Notes on moving lemmas

Xiaowen Hu

This is my notes preparing for a talk in the joint reading seminar of arithmetical
geometry to be held in 2018.01.13-01.14. The material is taken from [SS10, §7] and
[GLL13, §2 and 8|, with a few explanations added.

1 Notations

1. R=DVR, k = Frac(R), F' = Residue field of R.
2. B = Spec(R), s = Spec(F), n = Spec(k).
3. Sch® = the category of quasi-projective B-schemes and B-morphisms.

4. For X € ob(Sch¥), X; = X xps, X, = X xpn, dim'(X) = the Krull dimension
of a compactification of X over B.

5. For ¢ > 0, L
X, ={r e X :dim'({z}) = ¢},

where {} is the closure of z in X.

6. € = the full subcategory of Sch® consisting of objects whose structural mor-
phism do not factor through 7.

2 A moving lemma

Theorem 2.1. (=[SS10, prop.7.1]) Let X € ob(%), integral and regular, Y a closed
subscheme of X, U = X —Y # &. Suppose in addtion that R is excellent. Then for
q=0,

Proof: Take an arbitrary y € Y, we need to show [y] is in the above image. By
lemma 2.2, there exists an integral closed subscheme Z of dimension ¢ + 1 such that
ZNU # @,y € Z and Z is regular at y. Thus dim(ZNY) < g and Z,NY is
finite. Let 7 : Z — Z be the normalization; since R is excellent, so is Z, and thus 7
is finite. Since X is quasi-projective over B, Z and Z both are quasi-projective over
B. By Lemma 2.3, there exists an open subset V' of Z which contains 7~1(Z, NY),
and a dense open immersion V < U = Spec(A) where A is a ring over B. Let A’



be the semi-localization of A at 7~1(Z,NY"). Thus A’ is a regular semi-local domain
of dimension one, and thus is a PID. Since Z is regular at y, there is a unique point
§ € Z over y. Since ¥ is a principal divisor of Spec(A’), we can take an element f € A’
which generates the ideal corresponding of §. We regard f as a rational function of
Z. Then the divisor of f on Z takes the following form

divz(f) = [9] + Z m;[x;]
for some points xz; € Z\{yj} Un~(Z,NY). Pushing forward to Z, we obtain
divz(f) = mdivz(f) = [y + D milx]

and z; € Z\{y} U (Z,NY), mj € Z. Thus — >, m[z;] lies in €D, x ~y Z and maps

(2

to [y]. O

Lemma 2.2. Keep the notations as in 2.1. Let y € Y, ¢ = codimx(y) > 1. Then
there exists an integral closed subscheme Z C X of codimension ¢ — 1 such that
ZNU #9,y € Z and Z is reqular at y.

Proof : We can assume that Y is a divisor on X, and replace X by Spec(Ox,), Y
defined by a nonzero element m € Oy, and it suffices to show that for a regular local
ring (A, m) of dimension ¢ > 1 and a nonzero element 7 € m, there exists a regular

system of parameters {aq,--- ,a._1,a.} of A such that 7 & (ay, - ,a._1); in fact we
can choose Z = Spec(A/(ay,- - ,a.—1)) where the closure is taken in the original X.
If c = 1 we take Z = Spec(A). Suppose ¢ > 2, then m/(m? + (7)) # 0. Since A
is a UFD, we can write m = uxy - - - ¥y, where u is a unit and x1,--- ,x; are prime

elements. Since (z;) are prime ideals, by prime avoidance (allowing for at most two
non-prime idelas),
m# (z1) U--- U (z) Um?,

So there exists a prime element a; such that a; { 7 and a; € m?. Now let A’ = A/(a).
Thus A’ is a regular local ring of dimension ¢ — 1 and 7 = 7 mod (a;) # 0.
By induction hypothesis there exists a regular system {by,--- ,b.} of A" such that
T & (byy -+ ,b._1). Lifting {bs,- - ,b.} to elements {as,--- ,a.} of A, we are done. [J

Lemma 2.3. Let Z be a quasi-projective scheme over B, zy,--- , 2. € Z. Then there
exists a dense open V. C Z and a dense open immersion V — U such that V' contains
21, , 2. and U is an affine scheme over B.

Proof : It is easy to reduce to the case Z = P} = Proj(R[Ty, - ,Ty]), and thus
to the case Z = PY = Proj(F[Ty, - ,Tn]). Let m;y C A = F[Ty,---,Ty] be the
homogeneous ideal corrsponding to z;. It sufficies to show that there exists a nonzero
homogeneous polynomial f € A such that f & m; for 1 < ¢ < r; in fact we can then
lift f to an element f' € R[Ty,---,Tn| and take U = {f’ # 0}. We separate this
claim into two cases.



(i) F is infinite. The set of points in (PX)V that corresponding to hyperplanes in
P that contains at least one z;, forms a codimension 1 closed subscheme, thus
its complements has at least one F-point, then take f to be the corresponding
hyperplane.

(ii) F is finite. By the case (i), there is a finite Galois extension L of F', and a
linear form g over L such that the correspoinding hyperplane does not contain
zi for 1 < i < r, and so does g7 for any o € Gal(L/F). So the polynomial
f= HUGG&I(L/F) ¢° does not contain z; for 1 <i <r.

]

3 Another moving lemma

3.1 Thorup’s theory of cycles and rational equivalence

For general Noetherian schemes, Thorup introduced a notion of rational equivalence
depending on a grading dy on X, which turns the quotient A(X,dx) of Z(X) by this
equivalence into a covariant functor for proper morphisms.

1. A grading on a non-empty scheme X is a map dx : X — Z such that if v € @,
then ht(z/y) = codimpp{z} < ox(y) — dx(x). It is called catenary if the
equality holds for any such pair z,y.

2. Canonical grading dcan(r) := —dim Ox,. This grading is catenary if and only
if X is catenary and every local ring is equidimensional.

3. Let Y be an integral closed subscheme of X with generic point 7, and let f €
k(Y)*. Denote by [div(f)]") the cycle [div(f)] where we discount all components
{z} such that dx(z) < dx(n) — 1. One defines the graded rational equivalence
on Z(X) using the subgroup generated by the cycles [div(f)]"), for all closed
integral subschemes of X.

4. Important property : If dx is catenary, then the graded rational equivalence is
the same as the usual ungraded one.

5. Let f: Y — X be a morphism essentially of finite type. Let dx be a grading
on X. Then f induces a grading d; on Y by

O¢(y) = ox(f(y)) + trdeg(k(y)/k(f ().
If f is proper, then f induces a homomorphism f, : A(Y,d;) = A(X,0x).

6. If X is universally catenary and equidimensional at every point, and dx = dcan,
then 0 is a catenary grading on Y.



7. As a corollary, if X and Y are schemes of finite type over a Noetherian scheme
S which is universally catenary and equidimensional at every point, and f :
Y — X is a proper morphism of S-schemes. Let C' and C’ be two cycles on Y
classically rationally equivalent. Then f,(C) and f.(C") are classically rationally
equivalent on X.

3.2 Definition of horizontal 1-cycles

Let S be a separated integral Noetherian regular scheme of dimension at most 1. Let
1 denote its generic point. Endow S with the catenary grading 1 + 0¢an. Thus if
S = Spec(R) where R is a DVR then 6(n) =1, §(s) = 0.

Let f: X — S be a morphism of finite type, and endow X with the grading dy,
which is catenary. The irreducible 1-cycles on (X, dy) are of two types: the integral
closed subschemes C' of X of dimension 1 such that C' meets at least one closed fiber,
and the closed points of X contained in X, (in which case S must be semi-local).
We say that a 1-cycle is horizontal if its support is quasi-finite over S, and that it is
vertical if its support is not dominant over S.

3.3 Moving lemma

Lemma 3.1. Let U = Spec(A) be a Noetherian affine scheme, C =V (J) be a closed
subset of U, I'1,--- , Iy, irreducible closed subsets of U, f1,---,fs € J. Then there
exist gi1,--- ,9s € J such that g; € f; + J? for all i = 1,...,5, and for 1 < j < n,
1 < <9, any irreducible component of I'; NV (g1, -+, g;) not contained in C has
codimension i in I'; and thus dimension at most dimI'; — i.

Proof : Let q; be the prime ideal of A corresponding to I';, WLOG we assume
that q; 2 J for 1 < j < n. We proceed by induction on ¢. Suppose 6 = 1. Since
fiA+ J? 2 q; for 1 < j < n, by prime avoidance we can find a; € J? such that
g1 =fita & U, <<, g;- Let © be an irreducible component of I'; NV (g1). Then ©
has codimension 1 in I'; and dim© < dimI'; — 1 (the equality holds if A is catenary).
The induction step is similar to that of lemma 2.2. O

Proposition 3.2. Let S be a semi-local affine Noetherian scheme, U — S a morphism
of finite type with U affine, C an integral closed subscheme of U of codimension d > 1,
and finite over S, and suppose C' — U is a reqular immersion. Let I’ be a closed
subset of U such that for all closed points s € S, the irreducible components of F'NUs;
that intersect C' all have dimension at most d — 1. Then there exists a cycle C' on U
rationally equivalent to C' and such that:

(1) The support of C' is finite over S and does not meet F'UC' and for any closed
point s € S, Supp(C”) does not contain any irreducible component of Us.

(2) Suppose that S is universally catenary. Let Y — S be a separated morphism
of finite type and let h : U — Y be a S-morphism. Then h.(C) is rationally
equivalent to h,(C") on Y.



Proof : omitted.

Lemma 3.3. Let A be a Dedekind domain, with field of fractions K, B be an integral
domain containing A, and with field of fractions L. Assume that B is finite over A.
Then there exists a domain C' with B D C D L such that C is finite over A, and a
local complete intersection over A.

Proof : omitted.

Theorem 3.4. (=[GLL13, theorem 2.3]) Let S be the spectrum of a semi-local Dedekind
domain R. Let f : X — S be a separated morphism of finite type, with X reqular and
FA. Let C be a horizontal 1-cycle on X with Supp(C) finite over S. Let F' be a closed
subset of X such that for every s € S, any irreducible component of F'N X, that meets
C is not an irreducible component of X,. Then there exists a horizontal 1-cycle C’
on X with f|C" finite, rationally equivalent to C, and such that Supp(C") N F = &.
In addition, since S is semi-local, C' consists of finitely many points, and since X
is FA, there exists an affine open subset V' of X which contains C'. Then, for any
such open subset V', the horizontal 1-cycle C' can be chosen to be contained in' V', and
to be such that if g 'Y — S is any separated morphism of finite type with an open
embedding V —'Y over S, then C and C" are closed and rationally equivalent on Y .

Proof : WLOG we assume C' is irreducible and Supp(C) N F # @. Since X is
FA, we can find an affine open subset V' containing C', and thus C' is also affine. By
lemma 3.3, there exists a finite birational morphism D — ' such that the composition
D — C — Sis alci. Since C' is affine and D — C' is finite, there exists for a a closed
immersion D — C' xg AY C V xg AY, which is a regular immersion since D — S is
lci [EGA IV 19.3.2).

Consider the theorem replacing X by U = V xg AY, C by D, and F by F =
F xsgAY, fby f/: U — S. Let x be a closed point of D, s = f’(z). Then
dimOp, = dim S, dim Oy, = dimS + N, dimOp,, = N, and each irreducible
component of F N U, passing through x has dimension at most N — 1. Then by
proposition 3.2 there exists D’ satisfying the conclusions.

Return to the case (X,C, F, f). Let V' — Y be any open immersion over S. Con-
sider the associated open immersion U — Y xgP¥ and the projection p : ¥ xgPY —
Y. By the conclusions for (U, D, F, f’), D and D’ are closed and rationally equivalent
in Y xg PY. Then p.(D) = C is rationally equivalent to C' = p,(D’) on Y, and
Supp(C")NF = @. O

3.4 Application to the index of an algebraic variety

Theorem 3.5. Let K be the field of fractions of a discrete valuation ring Ok, with
mazximal ideal () and residue field k. Let S = Spec(Ok), X an integral reqular
scheme and suppose X is FA, and let f : X — S be a proper flat surjective morphism.
Since f is flat, div(m) is a Cartier divisor on X, and we denote its associated cycle by
[div(m)] = myri L. Each Ty is an integral variety over k, of multiplicity r; in Xy. Let



X/K denote the generic fiber of X/S. Then ged{r;6(I"¢/k)} divides 5(X/K), where
(X/K) denotes the greatest common divisor of the integers degy (P), with P € X
closed, and whose closure in X is finite over S.

Proof : Let P be a closed point of X such that its closure C' in X is finite and flat

over S. Then
deg(P) = > (D ni(li- C)adegy (). (1)

zeX;NC T';2x

It sufficies to consider the case that C' intersects some T'™¢. Theorem 3.4 shows

that there exists an affine open subset V' of X which contains the 1-cycle C' and a
1-cycle C" rationally equivalent to C' in V', and whose support is proper over S and
does not intersect the singular locus F' of (Xj)wq. Then P is rationally equivalent
on Vi to C'|Vk, whose support is a union of closed points of X. We claim that
degy (P) = degyC'|X. In fact, since V is affine, there is an open immersion V' — )
over S where ) is a projective S-scheme. Thus we are in the situation in the assump-
tion of the theorem 3.4, which shows that C' and C” are closed and rationally equivalent
in V. Then degy(P) = degiC'|Vk. Since deg,C'| Vi = degC'|Vx = deg,C'| X,
we have deg; (P) = degxC’'| X. The equation (1) shows that the degree of each point
in Supp(C’|X) is divisible by ged{r;6(I'%e/k)}, so ged{r;0(T'%°¢/k)} divides deg P.
O
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