Notes on moving lemmas

Xiaowen Hu

This is my notes preparing for a talk in the joint reading seminar of arithmetical geometry to be held in 2018.01.13-01.14. The material is taken from [SS10, §7] and [GLL13, §2 and 8], with a few explanations added.

1 Notations

- 1. R = DVR, k = Frac(R), F = Residue field of R.
- 2. $B = \operatorname{Spec}(R), s = \operatorname{Spec}(F), \eta = \operatorname{Spec}(k).$
- 3. $\operatorname{Sch}_{B}^{qp}$ = the category of quasi-projective *B*-schemes and *B*-morphisms.
- 4. For $X \in ob(\operatorname{Sch}_{B}^{qp})$, $X_{s} = X \times_{B} s$, $X_{\eta} = X \times_{B} \eta$, $\dim'(X) =$ the Krull dimension of a compactification of X over B.
- 5. For $q \ge 0$,

$$X_q = \{ x \in X : \dim'(\overline{\{x\}}) = q \},\$$

where $\overline{\{x\}}$ is the closure of x in X.

6. $\mathscr{C} =$ the full subcategory of $\operatorname{Sch}_B^{qp}$ consisting of objects whose structural morphism do not factor through η .

2 A moving lemma

Theorem 2.1. (=[SS10, prop.7.1]) Let $X \in ob(\mathscr{C})$, integral and regular, Y a closed subscheme of X, $U = X - Y \neq \emptyset$. Suppose in addition that R is excellent. Then for $q \ge 0$,

$$\bigoplus_{x \in X_q \cap U} \mathbb{Z} \twoheadrightarrow \mathrm{CH}_q(X)$$

2

Proof: Take an arbitrary $y \in Y_q$, we need to show [y] is in the above image. By lemma 2.2, there exists an integral closed subscheme Z of dimension q + 1 such that $Z \cap U \neq \emptyset$, $y \in Z$ and Z is regular at y. Thus $\dim(Z \cap Y) \leq q$ and $Z_q \cap Y$ is finite. Let $\pi : \widetilde{Z} \to Z$ be the normalization; since R is excellent, so is Z, and thus π is finite. Since X is quasi-projective over B, Z and \widetilde{Z} both are quasi-projective over B. By Lemma 2.3, there exists an open subset V of \widetilde{Z} which contains $\pi^{-1}(Z_q \cap Y)$, and a dense open immersion $V \hookrightarrow U = \operatorname{Spec}(A)$ where A is a ring over B. Let A' be the semi-localization of A at $\pi^{-1}(Z_q \cap Y)$. Thus A' is a regular semi-local domain of dimension one, and thus is a PID. Since Z is regular at y, there is a unique point $\tilde{y} \in \tilde{Z}$ over y. Since \tilde{y} is a principal divisor of Spec(A'), we can take an element $f \in A'$ which generates the ideal corresponding of \tilde{y} . We regard f as a rational function of \tilde{Z} . Then the divisor of f on \tilde{Z} takes the following form

$$\operatorname{div}_{\widetilde{Z}}(f) = [\widetilde{y}] + \sum_{i} m_i[x_i]$$

for some points $x_i \in \widetilde{Z} \setminus \{ \tilde{y} \} \cup \pi^{-1}(Z_q \cap Y)$. Pushing forward to Z, we obtain

$$\operatorname{div}_{Z}(f) = \pi_{*}\operatorname{div}_{\widetilde{Z}}(f) = [y] + \sum_{i} m'_{i}[x'_{i}]$$

and $x_i \in Z \setminus \{y\} \cup (Z_q \cap Y), m'_i \in \mathbb{Z}$. Thus $-\sum_i m'_i[x'_i]$ lies in $\bigoplus_{x \in X_q \cap U} \mathbb{Z}$ and maps to [y].

Lemma 2.2. Keep the notations as in 2.1. Let $y \in Y$, $c = \operatorname{codim}_X(y) \ge 1$. Then there exists an integral closed subscheme $Z \subset X$ of codimension c - 1 such that $Z \cap U \neq \emptyset$, $y \in Z$ and Z is regular at y.

Proof : We can assume that Y is a divisor on X, and replace X by $\operatorname{Spec}(\mathcal{O}_{X,y})$, Y defined by a nonzero element $\pi \in \mathcal{O}_{X,y}$ and it suffices to show that for a regular local ring (A, \mathfrak{m}) of dimension $c \geq 1$ and a nonzero element $\pi \in \mathfrak{m}$, there exists a regular system of parameters $\{a_1, \dots, a_{c-1}, a_c\}$ of A such that $\pi \notin (a_1, \dots, a_{c-1})$; in fact we can choose $Z = \operatorname{Spec}(A/(a_1, \dots, a_{c-1}))$ where the closure is taken in the original X. If c = 1 we take $Z = \operatorname{Spec}(A)$. Suppose $c \geq 2$, then $\mathfrak{m}/(\mathfrak{m}^2 + (\pi)) \neq 0$. Since A is a UFD, we can write $\pi = ux_1 \cdots x_k$, where u is a unit and x_1, \dots, x_k are prime elements. Since (x_i) are prime ideals, by prime avoidance (allowing for at most two non-prime ideals),

$$\mathfrak{m} \neq (x_1) \cup \cdots \cup (x_k) \cup \mathfrak{m}^2.$$

So there exists a prime element a_1 such that $a_1 \nmid \pi$ and $a_1 \notin \mathfrak{m}^2$. Now let $A' = A/(a_1)$. Thus A' is a regular local ring of dimension c - 1 and $\overline{\pi} = \pi \mod (a_1) \neq 0$. By induction hypothesis there exists a regular system $\{b_2, \dots, b_c\}$ of A' such that $\overline{\pi} \notin (b_2, \dots, b_{c-1})$. Lifting $\{b_2, \dots, b_c\}$ to elements $\{a_2, \dots, a_c\}$ of A, we are done. \Box

Lemma 2.3. Let Z be a quasi-projective scheme over $B, z_1, \dots, z_r \in Z$. Then there exists a dense open $V \subset Z$ and a dense open immersion $V \hookrightarrow U$ such that V contains z_1, \dots, z_r and U is an affine scheme over B.

Proof: It is easy to reduce to the case $Z = \mathbb{P}_B^N = \operatorname{Proj}(R[T_0, \dots, T_N])$, and thus to the case $Z = \mathbb{P}_s^N = \operatorname{Proj}(F[T_0, \dots, T_N])$. Let $\mathfrak{m}_i \subset A = F[T_0, \dots, T_N]$ be the homogeneous ideal corresponding to z_i . It sufficies to show that there exists a nonzero homogeneous polynomial $f \in A$ such that $f \notin \mathfrak{m}_i$ for $1 \leq i \leq r$; in fact we can then lift f to an element $f' \in R[T_0, \dots, T_N]$ and take $U = \{f' \neq 0\}$. We separate this claim into two cases.

- (i) F is infinite. The set of points in $(\mathbb{P}_F^N)^{\vee}$ that corresponding to hyperplanes in \mathbb{P}_F^N that contains at least one z_i , forms a codimension 1 closed subscheme, thus its complements has at least one F-point, then take f to be the corresponding hyperplane.
- (ii) F is finite. By the case (i), there is a finite Galois extension L of F, and a linear form g over L such that the corresponding hyperplane does not contain z_i for $1 \le i \le r$, and so does g^{σ} for any $\sigma \in \text{Gal}(L/F)$. So the polynomial $f = \prod_{\sigma \in \text{Gal}(L/F)} g^{\sigma}$ does not contain z_i for $1 \le i \le r$.

3 Another moving lemma

3.1 Thorup's theory of cycles and rational equivalence

For general Noetherian schemes, Thorup introduced a notion of rational equivalence depending on a grading δ_X on X, which turns the quotient $A(X, \delta_X)$ of Z(X) by this equivalence into a covariant functor for proper morphisms.

- 1. A grading on a non-empty scheme X is a map $\delta_X : X \to \mathbb{Z}$ such that if $x \in \overline{\{y\}}$, then $\operatorname{ht}(x/y) = \operatorname{codim}_{\overline{\{y\}}}\overline{\{x\}} \leq \delta_X(y) - \delta_X(x)$. It is called *catenary* if the equality holds for any such pair x, y.
- 2. Canonical grading $\delta_{\operatorname{can}}(x) := -\dim \mathcal{O}_{X,x}$. This grading is catenary if and only if X is catenary and every local ring is equidimensional.
- 3. Let Y be an integral closed subscheme of X with generic point η , and let $f \in \underline{k(Y)^*}$. Denote by $[\operatorname{div}(f)]^{(1)}$ the cycle $[\operatorname{div}(f)]$ where we discount all components $\overline{\{x\}}$ such that $\delta_X(x) < \delta_X(\eta) 1$. One defines the graded rational equivalence on Z(X) using the subgroup generated by the cycles $[\operatorname{div}(f)]^{(1)}$, for all closed integral subschemes of X.
- 4. Important property : If δ_X is catenary, then the graded rational equivalence is the same as the usual ungraded one.
- 5. Let $f: Y \to X$ be a morphism essentially of finite type. Let δ_X be a grading on X. Then f induces a grading δ_f on Y by

$$\delta_f(y) = \delta_X(f(y)) + \operatorname{trdeg}(k(y)/k(f(y))).$$

If f is proper, then f induces a homomorphism $f_* : A(Y, \delta_f) \to A(X, \delta_X)$.

6. If X is universally catenary and equidimensional at every point, and $\delta_X = \delta_{\text{can}}$, then δ_f is a catenary grading on Y.

7. As a corollary, if X and Y are schemes of finite type over a Noetherian scheme S which is universally catenary and equidimensional at every point, and $f : Y \to X$ is a proper morphism of S-schemes. Let C and C' be two cycles on Y classically rationally equivalent. Then $f_*(C)$ and $f_*(C')$ are classically rationally equivalent.

3.2 Definition of horizontal 1-cycles

Let S be a separated integral Noetherian regular scheme of dimension at most 1. Let η denote its generic point. Endow S with the catenary grading $1 + \delta_{\text{can}}$. Thus if S = Spec(R) where R is a DVR then $\delta(\eta) = 1$, $\delta(s) = 0$.

Let $f: X \to S$ be a morphism of finite type, and endow X with the grading δ_f , which is catenary. The irreducible 1-cycles on (X, δ_f) are of two types: the integral closed subschemes C of X of dimension 1 such that C meets at least one closed fiber, and the closed points of X contained in X_η (in which case S must be semi-local). We say that a 1-cycle is horizontal if its support is quasi-finite over S, and that it is vertical if its support is not dominant over S.

3.3 Moving lemma

Lemma 3.1. Let U = Spec(A) be a Noetherian affine scheme, C = V(J) be a closed subset of $U, \Gamma_1, \dots, \Gamma_n$ irreducible closed subsets of $U, f_1, \dots, f_{\delta} \in J$. Then there exist $g_1, \dots, g_{\delta} \in J$ such that $g_i \in f_i + J^2$ for all $i = 1, \dots, \delta$, and for $1 \leq j \leq n$, $1 \leq i \leq \delta$, any irreducible component of $\Gamma_j \cap V(g_1, \dots, g_i)$ not contained in C has codimension i in Γ_j and thus dimension at most dim $\Gamma_j - i$.

Proof : Let \mathbf{q}_j be the prime ideal of A corresponding to Γ_j . WLOG we assume that $\mathbf{q}_j \not\supseteq J$ for $1 \leq j \leq n$. We proceed by induction on δ . Suppose $\delta = 1$. Since $f_1A + J^2 \not\supseteq \mathbf{q}_j$ for $1 \leq j \leq n$, by prime avoidance we can find $a_1 \in J^2$ such that $g_1 = f_1 + a_1 \not\in \bigcup_{1 \leq j \leq n} \mathbf{q}_j$. Let Θ be an irreducible component of $\Gamma_j \cap V(g_1)$. Then Θ has codimension 1 in Γ_j and dim $\Theta \leq \dim \Gamma_j - 1$ (the equality holds if A is catenary). The induction step is similar to that of lemma 2.2.

Proposition 3.2. Let S be a semi-local affine Noetherian scheme, $U \to S$ a morphism of finite type with U affine, C an integral closed subscheme of U of codimension $d \ge 1$, and finite over S, and suppose $C \to U$ is a regular immersion. Let F be a closed subset of U such that for all closed points $s \in S$, the irreducible components of $F \cap U_s$ that intersect C all have dimension at most d - 1. Then there exists a cycle C' on U rationally equivalent to C and such that:

- (1) The support of C' is finite over S and does not meet $F \cup C$ and for any closed point $s \in S$, Supp(C') does not contain any irreducible component of U_s .
- (2) Suppose that S is universally catenary. Let $Y \to S$ be a separated morphism of finite type and let $h: U \to Y$ be a S-morphism. Then $h_*(C)$ is rationally equivalent to $h_*(C')$ on Y.

Proof : omitted.

Lemma 3.3. Let A be a Dedekind domain, with field of fractions K, B be an integral domain containing A, and with field of fractions L. Assume that B is finite over A. Then there exists a domain C with $B \supset C \supset L$ such that C is finite over A, and a local complete intersection over A.

Proof : omitted.

Theorem 3.4. (=[GLL13, theorem 2.3]) Let S be the spectrum of a semi-local Dedekind domain R. Let $f: X \to S$ be a separated morphism of finite type, with X regular and FA. Let C be a horizontal 1-cycle on X with $\operatorname{Supp}(C)$ finite over S. Let F be a closed subset of X such that for every $s \in S$, any irreducible component of $F \cap X_s$ that meets C is not an irreducible component of X_s . Then there exists a horizontal 1-cycle C' on X with f|C' finite, rationally equivalent to C, and such that $\operatorname{Supp}(C') \cap F = \emptyset$.

In addition, since S is semi-local, C consists of finitely many points, and since X is FA, there exists an affine open subset V of X which contains C. Then, for any such open subset V, the horizontal 1-cycle C' can be chosen to be contained in V, and to be such that if $g: Y \to S$ is any separated morphism of finite type with an open embedding $V \to Y$ over S, then C and C' are closed and rationally equivalent on Y.

Proof : WLOG we assume C is irreducible and $\operatorname{Supp}(C) \cap F \neq \emptyset$. Since X is FA, we can find an affine open subset V containing C, and thus C is also affine. By lemma 3.3, there exists a finite birational morphism $D \to C$ such that the composition $D \to C \to S$ is a lci. Since C is affine and $D \to C$ is finite, there exists for a closed immersion $D \to C \times_S \mathbb{A}^N_S \subset V \times_S \mathbb{A}^N_S$, which is a regular immersion since $D \to S$ is lci [EGA IV 19.3.2].

Consider the theorem replacing X by $U = V \times_S \mathbb{A}^N_S$, C by D, and F by $\mathbf{F} = F \times_S \mathbb{A}^N_S$, f by $f' : U \to S$. Let x be a closed point of D, s = f'(x). Then $\dim \mathcal{O}_{D,x} = \dim S$, $\dim \mathcal{O}_{U,x} = \dim S + N$, $\dim \mathcal{O}_{U_s,x} = N$, and each irreducible component of $\mathbf{F} \cap U_s$ passing through x has dimension at most N - 1. Then by proposition 3.2 there exists D' satisfying the conclusions.

Return to the case (X, C, F, f). Let $V \to Y$ be any open immersion over S. Consider the associated open immersion $U \to Y \times_S \mathbb{P}^N_S$ and the projection $p: Y \times_S \mathbb{P}^N_S \to Y$. By the conclusions for (U, D, \mathbf{F}, f') , D and D' are closed and rationally equivalent in $Y \times_S \mathbb{P}^N_S$. Then $p_*(D) = C$ is rationally equivalent to $C' = p_*(D')$ on Y, and $\operatorname{Supp}(C') \cap F = \emptyset$.

3.4 Application to the index of an algebraic variety

Theorem 3.5. Let K be the field of fractions of a discrete valuation ring \mathcal{O}_K , with maximal ideal (π) and residue field k. Let $S = Spec(\mathcal{O}_K)$, \mathcal{X} an integral regular scheme and suppose \mathcal{X} is FA, and let $f : \mathcal{X} \to S$ be a proper flat surjective morphism. Since f is flat, div (π) is a Cartier divisor on X, and we denote its associated cycle by $[div(\pi)] = \pi_i r_i \Gamma_i$. Each Γ_i is an integral variety over k, of multiplicity r_i in X_k . Let X/K denote the generic fiber of X/S. Then $gcd\{r_i\delta(\Gamma^{reg}/k)\}$ divides $\delta(X/K)$, where $\overline{\delta}(X/K)$ denotes the greatest common divisor of the integers $\deg_K(P)$, with $P \in X$ closed, and whose closure in X is finite over S.

Proof : Let P be a closed point of X such that its closure C in \mathcal{X} is finite and flat over S. Then

$$\deg_K(P) = \sum_{x \in \mathcal{X}_k \cap C} (\sum_{\Gamma_i \ni x} r_i (\Gamma_i \cdot C)_x \deg_k(x)).$$
(1)

It sufficies to consider the case that C intersects some Γ_i^{sing} . Theorem 3.4 shows that there exists an affine open subset V of X which contains the 1-cycle C and a 1-cycle C' rationally equivalent to C in V, and whose support is proper over S and does not intersect the singular locus F of $(X_k)_{\text{red}}$. Then P is rationally equivalent on V_K to $C'|V_K$, whose support is a union of closed points of X. We claim that $\deg_K(P) = \deg_K C'|X$. In fact, since V is affine, there is an open immersion $V \to \mathcal{Y}$ over S where \mathcal{Y} is a projective S-scheme. Thus we are in the situation in the assumption of the theorem 3.4, which shows that C and C' are closed and rationally equivalent in \mathcal{Y} . Then $\deg_K(P) = \deg_K C'|\mathcal{Y}_K$. Since $\deg_K C'|\mathcal{Y}_K = \deg_K C'|V_X = \deg_K C'|X$, we have $\deg_K(P) = \deg_K C'|X$. The equation (1) shows that the degree of each point in $\operatorname{Supp}(C'|X)$ is divisible by $\gcd\{r_i \delta(\Gamma^{\deg}/k)\}$, so $\gcd\{r_i \delta(\Gamma^{\deg}/k)\}$ divides $\deg_K P$. \Box

References

- [GLL13] Gabber O, Liu Q, Lorenzini D. The index of an algebraic variety[J]. Inventiones mathematicae, 2013, 192(3): 567-6
- [SS10] Shuji Saito and Kanetomo Sato. A finiteness theorem for zero-cycles over padic fields. Ann. of Math., 172(2010), 1593-1639.