
1. Beilinson’s conjecture and the motivic pro-complex

We firstly recall the definition of the motivic complex.

Definition 1.1. For every integer r ≥ 0, the motivic complex Z(r) is
given by the following complex of presheaves with transfers:

Z(r) = C∗Ztr(G∧r
m )[−r]

[MVW], chapter 5 shows the following relationship between motivic
cohomology and Milnor K-theory on a point, that is

Theorem 1.2. For any field F and integer n we have Hn,n(SpecF,Z) ∼=
KM

n (F ).

We will omit the detail of the proof, only point out that we have
Hn,n(SpecF,Z) = coker(Ztr(G∧n

m )(A1) ∂0−∂1−→ Ztr(G∧n
m )(SpecF )) and the

isomorphic is given by [a1, · · · , an] 7→ a1⊗· · ·⊗an, where ai ∈ F\{0, 1},
and [a1, · · · , an] is the coordinate in G∧n

m .
The generalization of this result is the Beilinson’s conjecture: Hr(Z(r)) ∼=

KM
r where KM

∗ is the (Zariski in the proof, but we can restrict it
to Nisnevich) Milnor K-sheaf. This conjecture is proven by Elbaz-
Vincent/Müller-Stach[EM], Gabber and Kerz[Ke].

Sketch of the proof: We have the Gersten resolution of Milnor K
theory of a scheme X as follow:

0→ KM
n |X → ⊕x∈X(0)ix∗(KM

n (k(x)))→ ⊕x∈X(1)ix∗(KM
n−1(k(x)))→ · · ·

where the maps are given by Kato. We know that this complex is
exact if X is regular, contains a field, and all residue fields of X contain
“enough” elements (see [Ke], Remark 5.8 for the precise meaning of
“enough”). For the proof of this statement, see [Pa].

By this resolution, we have the following result:

Theorem 1.3. (Bloch formula) There is a canonical isomorphism
Hn(X,KM

n ) ∼= CHn(X) for every n ≥ 0 and X is as mentioned.

Proof. Hn(X,KM
n ) ∼= coker(⊕x∈X(n−1)K1(k(x))→ ⊕x∈X(n)K0(k(x))

∼= CHn(X). �

Furthermore, we have

Theorem 1.4. (Beilinson’s conjecture) Hn(Z(n)) ∼= KM
n
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Proof. Consider the morphism of exact Gersten complexes of sheaves
from Milnor K-theory to motivic cohomology

0 // KM
n |X //

��

⊕x∈X(0)ix∗(KM
n (k(x))) //

��

· · ·

0 // Hn(Z(n))|X // ⊕x∈X(0)ix∗(Hn(x,Z(n))) // · · ·

where the top row is given by 1.2 and the bottom row is given by
the contraction map, see [MVW] §23.

�

According to Voevodsky ([MVW], Theorem 19.1 and Corollary 19.2),
we have the following equation for X ∈ Smk:

Hr(X,KM
r ) = CHr(X) = H2r(X,Z(r))

(We have a question: There should exist a nature map from Hr(X,KM
r )

to H2r(X,Z(r)). Does this map commute with the two “=”s here (given
by Bloch’s formula and Voedodsky’s result respectively)?)

Now we are ready to define the motivic pro-complex of X•. From
now on we follow the notations in [BEK]. In particular X•/W• is in
SmW• and X1 = X ⊗W k. We assume r < p.

Beilinson’s conjecture allows us to define the following map:

log : ZX1(r)→ Hr(ZX1(r))[−r] = KM
X1,r[−r] d log[]−→ W•Ωr

X1,log[−r]
where [ ] is the Teichmüller lift. Also recall the simplicial complex

SX•(r) and the map ΦJ : SX•(r) → W•Ωr
X1,log[−r]. The motivic pro-

complex ZX•(r) is defined by

ZX•(r) = cone(SX•(r)⊕ ZX1(r) ΦJ⊕− log−→ W•Ωr
X1,log[−r])[−1]

Note thatHr(ZX1(r)) = KM
X1,r → W•Ωr

X1,log is an epimorphism, since
W•Ωr

X1,log is generated by symbols (by definition).

2. Properties of the motivic pro-complex

Followings are some properties of the motivic pro-complex, compared
with motivic complex we introduced yesterday:

Proposition 2.1. ZX•(0) = Z, the constant sheaf Z at degree 0.

Proof. We have W•Ω0
X1,log = Z/p•, ZX1(0) = Z and SX•(0) = Z/p•

according to Theorem 5.4. Thus ZX•(0) = Z by definition. �
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Proposition 2.2. ZX•(r) has support in cohomological degrees ≤ r.
For r ≥ 1, if the Beilinson-Soulé conjecture is true, it has support in
cohomological degrees [1, r].

Proof. We have the following long exact sequence

(2.1) · · · → Hi(ZX•(r))→ Hi(SX•(r))⊕Hi(ZX1(r))
→ Hi(W•Ωr

X1,log[−r])→ · · ·
and we know that SX•(r) has support in cohomological degrees [1, r]

for r > 1, and ZX1(r) has support in cohomological degrees ≤ r (resp.
[1, r] if Beilinson-Soulé conjecture holds). Consider Hr(ZX1(r)) − log→
Hr(W•Ωr

X1,log[−r]) [1]→ Hr+1(ZX•(r)). Since [1] ◦ (− log) = 0 = 0 ◦
(− log), by log is an epimorphism we know that [1] = 0, thusHr+1(ZX•(r)) =
0. �

Proposition 2.3. Hr(ZX•(r)) = KM
X•,r

Proof. We have the following exact sequence:

0→ Hr(ZX•(r))→ Hr(SX•(r))⊕Hr(ZX1(r)) ΦJ⊕− log−→ W•Ωr
X1,log → 0

and take the nth cohomology of Theorem 5.4 in [BEK], we have the
following exact sequence:

0→ pΩr−1
X• /p2dΩr−2

X• → H
r(SX•(r)) ΦJ

→ W•Ωr
X1,− log → 0

which induces the upper row in the diagram below. The bottom row
is given by Theorem 12.3 in [BEK]:

0 // pΩr−1
X• /p2dΩr−2

X•
// Hr(ZX•(r)) // Hr(ZX1(r)) // 0

0 // pΩr−1
X• /p2dΩr−2

X•
// KM

X•,r

(∗)

OO

// KM
X1,r

OO

// 0

where (∗) is induced by Kato’s syntomic regulator map, and the
rightmost vertical arrow is an isomorphism by Beilinson’s conjecture,
so by 5-lemma, (∗) is also an isomorphism.

�

Proposition 2.4. ZX•(1) = Gm,X• [−1]

Proof. This is a corollary from the previous two properties since the
Beilinson-Soulé vanishing conjecture is true for r = 1. �

Proposition 2.5. ZX•(r)⊗L
Z Z/p• = SX•(r)
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Proof. The sheaf WnΩr
X1,log is a sheaf of flat Z/pn-modules, so W•Ωr

X1,log⊗L
Z

Z/p• = W•Ωr
X1,log. By Theorem 5.4, this implies SX•(r) ⊗L

Z Z/p• =
SX•(r). According to Theorem 8.3 in [GL], we have ZX1(r)⊗L

Z Z/pn =
WnΩr

X1,log[−r], so from the definition of ZX•(r), we have ZX•(r) ⊗L
Z

Z/p• = SX•(r). �

Sketch of proof for Thm 8.3 in [GL]:

Proposition 2.6. There is a canonical product structure

ZX•(r)⊗L
Z ZX•(r′)→ ZX•(r + r′)

compatible with the products on ZX1(r) and SX•(r).

Proof. We let the two following morphisms

ZX•(r)⊗L
Z ZX•(r′)→ ZX1(r + r′)

ZX•(r)⊗L
Z ZX•(r′)→ SX•(r + r′)

be induced by the product of motivic complex and the product on the
syntomic complex. Then we have the following map

(2.2) ZX•(r)⊗L
Z ZX•(r′)→ cone(ZX1(r + r′)⊕SX•(r + r′)

→ W•Ωr+r′

X1,log[−r − r′])[−1] ∼= ZX•(r + r′).

�

3. Motivic fundamental triangle

Proposition 3.1. We have a unique commutative diagram of exact
triangles in Dpro(X1)

p(r)Ω<r
X• [−1] // ZX•(r)

��

// ZX1(r)

d log
��

// · · ·

p(r)Ω<r
X• [−1] // SX•(r) // W•Ωr

X1,log[−r] // · · ·

where the bottom exact triangle comes from Theorem 5.4 and the maps
in the right square are the canonical maps.

Proof. The existence of the top triangle can be shown by the octahedral
axiom from the following three triangles: p(r)Ω<r

X• [−1] → SX•(r) →
W•Ωr

X1,log[−r]→ · · · (fundamental triangle), ZX•(r)→ ZX1(r)⊕SX•(r)→
W•Ωr

X1,log[−r] → · · · (definition of ZX•), and ZX1(r) → ZX1(r) ⊕
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SX•(r) → SX• → · · · . We can also apply the dual of [Ne], Lemma
1.4.4 and note that the square

ZX•(r)

��

// ZX1(r)
d log
��

SX•(r) // W•Ωr
X1,log[−r]

is a homotopy cartesian square, and a cocartesian square is still carte-
sian. Following is [Ne], Lemma 1.4.4:

Lemma 3.2. Let
Y

g
��

// Z

h
��

Y ′ // Z ′

be a homotopy cartesian square.
If Y

g // Y ′ // Y ′′ // Y [1] is a triangle, then there is a triangle

Z
h // Z ′ // Y ′′ // Z[1] which completes the homotopy cartesian

square to a map of triangles

Y //

��

Y ′ //

��

Y ′′ // Y [1]

��
Z

h // Z ′ // Y ′′ // Z[1]

For uniqueness, we need to show that the morphism p(r)Ω<r
X• [−1]→

ZX•(r) is uniquely defined by the requirements of the proposition,
which follows from Lemma A.2 in [BEK].

�

Corollary 3.3. For Y• = X•×Pm one has a projective bundle isomor-
phism

m⊕
s=0

Hr′−2s
cont (X1,ZX•(r − s)) ⊕sc1(O(1))s

−→ Hr′

cont(Y1,ZY•(r)).

Proof. According to the associated long exact sequence from the mo-
tivic fundamental triangle and 5-lemma, we only need to show the
following two isomorphisms:

m⊕
s=0

Hr′−2s(X1,ZX1(r − s))→ Hr′(Y1,ZY1(r))
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and
m⊕

s=0
Hr′−2s(X1, p(r)Ω<r

X•)→ Hr′(Y1, p(r)Ω<r
Y• ).

The first one comes from [MVW] Corollary 15.5: C∗Ztr(Pn) ∼= ⊕n
i=0Z(i)[2i],

and the second one comes from the fact that Y is a projective bundle
of X. �
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