
JOINT CNU-USTC-SUST SEMINAR ON p-ADIC
DEFORMATION OF ALGEBRAIC CYCLE CLASSES AFTER

BLOCH-ESNAULT-KERZ

1. Introduction

Our joint seminar program is to understand the paper [4] that study the p-adic
variation of Hodge conjecture of Fontaine-Messing ([6], see also [4, Conjecture
1.2]) which states roughly as follows: For simplicity, let X/W be a smooth pro-
jective scheme, with W = W (k) the Witt ring of a perfect field k of characteristic
p > 0.1 If the crystalline cycle class of an algebraic cycle Z1 in the special fiber
X1 = X × k has the correct Hodge level under the canonical isomorphism of
Berthelot-Ogus

(1.0.1) H∗
cris(X1/W ) ∼= H∗

dR(X/W ),

then it can be lifted to an algebraic cycle Z of X. This problem is known when
the dimension of an cycle is zero dimensional (trivial by smoothness) and codi-
mension one case (Betherlot-Ogus [2, Theorem 3.8]). The article [4] proved that,
under some technical condition arising from integral p-adic Hodge theory, once
the Hodge level is correct, the cycle can be formally lifted to the p-adic formal
scheme X· = “ lim−→n

”X ⊗W/pn of X, and it remains to be an open problem that
whether there exists some formal lifting which is algebraic.

The p-adic variation of Hodge conjecture is a p-adic analogue of the infinites-
imal variation of Hodge conjecture ([4, Conjecture 1.1]): in this conjecture the
base ring is the formal disk, i.e., the spectrum of k[[t]] where k is a character-
istic zero field, and the Berthelot-Ogus isomorphism (1.0.1) is replaced by the
trivialization of Gauß-Manin connection over the formal disk ([13, Proposition
8.9])

(1.0.2) (H∗
dR(X1/k)⊗ k[[t]], id⊗ d) ∼= (H∗

dR(X/k[[t]]),∇GM).

It can be shown that the infinitesimal variation of Hodge conjecture is equivalent
to the original version of Grothendieck on variation of Hodge conjecture ([11],
page 103 footnote), which is indeed a direct consequence of Hodge conjecture
after Deligne’s global invariant cycle theorem. Moreover, it was shown by Maulik-
Poonen ([19, Theorem 9.10]) that the p-adic variation of Hodge conjecture implies
the variation of Hodge conjecture.

1The actual p-adic variation of Hodge conjecture is stated for any p-adic complete discrete
valuation ring of perfect residue field.
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2. Part I: Warm up

The aim of this part is to recall some results in crystalline theory used in
[4], such as de Rham complex, de Rham-Witt complex and the crystalline cycle
map. We would also like to take this chance to discuss the relations of the Hodge
conjecture, and the various variation of Hodge conjecture.

Talk 1: Variation of Hodge conjecture.

The goal of this talk is to clarify the relations of variation of Hodge conjecture
with Hodge conjecture, infinitesimal Hodge conjecture and p-adic variation of
Hodge conjecture, and to state the main results in [4]. Possible topics include:

• Statement of Hodge conjecture, Grothendieck’s variation of Hodge conjec-
ture, Deligne’s global invariant cycle theorem, Cattani-Deligne-Kaplan’s
algebraicity theorem and some renowned open problems (See [4, p. 674-
675] for relevant references of these results).
• Equivalence of variation of Hodge conjecture and infinitesimal variation

of Hodge conjecture.
• Explain the line bundle case of the infinitesimal variation of Hodge con-

jecture following the strategy of [4, p. 573].
• Explain that p-adic variation of Hodge conjecture implies variation of

Hodge conjecture ([19, Theorem 9.10]).
• State the main results of the work [4] on p-adic variation of Hodge con-

jecture.

References: [4], [11], [6], [5].

Talk 2: Continuous cohomology.

The goal of this talk is to explain continuous etale cohomology theory of U.
Jannsen, and to complete [4, Appendix B]. Later, we shall need this formalism
for crystalline cohomology.

Prerequisites: some knowledge on unbounded complexes and model category
for [4, Appendix B].

References: [22], [4, Appendix B].

Talk 3: A reminder in crystalline cohomology.

The goal is to collect some basics on crystalline cohomology and the theory of
de Rham-Witt complex. Possible topics include:

• Review briefly the theory of crystalline cohomology: divided powers, di-
vided power envelope, crystalline site, crystalline topos, crystalline coho-
mology over a nilpotent base, and calculation of crystalline cohomology
using de Rham complex when the scheme is liftable ([1]).
• de Rham-Witt complex, and the computation of crystalline cohomology

with de Rham-Witt complex.
• Crystalline cohomology over a complete base such as the Witt ring W =
W (k) (one may use continuous cohomology as recalled in [4, Appendix
B7], see also [22]).
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• Berthelot-Ogus’s isomorphism relating crystalline cohomology with the de
Rham cohomology ([2]).

Talk 4: Crystalline cycle map.

The aim of this talk is to explain the construction of cycle map

ch : K0(X1) −→
⊕
r

H2r
cris(X1/W )Q.

References:[10],[9]

Talk 5: Line bundle case of the p-adic variation of Hodge conjecture.

The goal of this talk is to prove the p-adic variation of Hodge conjecture in the
line bundle case ([2, Theorem 3.8]).

References: [2, §3].

Talk 6: Crystalline cohomology and de Rham cohomology.

The aim of this talk is to introduce the main variants of de Rham complex and
the de Rham-Witt complex following [4, §2]. Possible topics include:

• Recall the definition of Nisnevich site, and the categories Cpro(X1)ét/Nis

and Dpro(X1)ét/Nis. Define the pro-system of de Rham complex Ω•
X· and

W•Ω
•
X1

the pro-system of de Rham-Witt complexes for the étale and Nis-
nevich topology. Define the pro-system of étale/Nisnevich subsheaves
W•Ω

r
X1,log of n 7→ WnΩr

X1
.

• Compare WnΩr
X1,Nis with its étale analogue WnΩr

X1,ét relative to the mor-
phism of sites ε : X1,ét → X1,Nis ([4, Proposition 2.4]).
• For r < p, define p(r)Ω•

X· and q(r)W•Ω
•
X1

.
• Explain the canonical quasi-isomorphisms Ω•

X· ' W•Ω
•
X1

, and p(r)ΩX•
· '

q(r)W•Ω
•
X1

for r < p ([4, Proposition 2.8]).

References:[1], [4, §2]

3. Part II Obstructions of lifting algebraic cycles

We plan to cover §3-§8 of [4]. The crux of this part is Theorem 8.5 (1), which
interprets the kernel of the Hodge-theoretical obstruction map

Chr(X1)
ob→ H2r

cts(X·, p(r)Ω
<r
X· )

in terms of certain Chow group CHr
cont(X·/W·) of the pro-scheme X·/W·. Recall

that p(r)Ω<r
X is a subcomplex of Ω<r

X and the obstruction map ob comes from the
composite of the following natural maps

CHr(X1)
clcris−→ H2r

cris(X1/W )
Φ−1

∼= H2r
dR(X/W )→ H2r

dR(X/W )/F ilrH2r
dR(X/W ).

Granted the fact that CHr(X1) is the cohomology of the so-called motivic complex
ZX1(r) in Nisnevich topology (see (7.3) §7 and more into [20]), one would like to
look for a natural morphism of complexes

ZX1(r)
?−→ p(r)Ω<r

X· ,
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so that its cone shall yield the desired information by taking cohomologies. This
is a natural method as suggested by the Deligne-Beilinson cohomology over C.
However, natural map exists only in the derived category (which can seen be-
low). On the other hand, one notes that there is already a good p-adic analogue
of the Deligne-Beilinson cohomology, the so-called syntomic cohomology as in-
troduced by Fontaine-Messing in their p-adic integral comparison theorem and
further explored in the work of K. Kato [12] (see e.g Remark (3.5) loc. cit.). The
link between the motivic complex ZX1 and the syntomic complex SX·/W· is the
Minlor K-sheaf KMX1

(which is mapped to the de Rham-Witt complex via d log[ ]
([ ] denotes the Teichmüller lifting.) There are quasi-isomorphisms between the
de Rham-Witt complex W·Ω

•
X1

and de Rham complex Ω•
X· , but non-canonical

unless fixing a PD-envelope connecting both sides as the author did in (2.10)
and Proposition 2.8 [4]. It is a marvelous work of the authors to manage the
construction of the motivic complex ZX·(r) (Definition 7.1 [4]) of the pro-scheme
X·/W· which glues ZX1 , the part containing cycle information of the central fiber,
with the syntomic complex SX·/W· over something in common (which comes from
KMX1

) (the whole construction occupies §4, 5 and 7 [4]). The key property to the
obstruction problem is the exact triangle in Dpro(X1):

p(r)Ω<r
X· [−1]→ ZX·(r)→ ZX1(r)→,

as given in Proposition 7.3 [4]. As verified in §6 [4], the connecting map

H2r(ZX1(r))→ H2r(p(r)Ω<r
X· )

in the long exact sequence of cohomologies of the above exact triangle coincides
with the obstruction map ob in the beginning.

Assembly of Notations:

• k a perfect field of char p; W = W (k) the Witt ring and Wn; X smooth
projective over W (k); Xn = X⊗W Wn; X1 the central fiber; X·/W· p-adic
formal scheme.
• ZX1(r) Suslin-Voevodsky’s cycle complex of X1 (§7); ZX·(r) pro-complex

of X· (Def. 7.1).
• CHr

cont(X·) := H2r
cont(X1,ZX·(r)) continous Chow group of X· (Def. 8.1);

ξ1 ∈ CHr(X1); c(ξ1) ∈ H2r
cont(X1, q(r)W·Ω

·
X1

) refined crystalline class.

Thm. 8.5 asserts that the following sequence of abelian groups is exact:

(∗) CHr
cont(X·)→ CHr(X1)

Ob−→ H2r
cont(X1, p(r)Ω

<r
X· ).

Note that the continuous Chow group CHr
cont(X·) maps to lim−→nK0(Xn) surjec-

tively (§9).
The obstruction (∗) is induced by taking cohomologies of the following exact

triangle:

(∗∗) p(r)Ω<r
X· [−1]→ ZX·(r)→ ZX1(r)→ p(r)Ω<r

X· .
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(∗∗) is related to the syntomic complex via (Prop. 7.3)

p(r)Ω<r
X·

[−1] // ZX·(r) //

��

ZX1(r) //

��

...

p(r)Ω<r
X·

[−1] // SX·(r) // W·Ω
r
X1,log[−r] // ...

The syntomic complex SX·(r) := cone(J(r)Ω•
D·

1−fr−−−→ Ω•
D·) was connected by

Kato [12] to the Minor K-groups (and then to the p-adic vanishing cycles). The
bottom exact triangle is the major result of the authors on the syntomic complex
(Thm 5.4 [4]).

Talk 7: Syntomic complex.

Goal: Complete §4 [4].
Review the definitions of Ω•

D· , J(r)Ω•
D· , the de Rham-Witt complexW·Ω

•
X1
, q(r)W·Ω

•
X1

and the statement Proposition 2.8 [4], especially the quasi-isomorphisms

Φ(F ) : I(r)Ω•
D·
∼= q(r)W·Ω

•
X1

; J(r)Ω•
D·
∼= W≥r

· Ω•
X1
.

Explain the diagram in the bottom of page 685 [4]. For this, one needs to collect
corresponding facts on the Hasse maps fr and respectively Fr in [12] and [18].
Explain the exact triangle in Corollary 4.6 [4], whose proof consists of Lemma
4.3 (middle), 4.4 (right hand side), 4.5 (left hand side) which will be also applied
in §5. Note the usage of derived category is essential here (although the proofs of
lemmas are standard calculations in complexes). We advice the speaker to leave
the issue of Nisnevich topology in §4 to Talk 9.

Speak 2 hours.

References:[12], [18]

Talk 8: Fundamental triangle.

Goal: Complete §5,6 [4], particularly Theorem 5.4.

Fundamental triangle is the bridge connecting many things. These result de-
compose the syntomic complex of a formal scheme into a part from the special
fiber and a part from the deformation of the special fiber.

Granted the results in §4, to prove Thm. 5.4 and Thm. 6.1, one only needs to
operate several cone constructions by using standard homological algebra. Thm.
5.4 is the fundamental triangle

p(r)Ω<r
X· [−1]→ SX·(r)→ W·Ω

r
X1,log[−r]

and Thm. 6.1 describes the connecting map

α : W·Ω
r
X1,log[−r]→ p(r)Ω<r

X·

which implies the compatibility of α with the cycle map.
Speak about 2 hours.

References: Homological algebra, e.g [7].
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Talk 9: Nisnevich topology.
Goal: This talk and Talk 10 are designed to be a mini-introduction to the

motivic cohomology, especially the motivic complex ZX1(r) as used in the work
[4].

One has natural morphism of sites

Xet
ε→ Xnis

η→ XZar,

and the Nisnevich topology enjoys good properties of Zariski topology and etale
topology. An experienced speaker should be able to explain the meaning of the
last sentence well. Explain all arguments used in [4] involving comparison of two
sites (Proposition 2.4, Lemma 4.3 [4]).

Speak 1.5 hours.

References: [4], [20].

Talk 10: Motivic cohomology and K-theory.
Goal: Suslin-Voevodsky’s cycle complex ZX(r) for a smooth variety X over a

field k.

Introduce Z(r) as a sheaf with transfer over the big Nisnenich site Sm/k. Sketch
the idea of the proof of (7.2) [4], identifying the cohomology sheaves of Z(r) with
the Minlor K-sheaves. For X ∈ (Sm/k), set ZX(r) to be the restriction of
Z(r) to the small Nisnevich site of X. Explain the properties (0)-(2) and (5) of
Proposition 7.2 [4] for ZX(r). Explain the idea of (7.3) [4]. This is a very valuable
connection (but explaining (7.2) looks as a non-easy task). We expect the talk
to be highly heuristic in some steps.

Speak 2.5 hours.

References: [20], [14]

Talk 11: The motivic complex.

Goal: Complete §7 [4].

Introduces the motivic complex ZX·(r), and prove Proposition 7.2 and 7.3
(motivic fundamental triangle) [4].

Kato’s work relates the syntomic complex SX·(r) with the Milnor K-sheaves,
and the motivic complex ZX·(r) of the pro-scheme X· glues the motivic complex
ZX1(r) of the central fiber and the syntomic complex along the de Rham real-
ization of the Milnor K-sheaves. Proposition 7.2 comes up as a consequence of
gluing corresponding results for ZX·(r) and SX·(r).

Speak 2 hours.

References: [12].

Talk 12: Crystalline-Hodge obstruction.

Goal: Complete §8 [4]. the proof of Theorem 8.5 [4].
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This is the main result of this session. Here the authors get the obstruction
to lift a cycle class on the central fiber to continous Chow group CHr

cont(X·) :=
H2r

cont(X1,ZX·(r)).
If possible, the speaker comments on geometric meaning of the continuous

Chow group.
Speak 2 hours.

References: no

Talk 13: The motivic complex after Beilinson.

Goal: A good retrospect on the construction of ZX·(r) carried out in §4-
5. Prove the quasi-isomorphism between the motivic complex ZX·(r) and the

motivic complex S̃X·(r) as proposed by Beilinson. Complete §3 and Appendix C
[4].

Speak 2 hour.
References: Appendix C [4].

4. Part III: Chern character isomophism

Part III consists of sections 9-12. The aim is to connect the continuous Chow
group, which is defined to be the cohomology of the motivic pro-complex over
X1, to a continuous K0 of the attached pro-scheme X·. The main theorem of this
part is [4, Theorem 11.1].

Talk 14: Continuous K-Theory.

Goal: The speaker should give a brief introduction to Algebraic K-Theory,
particularly the basic set-up of the Quillen’s higher K-theory. The standard
reference on this topic for algebraic geometers is [24]. So briefly review Quillen’s
+-construction and Q-construction and etc. To the end of the talk, introduce the
continuous K-groups as defined in Section 9.

Prerequisites:

References: [24], [4]

Talk 15: Chern class.

Goal: Report on the construction of Chern classes of Gillet [8] for higher
K-theory. Apply his method to construct a continuous Chern class map from
continuous K-theory to continuous motivic cohomology.

Prerequisites:

References: [8], [4]

Talk 16: Topological cyclic homology.

Goal: Explain the basics in topological cyclic homology theory [21]. Use deep
results on topological cyclic homology theory to prove relevant K-theoretical
results used in the sequel (Prop 10.5).

Prerequisites:
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Talk 17: Chern character isomorphism.

Goal: Complette §11 [4], particularly Theorem 11.1.

Prerequisites:

References:
Talk 18: Deformation of Milnor K-Groups.

Goal: Complete §12 [4].

The result of this section Theorem 12.3 is used to show the formula

Hr(Z(r)) = KMr ,
generalizing the result for fields (Suslin-Voevodsky [23]).

Prerequisites:

References: [15], [16], [17]

References

[1] P. Bertherlot, A. Ogus, Notes on crystalline cohomology. 1978.
[2] P. Berthelot, A. Ogus, F -isocrystals and de Rham cohomology I. Invent. Math. 1983,

72.
[3] S. Bloch, Semi-regularity and de-Rham cohomlogy, Invent. Math. 1972, 17.
[4] S. Bloch, H. Esnault, M. Kerz, p-adic deformation of algebraic cycle classes, Invent.

Math. 2014, 195.
[5] M. Emerton, A p-adic variational Hodge conjecture and modular forms with complex

multiplication, preprint, available on the author’s webpage.
[6] J.-M Fontaine, W. Messing, p-adic periods and étale cohomology, Contemporary

Math., 87, 176-207, 1987
[7] I. Gelfand, Y. Manin, Methods of Homological Algebra, Springer Monographs in Math-

ematics.
[8] H. Gillet, Riemann-Roch theorems for higher K-theory. Adv. Math. 40, 203-289 (1981).
[9] H. Gillet, W. Messing, Cycle classes and Riemann-Roch for crystalline cohomology,

Duke. Math. J. 1987.
[10] M. Gros, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt loga-

rithmique, Mem. Soc. Math. Fr. 21, 1985.
[11] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. Math.
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