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Abstract. � This notes is prepared for a talk in the joint seminar "Chow group of

zero-cycles on varieties over local �elds" in Capital Normal University and Southern

University of Science and Technology during 2017-2018. In this note, we give a

self-contained proof of a Bertini's theorem over discrete valuation rings. For a semi-

stable regular projective �at scheme over a discrete valuation ring, we can always �nd

a projective embedding and a hyperplane with respect to this embedding, such that

the intersection of this hyperplane and the original scheme also keeps these properties.

Résumé. � Cette notes est preparée pour un exposé dans le séminaire joint "le

groupe de Chow de zéro-cycles sur les variétés sur corps locaux" à l'Université normal

de la capitale et l'Université de technologie du Sud pendant 2017-2018. Dans cette

note, on donne une démonstration autonome d'un théorème de Bertini sur anneaux

de valuations discrètes. Pour un schéma semi-stable régulier projectif plat sur un

anneau de valuation discrète, on peut toujour trouver un prolongement projectif et

un hyperplan par rapport à cette immersion, tels que l'intersection de cet hyperplan

et le schéma original aurait ces propriétés aussi.
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1. Introduction

1.1. Brief History. � Let X ↪→ Pnk be a quasi projective scheme, where k is the
base scheme, which is often a ring or a �eld. A theorem is said to be a Bertini's
theorem means that if X has some properties, then there exists a hyperplane H in
Pnk , such that the intersection product H · X := H ×PnK X ↪→ Pnk also has these
properties. In 1880s, Eugenio Bertini proved that for the case that k is algebraically
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closed, if X is smooth over Spec k, then there exists a hyperplane H such that H ·X
is also smooth over Spec k. This result has no restriction on the characteristic of
the underlying �eld, while the extensions require characteristic 0. In [9, Théorème
8.18], J.-P. Jouanolou proved that if the cardinal of k is in�nity, then the Bertini's
theorems are veri�ed for the cases that "some properties" are of irreducible, smooth,
geometrically reduced and geometrically irreducible.

In general, the Bertini's theorems are not veri�ed any longer if k is a �nite �eld,
see [12, Theorem 3.1] for such a counter-example. But if we loosen the requirement of
H, for example, if we allow that H can be a hypersurface section, then the Bertini's
theorems can still be right, see [12, Theorem 1.1] and [13, Theorem 1.1] for the case
of smoothness, and [3, Theorem 1.1] for the case of irreducibility.

1.2. Main target. � In order to prove [14, Theorem 9.7], we need a version of
Bertini's theorems over discrete valuation rings, which is proved in [14, Theorem 4.2].
The aim of this notes is to give a self-contained proof of [14, Theorem 4.2] (Theorem
4.1 in this notes), which is a generalization of [8, Theorem 1.2].

1.3. Structure of this notes. � This notes is divided into three parts: in �2, we
will prove the Bertini's theorems of smoothness over the �elds which satisfy certain
conditions (Theorem 2.1), where we will follow the approach of [10] for the case of
in�nite �elds and the approach of [13] for the case of �nite �elds. In �3, we will prove
that if we have the Bertini's theorem of a particular version over the residue �elds,
then we have the Bertini's theorem of the necessary version over discrete valuation
rings, where we will follow the approach of [8, Lemma 1.3] (Theorem 3.2). In �4,
we will prove [14, Theorem 4.2] (Theorem 4.1), where actually we will prove the
assumption in Theorem 3.2 of �3 is veri�ed.

2. Bertini's theorems over a �eld

In this section, we give a brief introduction to the proof of the Bertini's theorems
of the following version of smoothness. Due to the limit of the space, we do not plan
to give out every details of the proof.

Theorem 2.1. � Let k be a �eld, and let X ↪→ Pnk be a smooth projective scheme
of dimension d. Let Z be a closed subscheme of Pnk . Suppose that V is a smooth
closed subscheme of X whose dimension is l. (If V is empty, take l = −1.) If d > 2l,
then there exists a hypersurface H of Pnk containing V , such that X ·H is smooth of
dimension d− 1.

In order to prove Theorem 2.1, we divide it into two cases: the �eld k is in�nite
and k is �nite. The method of proving these two cases are very di�erent.

2.1. The case of in�nite �eld. � If the base �eld k mentioned in Theorem 2.1
is in�nite, the result is a direct corollary of [10, Theorem 7].
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2.2. The case of �nite �eld. � If the base �eld k is �nite, we follow the approach
of B. Poonen in [12] and [13]. In fact, the main motivation of [13] is to prove Theorem
4.2 in [14], see [13, Introduction].

First, we recall the basic setting original from [12], which is also applied in [13]
and [3] for �nite �eld case, and in [2] for number �eld case.

Let Fq be the �nite �eld with q elements, and S = Fq[T0, . . . , Tn] be the homoge-
neous coordinate ring of PnFq . Let Sδ ⊆ S be the Fq-subspace of homogeneous polyno-

mials of degree δ. For each f ∈ Sδ, let V (f) be the hypersurface Proj(S/(f)) ↪→ PnFq .
For the rest of this subsection, we �x a closed subscheme Z ↪→ PnFq . For δ ∈ N+, let

Iδ be the Fq-subspace of f ∈ Sδ that vanish on Z. Let I =
⋃
δ>0

Iδ. Let P be a subset

of I, we de�ne the density of P relative to I as

µZ(P) = lim
δ→∞

#(P ∩ Iδ)
#Iδ

if the limit exists. For a scheme X of �nite type over Fq, we de�ne the zeta function
[15]

(1) ζX(s) = ZX(q−s) =
∏

P∈X(Fq)

(
1− q−s deg(P )

)−1
= exp

( ∞∑
r=1

#X(Fqr )
r

q−rs

)
,

which is converges when Re(s) > dim(X).
With the above notation, we will prove the following result.

Theorem 2.2 (Theorem 1.1, [13]). � Let X ↪→ PnFq be a smooth quasi-projective

subscheme over the �nite �eld Fq, whose dimension is d > 0, and Z ↪→ PnFq be a

closed subscheme of PnFq . Suppose that the scheme-theoretic intersection V = Z ∩X
is smooth of dimension l. (If V is empty, take l = −1.). De�ne

P = {f ∈ I | V (f) ·X is smooth of dimension d− 1}.
Then we have:

1. If d > 2l, then

µZ(P) =
1

ζV (d− l)ζXrV (d+ 1)
.

2. If d 6 2l, then µZ(P) = 0.

A direct corollary of Theorem 2.2 gives the �nite �eld case of Theorem 2.1.
In order to prove Theorem 2.2, we divide the closed points of X into three parts

by their degrees. The method of control the singularities of low degree ([13, �2]) and
medium degree ([13, �3]) is more arithmetic, while that of control high degree ([13,
�4]) is more geometric.

2.2.1. Singular points of low degree. � Let IZ ⊆ OPn be the ideal sheaf of Z in Pn,
so we have Iδ = H0(Pn, IZ(δ)). Tensoring the surjection

O⊕(n+1) → O
(f0, . . . , fn) 7→ x0f0 + · · ·+ xnfn
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with IZ , twisting by O(δ) and taking global sections shows that S1Iδ = Iδ+1 for
δ � 1. Fix an integer

(2) c ∈ N

such that S1Iδ = Iδ+1 for all δ > c.
With the above notation, we introduce the following lemmas.

Lemma 2.3 (Lemma 2.1, [13]). � Let Y be a �nite scheme of Pn. Let

φδ : Iδ = H0(Pn, IZ(δ))→ H0(Y, IZ · OY (δ))

be the map induced by the map of sheaves

IZ → IZ · OY
on Pn. Then φδ is surjective for δ > c + dim(H0(Y,OY )), where the constant c is
de�ned at (2).

Lemma 2.4 (Lemma 2.2, [13]). � Suppose m ⊆ OX is the ideal sheaf of a closed
point P ∈ X. Let Y ↪→ X be the closed subscheme whose ideal sheaf is m2 ⊆ OX .
Then for any δ ∈ N, we have

#H0(Y, IZ · OY (δ)) =

{
q(d−l) deg(P ), if P ∈ V ;

q(d+1) deg(P ), if P 6∈ V .

Proof. � For all P ∈ X, let κ(P ) be the residue �eld of P in X. Then we have
H0(Y,OY ) is a κ(P )-vector space of dimension d+ 1 since P is non-singular in X. So
H0(Y,OY ) is a Fq-vector space of dimension (d+ 1) · deg(P ). We get

#H0(Y,OY ) = q(d+1) deg(P ).

On the other hand, since Y is �nite, we have H0(Y, IZ · OY ) = H0(Y, IZ · OY (δ))
for all δ ∈ N. We also have the following exact sequence of sheaves

0→ IZ · OY → OY → OZ∩Y → 0.

Combine it with the fact that dim(Y ) = 0, we have

#H0(Y, IZ · OY ) =
#H0(Y,OY )

#H0(Y,OZ∩Y )

=

{
q(d+l) deg(P )/q(l+l) deg(P ), if P ∈ V ;
q(d+1) deg(P ), if P 6∈ V .

So we obtain the result.

If U is a scheme of �nite type over Fq, let U<r be the set of closed points of U of
degree < r. Similarly we de�ne the sets U>r, U6r and U>r.

Proposition 2.5 (Lemma 2.3, [13]). � We keep the notation and the hypothesis
in Theorem 2.2, and we de�ne

P<r = {f ∈ I| V (f) ·X is smooth of dimension d− 1 at all P ∈ X<r}.
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Then

µZ(P<r) =
∏

P∈V<r

(
1− q−(d−l) deg(P )

)
·

∏
P∈(XrV )<r

(
1− q−(d+l) deg(P )

)
.

Proof. � Let X<r = {P1, . . . , Pm}. For each i ∈ N∩[1,m], let mi be the ideal sheaf of
the point Pi in X, let Yi be the closed sub scheme of X with the ideal sheaf m2

i ⊆ OX ,

and let Y =
m⋃
i=1

Yi.

By the Jacobian criterion (cf. [11, Theorem 4.2.19]), for every i ∈ N ∩ [1,m], the
scheme V (f) · X is singular at Pi i� f restricts to a section of OYi(δ) is zero. By
Lemma 2.3, µZ(Pr) equals to the fraction of elements in H0(Y, IZ · OY (δ)) whose
restriction to a section of OYi is non-zero for each i ∈ N ∩ [1,m].

Then by Lemma 2.4, we obtain

µZ(Pr) =

m∏
i=1

#H0(Yi,Z · OYi)− 1

#H0(Yi,Z · OYi)

=
∏

P∈V<r

(
1− q−(d−l) deg(P )

)
·

∏
P∈(XrV )<r

(
1− q−(d+l) deg(P )

)
.

Corollary 2.6 (Corollary 2.4, [13]). � If d > 2l, then

lim
r→∞

µZ(Pr) =
1

ζV (d− l)ζXrV (d+ 1)
,

where ζV (s) is de�ned at (1).

Proof. � For the convergence, we need d − l > dim(V ) = l. Then we have the
assertion by de�nition directly by Proposition 2.5.

Proof of Item 2 of Theorem 2.2. � By de�nition, we have P ⊆ Pr. By Proposition
2.5, we have

µZ(Pr) 6
∏

P∈V<r

(
1− q−(d−l) deg(P )

)
,

which tends to 0 as r →∞ if d 6 2l. Thus µZ(P) = 0 in this case.

From now on, we assume d > 2l.

2.2.2. Singularities of medium degree. � We keep all the notation above. In this

part, we deal with the closed points whose degrees are in the interval
[
r, δ−cd+1

]
, where

the constants δ and c will be explained below.

Lemma 2.7 (Lemma 3.1, [13]). � Let P ∈ X be a closed point of degree e and
δ ∈ N+, where e 6 δ−c

d+1 and the constant c is de�ned at (2). Then the fraction of

f ∈ Iδ such that V (f) ·X is not smooth of dimension d− 1 at P equals{
q−(d−l)e, if P ∈ V ;

q−(d+1)e, if P 6∈ V .
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Proof. � By applying Lemma 2.3 to Lemma 2.4, we obtain the result.

We de�ne the µZ(P) and µ
Z

(P) as the densities of the set P ⊆ I as µZ(P) was

de�ned, but we use lim and lim in place of lim.

Proposition 2.8. � Let Qmid
r,δ be the subset of f ∈ Iδ such that there exists P ∈

X(Fq) with r 6 degP 6 δ−c
d+1 such that V (f) ·X is not smooth of dimension d− 1 at

P , and

Qmid
r =

⋃
δ>0

Qmid
r,δ .

Then we have

lim
r→∞

µZ(Qmid
r ) = 0.

Proof. � By Lemma 2.7, we have

#
(
Qmid
r ∩ Iδ

)
#Iδ

6
∑
P∈Z

r6degP6 δ−c
d+1

q−(d−l) deg(P ) +
∑

P∈XrZ
r6degP6 δ−c

d+1

q−(d+1) deg(P )

6
∑

P∈Z>r

q−(d−l) deg(P ) +
∑

P∈(XrZ)>r

q−(d+1) deg(P ).

Using the trivial bound that an d-dimensional variety has at most O(qed) closed points
of degree e, we show that each of the two sums converges to a value that is O(q−r)
as r →∞, under our assumption of d > 2l.

2.2.3. Singularities of high degree. � Because of the place of this notes, in this part
we only state the main result about the control of high degree points. We refer to
[13, �4] as the proofs. The choice of the bound δ−c

d+1 dues to the technique of the proof
of Proposition 2.9 and Proposition 2.10 below.

Proposition 2.9 (Lemma 4.2, [13]). � Let Qhigh
XrV,δ be the subset of f ∈ Iδ which

satis�es that there exists P ∈ (X r V )(Fq) with deg(P ) > δ−c
d+1 such that V (f) ·X is

not smooth of dimension d− 1 at P , and

Qhigh
XrV =

⋃
δ>0

Qhigh
XrV,δ.

Then we have

µZ(Qhigh
XrV ) = 0.

Proposition 2.10 (Lemma 4.3, [13]). � Let Qhigh
V,δ be the subset of f ∈ Iδ which

satis�es that there exists P ∈ V (Fq) with deg(P ) > δ−c
d+1 such that V (f) · X is not

smooth of dimension d− 1 at P , and

Qhigh
V =

⋃
δ>0

Qhigh
V,δ .

Then we have

µZ(Qhigh
V ) = 0.
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2.2.4. Conclusion. � Finally, we will prove the main result of this section.

Proof of Item 1 of Theorem 2.2. � By de�nition, we have the relation

P ⊆ Pr ⊆ P ∪Qmid
r ∪Qhigh

XrV ∪Q
high
V .

Then we have

|µZ(P)− µZ(Pr)| 6 µZ(Qmid
r ) + µZ(Qhigh

XrV ) + µZ(Qhigh
V )

and

|µ
Z

(P)− µZ(Pr)| 6 µZ(Qmid
r ) + µZ(Qhigh

XrV ) + µZ(Qhigh
V ).

By Proposition 2.8, Proposition 2.9 and Proposition 2.10, when r →∞, we have

µZ(Qmid
r ) + µZ(Qhigh

XrV ) + µZ(Qhigh
V ) = o(1).

So we obtain

µZ(P) = lim
r→∞

(Pr) =
1

ζV (d− l)ζXrV (d+ 1)
,

which is the end of the proof.

3. From the residue �eld to the original discrete valuation ring

In this section, we introduce the proof of [8, Lemma 1.3]. First, we introduce some
notation, which follows that of [8] and [14].

Let R be a discrete valuation ring, k be the fraction �eld of R, F be the residue
�eld of R, and π be a uniformizor of R. Then we suppose that SpecR = {η, s}, where
s = SpecF is the closed point and η = Spec k is the generic point. The de�nition
below follows [8, De�nition 1.1].

De�nition 3.1 (Quasi-semi-stable). � Let X → SpecR be a quasi-projective
scheme. We say that X is quasi-semi-stable if the following conditions hold:

1. X → SpecR is a regular �at scheme;
2. Zariski locally, X is smooth over a ring of type

R[x1, . . . , xr]

[
1

u

]
/(π − uxe11 · · ·xerr ),

where e1, . . . , er ∈ N>1 and u ∈ R[x1, . . . , xr] r {0}.
In addition, we say that X is of semi-stable if e1 = · · · = er = 1 and u = 1 in the
above Item 2.

We denote by QS the category of quasi-semi-stable schemes, and by S the category
of semi-stable schemes. In addition, we denote by sQS ⊂ QS (resp. sS ⊂ S) the
subcategory of strictly quasi-semi-stable (resp. strictly semi-stable) schemes if for all
object X in them, Xs,red has regular irreducible components.

The main result of this section is stated as follows.
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Theorem 3.2 (Lemma 1.3, [8]). � Let X be an object of sQS (resp. sS), and
H ↪→ PNR be a hyperplane over R whose special �ber is Hs ↪→ PNF and whose generic
�ber is Hη ↪→ PNk . Let Y1, . . . , YM be the irreducible components of Xs,red, which are
smooth varieties intersecting transversally in PNF by de�nition. Assume that:

1. Hs and Yi1,...,ip := Yi1 ∩· · ·∩Yip intersect transversally in PNF for any i1, . . . , ip.

2. Hη and Xη intersect transversally in PNk .
Then X and H intersect transversally in PNR and X ·H := X ×PNR H is an object of

sQS (resp. sS) and (X ·H) ∪Xs,red is a simple normal crossing divisor on X. If X
is proper over R, then Assumption 2 is implied by Assumption 1.

Proof. � The scheme Yi1,...,ip is smooth by Item 2 of De�nition 3.1, and we have

(X ·H)×X Yi1,...,ip = (X ×PNR H)×X Yi1,...,ip = H ×PNR Yi1,...,ip = Hs ×PNF Yi1,...,ip .

So it su�ces to show that X ·H is an object of sQS (resp. sS).
By the étale descent (cf. [1, IX.3])and the strictly Henselization (cf. [6, �18.8] or

[4, �2.8]), we may assume that the �eld F is separably closed.
Pick an F -rational point x ∈ Xs(F ) which is contained in exactly r irreducible

components of Xs. Then Item 2 of De�nition 3.1 holds for a neighborhood of x i�

ÔX,x is isomorphic to

B = R[[x1, . . . , xr, y1, . . . , ym]]/〈π − uxe11 · · ·xerr 〉
with a unit u ∈ R[[x1, . . . , xr, y1, . . . , ym]].

Let f ∈ B be the image of the local equation for H at x, and let n ⊆ B be the
maximal ideal of B. If x ∈ H, then B/〈f〉 is the completion of the local ring of X ·H
at x. And in addition, the irreducible components of (X ·H)s,red = Xs,red ∩Hs are
the connected components of Yi ∩Hs, where i = 1, . . . ,M , so if we have the Lemma
3.4 below, then we prove that for every x ∈ (X ·H)s, x has an open neighborhood in
X ·H which is an object of sQS (resp. sS).

If X is proper over R, these neighborhoods cover X ·H by the valuative criterion
of properness (cf. [7, Chap. II, Theorem 4.7]).

Lemma 3.3 (Claim 1.3.1, [8]). � With all the notation and conditions in Theorem
3.2. Assumption 1 in Theorem 3.2 implies that

(a) : either f is a unit in B,
(b) : or m > 1, f ∈ n and f has non-zero image in n/(n2 + 〈x1, . . . , xr〉).

Lemma 3.4 (Claim 1.3.2, [8]). � Assume that Condition (b) in Lemma 3.3 holds.
Then

B/〈f〉 ∼= R[[x1, . . . , xr, y1, . . . , ym−1]]/〈π − u · xe11 · · ·xerr 〉,
where u is a unit of R[[x1, . . . , xr, y1, . . . , ym−1]].

Proof of Lemma 3.4. � The elements {xi mod n2}ri=1 and {yj mod n2}mj=1 form an

F -basis of n/n2. Then we have

f =

r∑
i=1

aixi +

m∑
j=1

aj+ryj mod n2,
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where ai, aj+r ∈ R which are determined modulo 〈π〉. If Condition (b) in Lemma
3.3 holds, then aj+r ∈ R× for some j. We may assume that ar+m = 1 by possibly
renumbering and multiplying f by a unit. Then we have

B/〈f〉 ∼= R[[x1, . . . , xr, y1, . . . , ym−1]]/〈π − u · xe11 · · ·xerr 〉,
where u is a unit of R[[x1, . . . , xr, y1, . . . , ym−1]].

Proof of Lemma 3.3. � The elements x1, . . . , xr are the images of the local equations
for Yi1 , . . . , Yir for suitable 1 6 i1 < · · · < ir 6 M . Then the image of Yi1 ∩ · · · ∩ Yir
in ÔX,x ∼= B is given by the ideal 〈x1, . . . , xr〉, i.e., by the quotient

B′ = B/〈x1, . . . , xr〉 ∼= F [[y1, . . . , ym]].

The ring B′ is of dimension 0 i� m = 0, and in this case Yi1 ∩ · · · ∩Yir is of dimension
0 as well. Then, by assumption on H, H does not intersect Yi1 ∩ · · · ∩ Yir , and so f
is a unit in B′ and hence a unit in B.

If m > 1, H intersects Yi1,...,ir transversally at x i� the image of f in B′ lies in
n′r(n′)2, where n′ is the maximal ideal ofB′. Now Lemma 3.3 follows the isomorphism

n′/(n′)2 ∼= n/(n2 + 〈x1, . . . , xr〉),
from which we obtain the result.

4. Bertini's theorem over the residue �eld

We keep all the notation in �3, and we would like to remind that R is a discrete
valuation ring and SpecR = {η, s}, where η = Spec k is the generic point and
s = SpecF is the closed point. Let QSP be the category of regular projective
�at schemes X over SpecR on which the reduced divisor Xs,red has simple normal
crossings. Let E be a free R-module of �nite rank, and let

PR(E)→ SpecR

be the associated projective bundle (cf. [5, 4.1.1]). Put Ps(E) = PR(E) ×SpecR s
which is the projective bundle over F associated to Es = E ⊗R F . Let GR(E) be the
set of invertible (i.e., rank 1) R-submodule N ⊂ E such that E/N is free. Such a
N ∈ GR(E) induces a closed immersion

H(N) := PR(E/N) ↪→ PR(E),

which we call a hyperplane in PR(E) with respect to N .
Next, there is a specialization map

spE : GR(E)→ Gs(E), N 7→ N ⊗R F,
where Gs(E) is the set of 1-dimensional F -subspace of E⊗RF . This map is surjective.
In terms of hyperplanes in projective bundles, spE assigns to a hyperplane H(N) ↪→
PR(E) over SpecR, a hyperplane Hs(N) := H(N)×SpecR SpecF ↪→ Ps(E) over s.

Let X be an object of QSP over SpecR, and Y ↪→ X be a hypersurface in X
which is also an object of QSP , whose complement X r Y is a�ne and for which
Y ∪Xs,red is a reduced divisor with simple normal crossings on X. Such a pair (X,Y )
is called an ample QSP -pair.
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The main theorem of this section is stated as follows.

Theorem 4.1 (Theorem 4.2, [14]). � Let X be an object in QSP with dim(X) =
d + 1 > 2. Let Y1, . . . , Yr be the irreducible components of Y := Xs,red, which are
smooth of dimension d over F . For integers 1 6 a 6 r and 1 6 i1 < · · · < ia 6 r,
we put Yi1,...,ia := Yi1 ∩ · · · ∩ Yia . Let W ↪→ X be a closed subscheme satisfying the
following three conditions:

(i) : W is the disjoint union of integral regular schemes W1, . . . ,Wm.
(ii) : For integers 1 6 a 6 d, 1 6 i1 < · · · < ia 6 r and 1 6 v 6 m, if
Wv 6⊂ Yi1,...,ia , then Wv ×X Yi1,...,ia is empty or regular of dimension strictly
smaller than 1

2 dim(Yi1,...,ia).
(iii) : For integers 1 6 a 6 d, 1 6 i1 < · · · < ia 6 r and 1 6 v 6 m, if
Wv ⊂ Yi1,...,ia , then dim(Wv) <

1
2 dim(Yi1,...,ia).

Then there exist a free R-module E of �nite rank, an embedding X ↪→ PR(E) and an
invertible R-module N ∈ GR(E) satisfying the conditions:

(1) : X ·H(N) := X×PR(E)H(N) lies in QSP and (X,X ·H(N)) is a QSP -pair.
(2) : H(N) contains W .

The key point of the proof of Theorem 4.1 is to �nd the R-module E, the invertible
R-module N ∈ GR(E), and the embedding morphism X ↪→ PR(E). We want to
emphasize that Theorem 4.1 is NOT veri�ed for every projective embedding X ↪→
PR(E).

In [8, Theorem 1.2], U. Jannsen and S. Saito proved Theorem 4.1 for the case of
W = ∅, whose main ingredient is the application of [8, Lemma 1] (Theorem 3.2 in
this notes).

Proof. � For v = 1, . . . ,m, let W f ⊂ W (resp. Wnf ⊂ W ) be the (disjoint) union
of those Wv's which are not contained (resp. contained) in Y . Since X is projective,
we take a �nite rank R-module E0 and a closed embedding i : X → PR(E0). Let
n ∈ N+, and we put OX(n) = i∗OPR(E0)(n). By the Serre vanishing theorem (cf. [7,
Chap. III, Theorem 5.2]), we have

H1(X,OX(n)) = H1(X,OX(n)⊗ IX(W f )) = 0

for a su�ciently large n > 0, where IX(W f ) is the ideal sheaf for W f ↪→ X.
We �x such a su�ciently large n ∈ N+ above, then we have

En := H0(X,OX(n)) ⊃ Ẽn := H0(X,OX(n)⊗OX IX(W f ))

are free of �nite rank, since they are torsion free.
By de�nition, the schemes X and W f are �at over SpecR, then we have

En ⊗R F = H0(Xs,OXs(n))

and

Ẽn ⊗R F = H0
(
Xs,OXs ⊗OX IXs(W f

s )
)
.
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The �atness of W f → SpecR also implies IXs(W f
s ) = IX(W f ) ⊗OX OXs . So we

have the following short exact sequence of sheaves

0 −−−−→ OX(n)⊗OX IX(W f )
×π−−−−→ OX(n)⊗OX IX(W f )

−−−−→ OXs(n)⊗OXs IXs(W
f
s ) −−−−→ 0,

where π is the uniformizor of R.
By the above exact sequence, the quotient En/Ẽn is free. So we have that for an

invertible R-submodule N ⊂ ẼN satisfying Ẽn/N is free, the quotient En/N is again
free. Then we obtain the following commutative diagram

GR(Ẽn)

spẼn
��

� � ι // GR(En)

spEn

��
Gs(Ẽn) �

� ι // Gs(En).

The images ι(GR(Ẽn)) and ι(Gs(Ẽn)) are identi�ed with the sets

Φ := {N ∈ GR(En)|W f ⊂ H(N)}

and

Φs := {M ∈ GR(En)|W f
s ⊂ H(M)}

respectively. Here, H(N) denotes the hyperplane PR(En/N) ↪→ PR(En), and H(M)
denotes the hyperplane Ps((En ⊗R F )/M) ↪→ Ps(En ⊗R F ). By the relation W f ⊂
H(N), we can de�ned an embedding X ↪→ PR(En) associated to OX(n).

Consider the set

Φs,red := {M ∈ Gs(En)|W f
s,red = W f ∩Xs,red ⊂ Hs(M)}

= {M ∈ Gs(En)|W f ∩ Yi1,...,ia ⊂ Hs(M) for any i1, . . . , ia}.

By de�nition, we have Φs ⊂ Φs,red.
The lemma below will be useful in the following steps of this proof. We will give

the proof of it after we accomplish the proof of this theorem.

Lemma 4.2. � Let

F := ker
(
IXs(Xs,red)→ IXs(Xs,red) · OW f

s

)
∼= IXs(Xs,red)⊗OXs IXs(W

f
s ).

We choose a su�ciently large enough such that H1(Xs,OXs(n)⊗F ) = 0. Then for
a given M ∈ Φs,red, there exists an M ′ ∈ Φs such that

Hs(M) ∩Xs,red = Hs(M
′) ∩Xs,red ⊂ Ps(En)

is veri�ed.

We go back to the proof of Theorem 4.1. Put

Φs,red ⊂ Ψ := {M ∈ Gs(En)|Wnf ∪W f
s,red ⊂ Hs(M)}

= {M ∈ Gs(En)|W ∩ Yi1,...,ia ⊂ Hs(M), ∀ i1, . . . , ia ∈ N},
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and let Ψreg ⊂ Ψ be the subset of suchM that Hs(M) and Yi1,...,ia intersect transver-
sally on Ps(En) for any i1, . . . , ia.

By Theorem 2.1 and the assumptions of Theorem 4.1, we may suppose that Ψreg

is nonempty, where we can choose a su�ciently large n ∈ N if necessary. By Lemma
4.2 and the fact that spẼn is surjective, there exists an N ∈ GR(En) satisfying

spEn(N) ∈ Ψreg. Then by Theorem 3.2, we �nish the proof of this result.

Now we prove the technical lemma (Lemma 4.2) used in the proof of Theorem 4.1.

Proof of Lemma 4.2. � We keep all the notation in Theorem 4.1. By the canonical
morphisms of sheaves, we have the following induced map

H0 (Xs,OXs(n))
τ−−−−→ H0

(
Xs,OXs(n)⊗OW f

s

)
σ−−−−→ H0

(
Xs,OXs(n)⊗OW f

s,red

)
.

By de�nition, we have

(3) Φs = (ker(τ) r {0}) /F×, Φs,red = (ker(στ) r {0}) /F×.
Meanwhile, we have the following short exact sequence of sheaves

0 −−−−→ OXs(n)⊗OXs F −−−−→ OXs(n)⊗ IXs(Xs,red)

−−−−→ OXs(n)⊗
(
IXs(Xs,red) · OW f

s

)
−−−−→ 0.

By the fact H1(Xs,OXs(n)⊗F ) = 0, the induced homomorphism

H0 (Xs,OXs(n)⊗ IXs(Xs,red))→ H0
(
Xs,OXs(n)⊗

(
IXs(Xs,red) · OW f

s

))
= ker(σ)

is surjective. Hence we have

ker(στ) = ker(τ) +H0 (Xs,OXs(n)⊗ IXs(Xs,red)) .

Combine the above equality with (3), we obtain that for each element in Φs,red, and it
corresponds to an element in Φs by the above equality. So we prove Lemma 4.2.
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