
Notes on moving lemmas

Xiaowen Hu

This is my notes preparing for a talk in the joint reading seminar of arithmetical
geometry to be held in 2018.01.13-01.14. The material is taken from [SS10, §7] and
[GLL13, §2 and 8], with a few explanations added.

1 Notations

1. R = DVR, k = Frac(R), F = Residue field of R.

2. B = Spec(R), s = Spec(F ), η = Spec(k).

3. SchqpB = the category of quasi-projective B-schemes and B-morphisms.

4. For X ∈ ob(SchqpB ), Xs = X×B s, Xη = X×B η, dim′(X) = the Krull dimension
of a compactification of X over B.

5. For q ≥ 0,
Xq = {x ∈ X : dim′({x}) = q},

where {x} is the closure of x in X.

6. C = the full subcategory of SchqpB consisting of objects whose structural mor-
phism do not factor through η.

2 A moving lemma

Theorem 2.1. (=[SS10, prop.7.1]) Let X ∈ ob(C ), integral and regular, Y a closed
subscheme of X, U = X − Y 6= ∅. Suppose in addtion that R is excellent. Then for
q ≥ 0, ⊕

x∈Xq∩U

Z � CHq(X).

Proof: Take an arbitrary y ∈ Yq, we need to show [y] is in the above image. By
lemma 2.2, there exists an integral closed subscheme Z of dimension q + 1 such that
Z ∩ U 6= ∅, y ∈ Z and Z is regular at y. Thus dim(Z ∩ Y ) ≤ q and Zq ∩ Y is

finite. Let π : Z̃ → Z be the normalization; since R is excellent, so is Z, and thus π
is finite. Since X is quasi-projective over B, Z and Z̃ both are quasi-projective over
B. By Lemma 2.3, there exists an open subset V of Z̃ which contains π−1(Zq ∩ Y ),
and a dense open immersion V ↪→ U = Spec(A) where A is a ring over B. Let A′
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be the semi-localization of A at π−1(Zq ∩ Y ). Thus A′ is a regular semi-local domain
of dimension one, and thus is a PID. Since Z is regular at y, there is a unique point
ỹ ∈ Z̃ over y. Since ỹ is a principal divisor of Spec(A′), we can take an element f ∈ A′
which generates the ideal corresponding of ỹ. We regard f as a rational function of
Z̃. Then the divisor of f on Z̃ takes the following form

divZ̃(f) = [ỹ] +
∑
i

mi[xi]

for some points xi ∈ Z̃\{ỹ} ∪ π−1(Zq ∩ Y ). Pushing forward to Z, we obtain

divZ(f) = π∗divZ̃(f) = [y] +
∑
i

m′i[x
′
i]

and xi ∈ Z\{y} ∪ (Zq ∩ Y ), m′i ∈ Z. Thus −
∑

im
′
i[x
′
i] lies in

⊕
x∈Xq∩U Z and maps

to [y].

Lemma 2.2. Keep the notations as in 2.1. Let y ∈ Y , c = codimX(y) ≥ 1. Then
there exists an integral closed subscheme Z ⊂ X of codimension c − 1 such that
Z ∩ U 6= ∅, y ∈ Z and Z is regular at y.

Proof : We can assume that Y is a divisor on X, and replace X by Spec(OX,y), Y
defined by a nonzero element π ∈ OX,y and it suffices to show that for a regular local
ring (A,m) of dimension c ≥ 1 and a nonzero element π ∈ m, there exists a regular
system of parameters {a1, · · · , ac−1, ac} of A such that π 6∈ (a1, · · · , ac−1); in fact we
can choose Z = Spec(A/(a1, · · · , ac−1)) where the closure is taken in the original X.
If c = 1 we take Z = Spec(A). Suppose c ≥ 2, then m/(m2 + (π)) 6= 0. Since A
is a UFD, we can write π = ux1 · · ·xk, where u is a unit and x1, · · · , xk are prime
elements. Since (xi) are prime ideals, by prime avoidance (allowing for at most two
non-prime idelas),

m 6= (x1) ∪ · · · ∪ (xk) ∪m2.

So there exists a prime element a1 such that a1 - π and a1 6∈ m2. Now let A′ = A/(a1).
Thus A′ is a regular local ring of dimension c − 1 and π = π mod (a1) 6= 0.
By induction hypothesis there exists a regular system {b2, · · · , bc} of A′ such that
π 6∈ (b2, · · · , bc−1). Lifting {b2, · · · , bc} to elements {a2, · · · , ac} of A, we are done.

Lemma 2.3. Let Z be a quasi-projective scheme over B, z1, · · · , zr ∈ Z. Then there
exists a dense open V ⊂ Z and a dense open immersion V ↪→ U such that V contains
z1, · · · , zr and U is an affine scheme over B.

Proof : It is easy to reduce to the case Z = PNB = Proj(R[T0, · · · , TN ]), and thus
to the case Z = PNs = Proj(F [T0, · · · , TN ]). Let mi ⊂ A = F [T0, · · · , TN ] be the
homogeneous ideal corrsponding to zi. It sufficies to show that there exists a nonzero
homogeneous polynomial f ∈ A such that f 6∈ mi for 1 ≤ i ≤ r; in fact we can then
lift f to an element f ′ ∈ R[T0, · · · , TN ] and take U = {f ′ 6= 0}. We separate this
claim into two cases.
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(i) F is infinite. The set of points in (PNF )∨ that corresponding to hyperplanes in
PNF that contains at least one zi, forms a codimension 1 closed subscheme, thus
its complements has at least one F -point, then take f to be the corresponding
hyperplane.

(ii) F is finite. By the case (i), there is a finite Galois extension L of F , and a
linear form g over L such that the correspoinding hyperplane does not contain
zi for 1 ≤ i ≤ r, and so does gσ for any σ ∈ Gal(L/F ). So the polynomial
f =

∏
σ∈Gal(L/F ) g

σ does not contain zi for 1 ≤ i ≤ r.

3 Another moving lemma

3.1 Thorup’s theory of cycles and rational equivalence

For general Noetherian schemes, Thorup introduced a notion of rational equivalence
depending on a grading δX on X, which turns the quotient A(X, δX) of Z(X) by this
equivalence into a covariant functor for proper morphisms.

1. A grading on a non-empty scheme X is a map δX : X → Z such that if x ∈ {y},
then ht(x/y) = codim{y}{x} ≤ δX(y) − δX(x). It is called catenary if the
equality holds for any such pair x, y.

2. Canonical grading δcan(x) := − dimOX,x. This grading is catenary if and only
if X is catenary and every local ring is equidimensional.

3. Let Y be an integral closed subscheme of X with generic point η, and let f ∈
k(Y )∗. Denote by [div(f)](1) the cycle [div(f)] where we discount all components
{x} such that δX(x) < δX(η) − 1. One defines the graded rational equivalence
on Z(X) using the subgroup generated by the cycles [div(f)](1), for all closed
integral subschemes of X.

4. Important property : If δX is catenary, then the graded rational equivalence is
the same as the usual ungraded one.

5. Let f : Y → X be a morphism essentially of finite type. Let δX be a grading
on X. Then f induces a grading δf on Y by

δf (y) = δX(f(y)) + trdeg(k(y)/k(f(y))).

If f is proper, then f induces a homomorphism f∗ : A(Y, δf )→ A(X, δX).

6. If X is universally catenary and equidimensional at every point, and δX = δcan,
then δf is a catenary grading on Y .
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7. As a corollary, if X and Y are schemes of finite type over a Noetherian scheme
S which is universally catenary and equidimensional at every point, and f :
Y → X is a proper morphism of S-schemes. Let C and C ′ be two cycles on Y
classically rationally equivalent. Then f∗(C) and f∗(C

′) are classically rationally
equivalent on X.

3.2 Definition of horizontal 1-cycles

Let S be a separated integral Noetherian regular scheme of dimension at most 1. Let
η denote its generic point. Endow S with the catenary grading 1 + δcan. Thus if
S = Spec(R) where R is a DVR then δ(η) = 1, δ(s) = 0.

Let f : X → S be a morphism of finite type, and endow X with the grading δf ,
which is catenary. The irreducible 1-cycles on (X, δf ) are of two types: the integral
closed subschemes C of X of dimension 1 such that C meets at least one closed fiber,
and the closed points of X contained in Xη (in which case S must be semi-local).
We say that a 1-cycle is horizontal if its support is quasi-finite over S, and that it is
vertical if its support is not dominant over S.

3.3 Moving lemma

Lemma 3.1. Let U = Spec(A) be a Noetherian affine scheme, C = V (J) be a closed
subset of U , Γ1, · · · ,Γn irreducible closed subsets of U , f1, · · · , fδ ∈ J . Then there
exist g1, · · · , gδ ∈ J such that gi ∈ fi + J2 for all i = 1, ..., δ, and for 1 ≤ j ≤ n,
1 ≤ i ≤ δ, any irreducible component of Γj ∩ V (g1, · · · , gi) not contained in C has
codimension i in Γj and thus dimension at most dim Γj − i.

Proof : Let qj be the prime ideal of A corresponding to Γj. WLOG we assume
that qj 6⊃ J for 1 ≤ j ≤ n. We proceed by induction on δ. Suppose δ = 1. Since
f1A + J2 6⊃ qj for 1 ≤ j ≤ n, by prime avoidance we can find a1 ∈ J2 such that
g1 = f1 + a1 6∈

⋃
1≤j≤n

qj. Let Θ be an irreducible component of Γj ∩ V (g1). Then Θ
has codimension 1 in Γj and dim Θ ≤ dim Γj−1 (the equality holds if A is catenary).
The induction step is similar to that of lemma 2.2.

Proposition 3.2. Let S be a semi-local affine Noetherian scheme, U → S a morphism
of finite type with U affine, C an integral closed subscheme of U of codimension d ≥ 1,
and finite over S, and suppose C → U is a regular immersion. Let F be a closed
subset of U such that for all closed points s ∈ S, the irreducible components of F ∩Us
that intersect C all have dimension at most d− 1. Then there exists a cycle C ′ on U
rationally equivalent to C and such that:

(1) The support of C ′ is finite over S and does not meet F ∪ C and for any closed
point s ∈ S, Supp(C ′) does not contain any irreducible component of Us.

(2) Suppose that S is universally catenary. Let Y → S be a separated morphism
of finite type and let h : U → Y be a S-morphism. Then h∗(C) is rationally
equivalent to h∗(C

′) on Y .
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Proof : omitted.

Lemma 3.3. Let A be a Dedekind domain, with field of fractions K, B be an integral
domain containing A, and with field of fractions L. Assume that B is finite over A.
Then there exists a domain C with B ⊃ C ⊃ L such that C is finite over A, and a
local complete intersection over A.

Proof : omitted.

Theorem 3.4. (=[GLL13, theorem 2.3]) Let S be the spectrum of a semi-local Dedekind
domain R. Let f : X → S be a separated morphism of finite type, with X regular and
FA. Let C be a horizontal 1-cycle on X with Supp(C) finite over S. Let F be a closed
subset of X such that for every s ∈ S, any irreducible component of F ∩Xs that meets
C is not an irreducible component of Xs. Then there exists a horizontal 1-cycle C ′

on X with f |C ′ finite, rationally equivalent to C, and such that Supp(C ′) ∩ F = ∅.
In addition, since S is semi-local, C consists of finitely many points, and since X

is FA, there exists an affine open subset V of X which contains C. Then, for any
such open subset V , the horizontal 1-cycle C ′ can be chosen to be contained in V , and
to be such that if g : Y → S is any separated morphism of finite type with an open
embedding V → Y over S, then C and C ′ are closed and rationally equivalent on Y .

Proof : WLOG we assume C is irreducible and Supp(C) ∩ F 6= ∅. Since X is
FA, we can find an affine open subset V containing C, and thus C is also affine. By
lemma 3.3, there exists a finite birational morphism D → C such that the composition
D → C → S is a lci. Since C is affine and D → C is finite, there exists for a a closed
immersion D → C ×S AN

S ⊂ V ×S AN
S , which is a regular immersion since D → S is

lci [EGA IV 19.3.2].
Consider the theorem replacing X by U = V ×S AN

S , C by D, and F by F =
F ×S AN

S , f by f ′ : U → S. Let x be a closed point of D, s = f ′(x). Then
dimOD,x = dimS, dimOU,x = dimS + N , dimOUs,x = N , and each irreducible
component of F ∩ Us passing through x has dimension at most N − 1. Then by
proposition 3.2 there exists D′ satisfying the conclusions.

Return to the case (X,C, F, f). Let V → Y be any open immersion over S. Con-
sider the associated open immersion U → Y ×S PNS and the projection p : Y ×S PNS →
Y . By the conclusions for (U,D,F, f ′), D and D′ are closed and rationally equivalent
in Y ×S PNS . Then p∗(D) = C is rationally equivalent to C ′ = p∗(D

′) on Y , and
Supp(C ′) ∩ F = ∅.

3.4 Application to the index of an algebraic variety

Theorem 3.5. Let K be the field of fractions of a discrete valuation ring OK, with
maximal ideal (π) and residue field k. Let S = Spec(OK), X an integral regular
scheme and suppose X is FA, and let f : X → S be a proper flat surjective morphism.
Since f is flat, div(π) is a Cartier divisor on X, and we denote its associated cycle by
[div(π)] = πiriΓi. Each Γi is an integral variety over k, of multiplicity ri in Xk. Let
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X/K denote the generic fiber of X/S. Then gcd{riδ(Γreg/k)} divides δ̄(X/K), where
δ̄(X/K) denotes the greatest common divisor of the integers degK(P ), with P ∈ X
closed, and whose closure in X is finite over S.

Proof : Let P be a closed point of X such that its closure C in X is finite and flat
over S. Then

degK(P ) =
∑

x∈Xk∩C

(
∑
Γi3x

ri(Γi · C)xdegk(x)). (1)

It sufficies to consider the case that C intersects some Γsing
i . Theorem 3.4 shows

that there exists an affine open subset V of X which contains the 1-cycle C and a
1-cycle C ′ rationally equivalent to C in V , and whose support is proper over S and
does not intersect the singular locus F of (Xk)red. Then P is rationally equivalent
on VK to C ′|VK , whose support is a union of closed points of X. We claim that
degK(P ) = degKC

′|X. In fact, since V is affine, there is an open immersion V → Y
over S where Y is a projective S-scheme. Thus we are in the situation in the assump-
tion of the theorem 3.4, which shows that C and C ′ are closed and rationally equivalent
in Y . Then degK(P ) = degKC

′|YK . Since degKC
′|YK = degKC

′|VX = degKC
′|X,

we have degK(P ) = degKC
′|X. The equation (1) shows that the degree of each point

in Supp(C ′|X) is divisible by gcd{riδ(Γdeg/k)}, so gcd{riδ(Γdeg/k)} divides degKP .

References

[GLL13] Gabber O, Liu Q, Lorenzini D. The index of an algebraic variety[J]. Inven-
tiones mathematicae, 2013, 192(3): 567-6

[SS10] Shuji Saito and Kanetomo Sato. A finiteness theorem for zero-cycles over p-
adic fields. Ann. of Math., 172(2010), 1593-1639.

6


