to the truncated filtration

F i = τ st
≥iΩ

log•
X0 .

By Proposition 4.2, there are natural quasi-isomorphisms
Rπ∗Ωlog •

X0 ' π∗Ωlog •
X0 ' Ω•Z0 ,

and the isomorphisms respect the filtration
F i = Rπ∗τ

st
≥iΩ

log•
X0 ' π∗τ

st
≥iΩ

log•
X0

in the left, middle and
F i = τ st

≥iΩ•Z0

in the right. As a consequence, the two spectral sequences (1) and (2) are naturally isomor-
phic. �

To prove Proposition 4.2, we make some preparations. Let X0 = X1 ∪D X2 be a va-
riety consisting of two smooth projective components X1 and X2 such that they intersect
transversely along a smooth divisor D. Assume that X0 has a log structure of semi-stable
type (Definition 2.1). Then the normalization X1 ∪ X2 → X0 and the diagonal immersion
D → X1 ∪X2 lift to log morphisms

(X1 ∪X2, D1 ∪D2 ⊕ (1 7→ 0))→ X0

and
(D, (1 7→ 0)⊕2)→ (X1 ∪X2, D1 ∪D2)

over the base (Spec(k), 1 7→ 0). These log morphisms induce morphisms of sheaves on X0

Ωi
Xlog

0
→ Ωi

X1(logD)⊕ Ωi
X2(logD)(3)

and
Ωi
X1(logD)⊕ Ωk

X2(logD)→ Ωk
(D,(17→0)⊕2)/(Spec(k),17→0).(4)

for each i. By the definition of log cotangent sheaf,
Ω(D,(17→0)⊕2)/(Spec(k),17→0) ' ΩD ⊕ (Z⊕2/Z⊗Z OD)/α(m)⊗m− dα(m)⊗ 1.

Thanks to the log structure of (D, (1 7→ 0)⊕2), α(m) ⊗ m − dα(m) ⊗ 1 are null relations.
Therefore

Ω(D,(17→0)⊕2)/(Spec(k),17→0) ' ΩD ⊕ OD.

This isomorphism induces the forgetful morphism
Ω(D,(1 7→0)⊕2)/(Spec(k),1 7→0) → ΩD

and the log residue morphism
Ω(D,(17→0)⊕2)/(Spec(k),17→0) → OD.

Therefore
Ωk

(D,(17→0)⊕2)/(Spec(k),17→0)
∼=

k∧
(ΩD ⊕ OD) ' Ωk

D ⊕ Ωk−1
D
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and by local calculation the restriction morphism
Ωk
X1(logD)→ Ωk

(D,(1 7→0)⊕2)/(Spec(k),1 7→0)

is equivalent to
(ι, resD) : Ωk

X1(logD)→ Ωk
D ⊕ Ωk−1

D

β + γ
dz

z
7→ (β, γ).

Here we use a local chart of X1 where D = {z = 0} and β, γ does not contain dz. This
phenomenon is interesting in itself. The residue map resD is a part of the restriction map
of log cotangent sheaves. It makes log geometry a convenient and natural language in such
a situation.

Assume locally X0 is embedded into the affine space with a system of local coordinates
(z1, z2, · · · , zn) such that X1 = {z1 = 0}, X2 = {z2 = 0}. Since

dz1

z1
+ dz2

z2
= 0

on X0, a log form on X0 is of the form

β + γ1
dz1

z1
= β − γ1

dz2

z2
.

Therefore two k-forms β1 + γ1
dz1
z1

on X2 and β2 + γ2
dz2
z2

on X2 glue to a log k-form on X0 if
and only if

β1|D = β2|D
and

γ1|D + γ2|D = 0.
This proves

Lemma 4.3. For each k ≥ 0 there is a short exact sequence of sheaves

0→ Ωk
X log → Ωk

X1(logD)⊕ Ωk
X2(logD) ϕ→ Ωi

D ⊕ Ωi−1
D → 0

where ϕ is defined by (
ι resD
−ι resD

)
.

Here Ω−1
D is defined to be 0.

The following well-known lemma will be used several times in the sequel.

Lemma 4.4. Let Pn be the projective space over k. The following vanishing results hold:
(1)

Hq(Pn,Ωp
Pn) = 0, p 6= q

(2) If i 6= 0, then
Hq(Pn,Ωp

Pn(i)) = 0,
for q = 0, i ≤ p or q = n, i ≥ p− n or q 6= 0, n.
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(3) Let H be a hyperplane in Pn, then

Hq(Pn,Ωp
Pn(logH)) =

k, p = q = 0
0, otherwise.

Lemma 4.5. Let Z be a smooth variety and π : P → Z be a projective bundle of relative
dimension r. Let D ⊂ P be a relative hyperplane. Then for each i ≥ 0 there is a canonical
isomorphism

Ωi
Z ' Rπ∗Ωi

P (logD)
in D(Z).

Proof. The exact sequence
0→ π∗ΩZ → ΩP (logD)→ ΩP/Z(logD)→ 0

induces a decreasing filtration
F p = π∗Ωp

Z ∧ Ωi−p
P (logD) ⊂ Ωi

P (logD)
such that

F p/F p+1 ' π∗Ωp
Z ⊗ Ωi−p

P/Z(logD).
Therefore we have a spectral sequence

Epq
1 = Rqπ∗(π∗Ωp

Z ⊗ Ωi−p
P/Z(logD))⇒ Rp+qπ∗(Ωi

P (logD)).
By Lemma 4.4, we see that

Epq
1 ' Ωp

Z ⊗Rqπ∗(Ωi−p
P/Z(logD)) =

Ωi
Z , p = i, q = 0

0, otherwise.

This proves the lemma. �

Lemma 4.6. Let Z0 be a smooth projective variety and Y0 be a smooth closed subvariety of
Z0. Denote π : X1 → Z0 be the blowup along Y0 with exceptional divisor D. Then for each
k ≥ 0, there is a distinguished triangle in Db(Z0) induced by natural morphisms:

Ωk
Z0

u→ Rπ∗Ωk
X1 ⊕ Ωk

Y0

v→ Rπ∗Ωk
D → Ωk

Z0 [1].
In other words, we have the short exact sequence

0→ Ωk
Z0 → π∗Ωk

X1 ⊕ Ωk
Y0 → π∗Ωk

D → 0(5)
and the isomorphism

Riπ∗Ωk
X1 → Riπ∗Ωk

D(6)
for each i > 0.

Proof. Denote the following automorphism of π∗Ωk
X1 ⊕ Ωk

Y0 by φ:
(a, b) 7→ (a, a− b),

By composing with φ, the exactness of the sequence (5) is reduced to the following isomor-
phisms

Ωk
Z0
∼= π∗Ωk

X1 ; Ωk
Y0
∼= π∗Ωk

D.

For k = 0, these are obvious. For k ≥ 1, their truth can be easily seen by considering
the local model of a blow-up along a smooth center: we assume that X1 is the blow up of
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Z0 = An along Y0 = Ar defined by the intersection of some coordinate hyperplanes. Then
the map

π : D → Y0

is the projection
Ar × Ps → Ar.

Thus, it is trivial to get π∗Ωk
D = Ωk

Y0 , k ≥ 0 by this description. For the first isomorphism,
we use the following estimation:

π∗Ωk
Z0 ⊂ Ωk

X1 ⊂ π∗Ωk
Z0(kD).

From this, it follows that
Ωk
Z0 ⊂ π∗Ωk

X1 ⊂ Ωk
Z0 ⊗ π∗OX1(kD) = Ωk

Z0 ,

and hence π∗Ωk
X1 = Ωk

Z0 .

The proof of (6) is divided into two parts. First we show that the natural map
Riπ∗Ωk

X1 |D → Riπ∗Ωk
D

is an isomorphism for each i > 0. Considering the long exact sequence associated to
0→ OD(1)⊗ Ωk−1

D → Ωk
X1|D → Ωk

D → 0
where OD(1) is the tautological bundle of the projective bundle D → Y0, we see that it
sufficient to prove that

Riπ∗(OD(1)⊗ Ωk
D) = 0, i > 0.(7)

Notice that the short exact sequence
0→ π∗ΩY0 → ΩD → ΩD/Y0 → 0

induces a decreasing filtration
F p = π∗Ωp

Y0 ∧ Ωk−p
D ⊂ Ωk

D

such that
F p/F p+1 ' π∗Ωp

Y0 ⊗ Ωk−p
D/Y0

.

Therefore we have a spectral sequence
Epq

1 = Rqπ∗(π∗Ωp
Y0 ⊗ Ωk−p

D/Y0
⊗ OD(1))⇒ Rp+qπ∗(OD(1)⊗ Ωk

D).
Since D → Y0 is a projective bundle, we obtain that

Epq
1 = Ωp

Y0 ⊗R
qπ∗(Ωk−p

D/Y0
⊗ OD(1))

for p+ q ≥ 1 and p, q ≥ 0, thanks to the Lemma 4.4. This proves (7) and thus
Riπ∗Ωk

X1|D → Riπ∗Ωk
D

is an isomorphism for each i > 0.

Next we show that the canonical morphism
Riπ∗Ωk

X1 → Riπ∗(Ωk
X1|D)

is an isomorphism for each i > 0. By the long exact sequence associated to
0→ Ωk

X1 ⊗ OX1(−D)→ Ωk
X1 → Ωk

X1|D → 0,
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we see that it sufficient to show the vanishing

Riπ∗(Ωk
X1 ⊗ OX1(−D)) = 0(8)

for each i > 0.

Notice that the short exact sequence

0→ π∗ΩZ0 → ΩX1 → ΩX1/Z0 ' ΩD/Y0 → 0

induces a decreasing filtration

F p = π∗Ωp
Z0 ∧ Ωk−p

X1 ⊂ Ωk
X1

such that
F p/F p+1 ' π∗Ωp

Z0 ⊗ Ωk−p
D/Y0

.

Therefore we have a spectral sequence

Epq
1 = Rqπ∗(π∗Ωp

Z0 ⊗ Ωk−p
D/Y0

⊗ OX1(−D))⇒ Rp+qπ∗(Ωk
X1 ⊗ OX1(−D)).

Since D → Y0 is a projective bundle, we obtain that

Epq
1 = Ωp

Z0 ⊗R
qπ∗(Ωk−p

D/Y0
⊗ OD(1))

for p+ q ≥ 1 and p, q ≥ 0, thanks again to the Lemma 4.4. This proves (8) and thus

Riπ∗Ωk
X1 → Riπ∗(Ωk

X1 |D)

is an isomorphism for each i > 0. So we finish the proof of (6). �

Now we are ready to prove Proposition 4.2.

Proof. By Lemma 4.3 and 4.5, we have a distinguished triangle

Rπ∗
i∧

Ωlog
X → Rπ∗Ωi

X1(logD)⊕ Ωi
Y0

Rπ∗ϕ→ Rπ∗Ωi
D ⊕Rπ∗Ωi−1

D → Rπ∗Ωi
Xlog [1]

in Db(Z0). This triangle fills in the following diagram in Db(Z0)

Rπ∗Ωi
D

// 0 // Rπ∗Ωi
D[1] Id // Rπ∗Ωi

D[1]

Rπ∗Ωi
X1 ⊕ Ωi

Y0

OO

// Rπ∗Ωi
X1(logD)⊕ Ωi

Y0

OO

// Rπ∗Ωi−1
D

OO

// Rπ∗Ωi
X1 [1]⊕ Ωi

Y0 [1]

OO

Rπ∗ ∧i Ωlog
X0

p

OO

// Rπ∗Ωi
X1(logD)⊕ Ωi

Y0

Id

OO

Rπ∗ϕ // Rπ∗Ωi
D ⊕Rπ∗Ωi−1

D

pr

OO

// Rπ∗ ∧i Ωlog
X0 [1]

OO

Rπ∗Ωi
D[−1] //

OO

0 //

OO

Rπ∗Ωi
D

OO

Id // Rπ∗Ωi
D,

OO

(9)
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which is generated from the centered commutative square

Rπ∗Ωi
X1(logD)⊕ Ωi

Y0
// Rπ∗Ωi−1

D

Rπ∗Ωi
X1(logD)⊕ Ωi

Y0

Id

OO

Rπ∗ϕ // Rπ∗Ωi
D ⊕Rπ∗Ωi−1

D .

OO

In the diagram (9), p is induced (non-canonically) by the above commutative square. The
second horizontal line is the direct sum of the distinguished triangles

Rπ∗Ωi
X1 → Rπ∗Ωi

X1(logD)→ Rπ∗Ωi−1
D → Rπ∗Ωi

X1 [1]

and
Ωi
Y0

Id→ Ωi
Y0 → 0→ Ωi

Y0 [1].
The horizontal lines of (9) are distinguished triangles. The second and third vertical lines
are also distinguished. By the 3× 3 lemma of triangulated categories, the first vertical line
induces a distinguished triangle

Rπ∗ ∧i Ωlog
X0 → Rπ∗Ωk

X1 ⊕ Ωi
Y0 → Rπ∗Ωk

D → Rπ∗ ∧i Ωlog
X0 [1].

Comparing with Lemma 4.6, we see that there is a quasi-isomorphim

Rπ∗ ∧i Ωlog
X0 ' Ωi

Z0 .

Note that this isomorphism may not be the natural one induced by the morphism π. However,
we obtain as a consequence of the abstract quasi-isomorhism that

Rkπ∗ ∧i Ωlog
X0 ' 0, k > 0.

It remains to show that the natural morphism of sheaves

Ωi
Z0 → π∗ ∧i Ωlog

X0(10)

is an isomorphism.

Let us consider the cohomologies at place 0 of the diagram (9),

π∗Ωi
X1 ⊕ Ωi

Y0
// π∗Ωi

X1(logD)⊕ Ωi
Y0

// π∗Ωi−1
D

π∗ ∧i Ωlog
X0

p0

OO

// π∗Ωi
X1(logD)⊕ Ωi

Y0

Id

OO

π∗ϕ // π∗Ωi
D ⊕Rπ∗Ωi−1

D

pr

OO

// 0

0

OO

// 0 //

OO

π∗Ωi
D

OO

Id // π∗Ωi
D

OO

.(11)

The two vertical sequences in the middle are short exact sequences. Therefore, by the snake
lemma, there is an exact sequence

0→ π∗ ∧i Ωlog
X0

p0
→ π∗Ωi

X1 ⊕ Ωi
Y0

δ→ π∗Ωi
D

where δ is the boundary map which is identical to the one in (5). Hence by (5) we see that
the natural map (10) is an isomorphism. �
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