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These are abridged notes of my talk (Talk 2) in the CNU-USTC-SUSTC Joint
Workshop on p-adic Deformation of Algebraic Cycle Classes after Bloch-Esnault-
Kerz, covering Appendices A and B of [BEK].

1 t-structures
Motivation: Dpro(T ) is not a derived category, but rather a triangulated category
with t-structure.

Definition 1.1. [BBD, Section 1.3] Let D be a triangulated category. A t-structure
on D consists of a pair (D≤0,D≥0) of full subcategories, closed under isomorphisms,
such that
(1) For A ∈ D≤0, B ∈ D≥1, Hom(A,B) = 0.
(2) D≤0 ⊆ D≤1, D≥0 ⊇ D≥1.
(3) For every X ∈ D, there exists a distinguished triangle

(1.1) A→ X → B → A[1]

with A ∈ D≤0 and B ∈ D≥1.
Here D≤r (resp. D≥r) denotes the full subcategory of D, closed under isomorphisms,
spanned by D≤0[−r] (resp. D≥0[−r]).

Fact 1.2. (1) The distinguished triangle (1.1) is unique up to unique isomor-
phism. It can be written as

τ≤0X → X → τ≥1X → (τ≤0X)[1],

where τ≤r : D → D≤r is a right adjoint of the inclusion functor and τ≥r : D →
D≥r is a left adjoint of the inclusion functor.

(2) The heart D♥ := D≤0 ∩ D≥0 is an abelian category. We write HrX ∈ D♥ for
(τ≤rτ≥rX)[−r] ' (τ≥rτ≤rX)[−r].

Question 1.3. Let A a−→ B
b−→ C

c−→ A[1] be a distinguished triangle. When do we
have a distinguished triangle

(1.2) τ≤0A
τ≤0a−−−→ τ≤aB

τ≤0b−−→ τ≤0C → (τ≤0A)[1]?
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Note that the long exact sequence associated to (1.2) implies that H0b is an
epimorphism, so that the map H0c : H0C → H1A is zero. The converse also holds:

Lemma 1.4 ([Z, Lemme 2.9], [SZ, Lemma 4.1.9]). Let A a−→ B
b−→ C

c−→ A[1] be
a distinguished triangle such that H0c : H0C → H1A is zero. Then there exists a
unique nine-diagram of the form

(1.3) τ≤0A τ≤0a //

��

τ≤0B τ≤0b //

��

τ≤0C
c0 //

u

��
(∗)

(τ≤0A)[1]

��
A

a //

��

B
b //

��

C
c //

��
(∗∗)

A[1]
v
��

τ≥1A τ≥1a //

��

τ≥1B τ≥1b //

��

τ≥1C
c1 //

��

(τ≥1A)[1]

��
(τ≤0A)[1] (τ≤0a)[1] // (τ≤0B)[1] (τ≤0b)[1] // (τ≤0C)[1] c0[1] // (τ≤0A)[2],

where the columns are the canonical distinguished triangles.

By a nine-diagram in a triangulated category (cf. [BBD, Proposition 1.1.11]), we
mean a diagram

A //

��

B //

��

C //

��

A[1]

��
A′ //

��

B′ //

��

C ′ //

��

A′[1]

��
A′′ //

��

B′′ //

��

C ′′ //

��

A′′[1]

��
A[1] // B[1] // C[1] // A[2],

−

in which the square marked with “−” is anticommutative and all other squares are
commutative, the dashed arrows are induced from the solid ones by translation, and
the rows and columns in solid arrows are distinguished triangles.

Proof. First note that vcu is the image of H0c under the isomorphism

Hom(H0C,H1A) ∼−→ Hom(τ≤0C, (τ≥1A)[1]).

Hence vcu = 0. Moreover, Hom(τ≤0C, τ≥1A) = 0. Thus by [BBD, Proposition
1.1.9], there exist a unique c0 making (∗) commutative and a unique c1 making (∗∗)
commutative. This proves the uniqueness of (1.3). It remains to show that (1.3)
thus constructed is a nine-diagram. To do this, we extend the upper left square of
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(1.3) into a nine-diagram

(1.4) τ≤0A
τ≤0a //

��

τ≤0B //

��

C0 //

��

(τ≤0A)[1]

��
A a //

��

B b //

��

C c //

��
(∗∗∗)

A[1]

��
τ≥1A

τ≥1a //

��

τ≥1B //

��

C1 //

��

(τ≥1A)[1]

��
(τ≤0A)[1] (τ≤0a)[1] // (τ≤0B)[1] // C0[1] // (τ≤0A)[2].

By the first and third rows of (1.4), C0 ∈ D≤0 and C1 ∈ D≥0. Taking H0 of (∗ ∗ ∗),
we obtain a commutative diagram

H0C
0 //

e
��

H1A

H0C1
d //H1A,

where e is an epimorphism and d is a monomorphism. Thus H0C1 = 0, so that
C1 ∈ D≥1. Further applying [BBD, Proposition 1.1.9], we may identify (1.4) with
(1.3).

Example 1.5. [BEK, Lemma A.1] For a distinguished triangle A→ B → C → A[1]
with A ∈ D≤r, the triangle

A→ τ≤rB → τ≤rC → A[1]

is distinguished.

2 Continuous cohomology
We let N denote the ordered set {1, 2, . . . }. For a category we write CNop for the
category Fun(Nop, C) of systems F• = (F1 ← F2 ← · · · ) of objects of C.

Let T be a topos. Then TNop is a topos. We write Ab(T ) for the category
of abelian sheaves on T , which is a Grothendieck abelian category. Then we have
an equivalence Ab(TNop) ' Ab(T )Nop . We write D(T ) for the derived category
D(Ab(T )). The functor D(TNop) → D(T )Nop is not an equivalence in general. We
will work with D(TNop).

Definition 2.1. Let F . ∈ D(TNop). The continuous (hyper)cohomology is

H i
cont(T,F•) := HomD(TNop )(Z,F•[i]).

Here Z denotes the constant system of the constant sheaf of value Z.
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Lemma 2.2. (cf. [BEK, Lemma B.8]) We have a spectral sequence

Ep,q
2 = Hp

cont(T,Hq(F•))⇒ Hp+q
cont(T,F•).

The square of topoi

TNop lim←− //

ΓNop

��

T

Γ
��

SetNop lim←− // Set
induces a square of derived categories

(2.1) D(TNop)
R lim←−T //

RΓNop

��

D(T )

RΓ
��

D(AbNop)
R lim←−Ab // D(Ab)

Fact 2.3. Let F• ∈ AbNop .
(1) R limAb has cohomological dimension ≤ 1: Ri limAbF• = 0 for i > 1.
(2) For F• satisfying the Mittag-Leffler condition (for example if Fn+1 → Fn is

surjective for all n), R limAbF ' limAbF .

Warning 2.4. The analogue of Fact 2.3 fails for R lim←−T in general, contrary to the
claim following [BEK, Notation B.6]. The analogue of Fact 2.3 holds for R lim←−T
when T is replete in the sense of [BS, Section 3.1], for example if T is the pro-étale
topos.

This gives us a short exact sequence for F• ∈ D(TNop) (cf. [BEK, (B.1)])

0→ R1 lim
n
H i−1(T,Fn)→ H i

cont(T,F•)→ lim←−
n

H i(T,Fn)→ 0.

3 Pro-systems
Definition 3.1. Let C be a category. The category Cpro of pro-systems in C is
defined as follows. An object of Cpro is a functor Nop → C. For X•, Y• in Cpro,

HomCpro(X•, Y•) := lim←−
n

lim−→
m

HomC(Xm, Yn).

Thus a morphism f ∈ HomCpro(X•, Y•) consists of fn ∈ lim←−m HomC(Xm, Yn).

Lemma 3.2. There exists a nondecreasing map φ : N → N and gn : Xφ(n) → Yn
giving rise to fn such that for all n ≥ m, the square

Xφ(n)
gn //

��

Yn

��
Xφ(m)

gm // Ym

commutes.
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Let F : CNop → Cpro be the obvious functor. If C admits sequential limits, then
the limit functor lim←− : CNop → C factorizes through F to give lim←− : Cpro → C.

By the lemma, any morphism f : X• → Y• in Cpro can be decomposed into
X• ' Xφ(•)

F (g•)−−−→ Y•. We call g• a level representation of f .

Remark 3.3. The Yoneda embedding h : C → Fun(C,Set)op carrying X to Y 7→
HomC(X, Y ) can be decomposed into fully faithful functors C → Cpro → Pro(C) ⊆
Fun(C,Set)op, where the first functor carries X to the constant system of value
X, and the second functor carries X• to Y 7→ lim−→n

HomC(Xn, Y ). Thus Cpro can
be identified as the full subcategory of Fun(C,Set)op spanned by sequential limits
of images of h. Recall that the category Pro(C) of pro-objects of C is the full
subcategory spanned by filtered limits of the image of h.

Definition 3.4. [BEK, Definition A.3] Dpro(T ) := Ch(T )pro[S−1], where Ch(T ) :=
Ch(Ab(T )) denotes the category of cochain complexes in Ab(T ), and S denotes the
class of morphisms represented by levelwise quasi-isomorphisms.

The functor Dpro(T )→ D(T )pro is not an equivalence in general.

Lemma 3.5. [BEK, Lemma A.4] The triangulated category Dpro(T ) has a t-structure
(Dpro(T )≤0,Dpro(T )≥0) with F• ∈ Dpro(T )≤0 (resp. F• ∈ Dpro(T )≥0) if and only if
F• ' F ′• in Dpro(T ) with F ′n ∈ D(T )≤0 (resp. F ′n ∈ D(T )≥0) for all n ∈ N.

Upshot: The diagram (2.1) decomposes into

(3.1) D(TNop)

R lim←−
++

RΓNop

��

ρ
// Dpro(T ) //

��

D(T )

RΓ
��

D(AbNop) //

R lim←−

33Dpro(Ab) // D(Ab)

where the dashed arrows will be constructed using homotopical algebra. The blue
arrows are t-exact and induced by the obvious functor Ch(A)Nop → Ch(A)pro. The
black arrows admit left adjoints. For F• ∈ D(TNop), it follows from the diagram and
adjunctions that

HomD(TNop )(Z,F•[i]) ' HomDpro(T )(Z, ρ(F•[i])).

This leads to the following.

Definition 3.6. [BEK, Definition B.7] Let F• ∈ Dpro(T ). The continuous (hy-
per)cohomology is

H i
cont(T,F•) := HomDpro(T )(Z,F•[i]).
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4 Model categories
Definition 4.1. A model category is a category C equipped with a model struc-
ture, namely three classes of morphisms (called fibrations, cofibrations, and weak
equivalences), such that
(1) ((co)limit) C admits finite limits and colimits.
(2) (two-out-of-three) Given morphisms X f−→ Y

g−→ Z, if two of f, g, g ◦f are weak
equivalences, then so is the third one.

(3) (retract) Fibrations, cofibrations, and weak equivalences are stable under re-
tracts.

(4) (lifting) Let i : A→ B be a cofibration and p : X → Y a fibration. Then i has
the left lifting property with respect to p if i or p is a weak equivalence.

(5) (factorization) Every morphism in C admits factorizations X f−→ Y
g−→ Z and

X
f ′−→ Y ′

g′−→ Z, where f and f ′ are cofibrations, g and g′ are fibrations, g and
f ′ are weak equivalences.

We say that i has the left lifting property with respect to p (or p has the right
lifting property with respect to i) if for every commutative square

A

i
��

// X

p

��
B //

??

Y,

there exists a dashed arrow as indicated making the diagram commutative.

Remark 4.2. Quillen calls the above a closed model category [Q, Section I.5], (see
Fact 4.4 below). Many authors (Hovey [H2, Section 1.1], Hirschhorn [H1, Section
7.1], Lurie [L1, Section A.2.1]) requires C to admit small limits and colimits. Some
authors (Hovey, Hirschhorn, in different ways) require functorial factorizations.

Definition 4.3. A trivial fibration is a fibration that is also a weak equivalence. A
trivial cofibration is a cofibration that is also a weak equivalence.

Fact 4.4 (Closedness). (1) i is a cofibration if and only if it has the left lifting
property with respect to trivial fibrations.

(2) i is a trivial cofibration if and only if it has the left lifting property with respect
to fibrations.

(3) p is a fibration if and only if it has the right lifting property with respect to
trivial cofibrations.

(4) p is a trivial fibration if and only if it has the right lifting property with respect
to cofibrations.

In particular, the class of fibrations is determined by that of cofibrations and
that of weak equivalences, and the class of cofibrations is determined by that of
fibrations and that of weak equivalences.

Definition 4.5. The homotopy category is hC := C[S−1], where S denotes the class
of weak equivalences.
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Fact 4.6. A morphism X → Y in C is a weak equivalence if and only if its image
in hC is an isomorphism.

An object X is said to be fibrant if X → ∗ is a fibration, where ∗ denotes a final
object of C. An object X is said to be cofibrant if ∅ → X is a cofibration, where ∅
denotes an initial object of C.

Example 4.7. Let A be a Grothendieck abelian category. The injective model
structure [L2, Section 1.3.5] on Ch(A) is characterized by the following conditions:
(1) The cofibrations are the (degreewise) monomorphisms.
(2) The weak equivalences are the quasi-isomorphisms.

The homotopy category is the derived category D(A). Under this model structure,
every object is cofibrant, and X is fibrant if and only if X i is injective for all i
and X is homotopically injective (namely HomK(A)(X, Y ) = 0 for every Y acyclic).
Contrary to the claim in [BEK, Definition B.1 (b)], this model structure is not
simplicial.

Example 4.8. Let ∆ = {[n] | n = 0, 1, 2, . . . } be the category of combinatorial
simplices, where [n] denotes the ordered set {0, . . . , n}. The category of simplicial
sets is by definition Set∆ := Fun(∆op,Set). The Kan model structure on Set∆
satisfies:
(1) The cofibrations are the monomorphisms.
(2) The weak equivalences are maps f : X → Y such that the geometric realization
|f | : |X| → |Y | is a homotopy equivalence of topological spaces.

(3) The fibrations are the maps having the right lifting properties with respect to
the horn inclusions Λn

i ↪→ ∆n, 0 ≤ i ≤ n, n ≥ 1. Here Λn
i is obtained from ∆n

by removing the interior and the face opposite to the i-th vertex.
(4) The trivial fibrations are the maps having the right lifting properties with

respect to ∂∆n ↪→ ∆n, n ≥ 0. Here ∂∆n is obtained from ∆n by removing the
interior.

Remark 4.9. Closedness implies that cofibrations and trivial cofibrations are stable
under pushout and composition, and that fibrations and trivial fibrations are stable
under pullback and composition.

Definition 4.10. We say that a model structure is left proper if weak equivalences
are stable under pushout by cofibrations, right proper if weak equivalences are stable
under pullback by fibrations, and proper if it is both left and right proper.

The injective model structure on Ch(A) and the Kan model structure on Set∆
are proper.

Example 4.11. Given a category C equipped with a proper model structure, Isaksen
defined a model structure on Pro(C) [I, Section 4]. The same argument provides a
model structure on Cpro, satisfying:
(1) The cofibrations are the morphisms represented by levelwise cofibrations.
(2) The weak equivalences are the morphisms represented by levelwise weak equiv-

alences.
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(3) The fibrations (resp. trivial fibrations) are the retracts of morphisms admitting
a level representation f• : X• → Y• such that fn : Xn → Xn−1 ×Yn−1 Yn are
fibrations (resp. trivial fibrations). Here X0 = Y0 denotes the final object of C.

For C = Ch(T ) equipped with the injective model structure, the homotopy category
of Ch(T )pro is Dpro(T ).

Fact 4.12. Let C and D be model categories. Given an adjunction (F,G, α) (where
F : C → D is a left adjoint of G : D → C), the following conditions are equivalent:
(1) F preserves cofibrations and trivial cofibrations.
(2) G preserves fibrations and trivial fibrations.
(3) F preserves cofibrations and G preserves fibrations.
(4) F preserves trivial cofibrations and G preserves trivial fibrations.

Definition 4.13. An adjunction satisfying the above conditions is called a Quillen
adjunction.

Fact 4.14. A Quillen adjunction (F,G) induces an adjunction (LF,RG) between
homotopy categories. The left derived functor LF : hC → hD satisfies LFX ' FX
for X cofibrant. The right derived functor RG : hD → hC satisfies RGY ' GY for
Y fibrant.

Definition 4.15. We say that (F,G) is a Quillen equivalence if LF and RG are
equivalences of categories.

We note that this does not imply that F or G is an equivalence of categories.

Example 4.16. Let f : T → T ′ be a morphism of topoi. Then (f ∗, f∗) is a Quillen
adjunction between Ch(T ) and Ch(T ′), equipped with the injective model structures.
Indeed, f ∗ preserves cofibrations and trivial cofibrations.

Example 4.17. The diagram (3.1) is induced by the diagram

Ch(T )Nop

lim←−
++

ΓNop

��

// Ch(T )pro lim←−
//

Γpro
��

Ch(T )

Γ
��

Ch(Ab)Nop //

lim←−

22Ch(Ab)pro
lim←− // Ch(Ab)

Here the blue arrows are the obvious functors, and the black arrows are Quillen
right adjoints for the model structures described above.

Example 4.18. The Dold-Kan correspondence (see [L2, Section 1.2.3] for a gener-
alization) is an equivalence of categories

DK: Ch(Ab)≤0 → Ab∆,

where Ch(Ab)≤0 is the full subcategory of Ch(Ab) spanned by complexes A satisfy-
ing Ai = 0 for i > 0, and Ab∆ := Fun(∆op,Ab) is the category of simplicial abelian
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groups. A quasi-inverse is the normalized complex construction N. The functors are
defined by

DKn(A) =
⊕

α : [n]→[k]
A−k, N−n(X) =

⋂
1≤i≤n

Ker(di).

The composite functor

K: Ch(Ab) τ≤0
−−→ Ch(Ab)≤0 DK−−→ Ab∆ → Set∆

is a Quillen right adjoint for the injective model structure on Ch(T ) and the Kan
model structure on Set∆.

This construction extends to sheaves as follows. Let S be a small site, namely a
small category equipped with a Grothendieck topology. Jardine [J, Seciton 2] defined
a global model structure on the category SetSop

∆ := Fun(Sop,Set∆) of simplicial
presheaves, characterized by:
(1) The cofibrations are the monomorphisms.
(2) f : X → Y is a weak equivalence if and only if it induces isomorphisms

πtop
0 (X) ∼−→ πtop

0 (Y ) and

πtop
n (X|U , x) ∼−→ πtop

n (Y |U , fx)

for U ∈ S, x ∈ X(U)0, n ≥ 1. Here πtop
0 (X) is the sheaf associated to the

presheaf U 7→ π0(|U |) and πtop
n (X|U , x) is the sheaf on S/U associated to the

presheaf V 7→ πn(|V |, xV ).
The composite functor

K: Ch(S∼)→ Ch(Ab)Sop KSop

−−→ SetSop

∆

is a Quillen right adjoint for the injective model structure on Ch(S∼) and the global
model structure on SetSop

∆ . Here S∼ denote the topos of sheaves on S.
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