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Abstract— In several cyberphysical systems applications
such as in robotics, transportation and sensor networks, it is
imperative to devise low-power and low-complexity solutions for
positioning and tracking. In this paper, we present a custom
testbed in which agents equipped with Arduino microcontrollers
and UWB transceivers are organized in a wireless ad hoc net-
work. Ranging estimates are continually obtained and processed
in real time to provide accurate position estimates via numerical
schemes such as multilateration, Recursive Least Squares and
Kalman Filtering. We expose illustrative experimental findings.

Index Terms— Localization, Ultra-Wide Band (UWB) com-
munication, Recursive Least Squares, Kalman Filtering.

I. INTRODUCTION

The explosive proliferation of microprocessors, sensors,
actuators and cloud computing has given rise to Cyber-
physical Systems (CPS) such as large-scale sensor networks
[1], transportation networks, multi-agent robotics systems
and smart grids. There is a rising demand for cheap and
reliable solutions for accurate positioning of smart devices
equipped with on-board processing and wireless communica-
tion capabilities, and dynamically organized in a network. In
such settings, power limitations impose developing protocols
that are efficient in terms of computation and communi-
cation requirements, while maintaining fast responsiveness
and adaptability needed for smooth real-time operation [2].
Traditionally, the Global Positioning System (GPS) has been
considered a panacea for localization, offering a consistent
service at a global level. However, GPS is limited by its
ability to function indoors and in conditions where line-
of-sight (LoS) communication with satellites is impossible.
There are numerous fledgling applications where GPS is not
an option: indoors (e.g., in public areas like malls, museums,
schools and in industrial settings such as assembly lines and
warehouses), inside tunnels as well as in dense downtown
areas with tall buildings, and in underwater applications such
as sensornets for geophysical exploration and oil extraction.

The problem of localization has been extensively studied
[3], [4]. Solutions require distance measurements, angle
measurements or combinations of both, between the entities
that need to be localized (tags) and other reference nodes
(anchors) of known position. Angle measurements can be
obtained using antenna arrays but these methods remain
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unreliable and commercially unavailable. Distance measure-
ments, on the other hand, can be readily embedded in a
network through a range of techniques including Received
Signal Strength Index (RSSI), Time of Flight (ToF) and Time
Difference of Arrival (TDoA). By using a two-way ranging
scheme, ToF can avoid the inaccuracies of clock synchro-
nization [5] inherent in TDoA and, in general, outperforms
RSSI in terms of accuracy [6]. This is the approach we
adopt here. Our proposed solution features Ultra-Wide Band
(UWB) communication due to its low-power requirements,
and its ability to obtain high-quality Time of Flight (ToF)
measurements in cluttered indoor environments [7].

Once the distance measurements are obtained, various
algorithms can be used to obtain the position estimates.
In [3], the authors apply Kalman Filtering (KF) to RSSI
values and use multilateration to localize a single 3D target.
Similarly, in [8], the authors have studied KF and variants
using TDoA ranging methods.

This paper seeks to expand on the aforementioned re-
search and investigate real-time localization using our custom
testbed. In specific, we focus on the online processing of
range measurements so as to boost the accuracy of position
estimates, and track moving objects. For this purpose, we
develop a Recursive Least Squares (RLS) estimator, as well
as a Kalman Filter and discuss the implementation challenges
alongside our experimental findings.

II. PROBLEM SETUP

Our study investigates the problem of obtaining optimal
online position estimates of devices with variable unknown
positions (tags) given distance measurements to devices with
known positions (anchors). This is a well studied problem
referred to as multilateration, that we briefly recap next.

A. Multilateration

Let i = 1, 2, . . . , n, be an enumeration of the set of
n anchor nodes. The squared Euclidean distance of a tag
located at point (x, y) to the i-th anchor is given by:

d2i = (x− xi)2 + (y − yi)2. (1)

Choosing the first anchor (without loss of generality) as the
reference, we obtain a set of n− 1 linear equations:

(xj−x1)x+(yj−y1)y =
1

2
[(x2j +y2j )−(x21+y21)+d21−d2j ],

for 2, 3, . . . , n, by subtracting (1) applied to i = j and i = 1.
In matrix form,

Ax = b, (2)c© IPIN2017



A =


x2 − x1 y2 − y1
x3 − x1 y3 − y1

...
...

xn − x1 yn − y1

 x =

[
x
y

]
,

b =
1

2


(x22 + y22)− (x21 + y21) + d21 − d22
(x23 + y23)− (x21 + y21) + d21 − d23

...
(x2n + y2n)− (x21 + y21) + d21 − d2n

 .
To tackle noisy measurements, we treat multilateration in the
least-squares sense:

C(x) := (Ax− b)T (Ax− b), (3)

x̂ = arg min
x

C(x) = A†b, (4)

where A† denotes the Moore-Penrose pseudoinverse of A
[9]. In the case that anchors are not collinear, ATA has full-
rank, and A† = (ATA)−1AT .

B. Recursive Least Squares

Multilateration is sensitive to noise in the distance mea-
surements. For applications where range measurements are
acquired on a constant basis and/or agents are mobile, it is
crucial to design low-complexity recursive estimators to filter
data in the real-time. To account for historical data, the model
(2) is re-written to reflect dependency on time instance k:

Axk = bk.

The cost function at instance k is then defined as:

Ck(x) :=

k∑
i=0

λk−i(Ax− bi)T (Ax− bi),

x̂k = arg min
x

Ck(x) = A†
1− λ

1− λk+1

k∑
i=0

λk−ibi,

where λ ∈ (0, 1) is a "forgetting” coefficient, used to weigh
the importance of past measurements. A recursive means
of computing the optimal solution at the k−th instant with
minimum overhead is derived:

x̂k = λ
1− λk

1− λk+1
x̂k−1 +

1− λ
1− λk+1

A†bk. (5)

C. Kalman Filtering

The KF comprises two equations: a state equation and an
observation equation [10].

xk+1 = Fkxk +Bkuk + wk, (6)

yk = Hkxk + vk. (7)

The state model we adopt captures Newtonian dynamics and
the state xk includes the two dimensional position p, velocity
v and acceleration a of the tag.

xk =
[
px py vx vy ax ay

]T
k
.

The transition matrix Fk is given by:

Fk :=


1 0 ∆tk 0 1

2∆t2k 0
0 1 0 ∆tk 0 1

2∆t2k
0 0 1 0 ∆tk 0
0 0 0 1 0 ∆tk
0 0 0 0 1 0
0 0 0 0 0 1

 ,

where ∆tk represents the sampling time, that is taken time-
varying to capture for asynchronous packet exchanges. In
this model, Bkuk accounts for change in acceleration. Due
to the inability to accurately measured such changes, we will
assume uk = 0 in the sequel, but show how to measure
acceleration via an Inertial Measurement Unit (IMU).

The observation model from (7) includes the multilatera-
tion model. Additionally, local acceleration (i.e., acceleration
in a local coordinate system), is measured using an Inertial
Measurement Unit (IMU). The global acceleration can be
computed using a rotational transformation using the heading
θk of the tag. In brief, the measurement yk can be defined
as:

yk :=
[
b aloc

]T
k
.

We define Hk as follows:

Hk :=

[
A 0 0
0 0 Ψ(θk)

]
, Ψ(θk) :=

[
cos θk − sin θk
sin θk cos θk

]
,

where Ψ(θk) is used to transform the acceleration data to the
global coordinate system. One of the formidable properties
of our KF is complete observability as defined in [10]; we
skip the analysis due to length considerations.

III. IMPLEMENTATION AND EXPERIMENTAL SETUP

A custom solution was designed for the problem of indoor
localization as described in the prequel. This design includes
a hardware layer based on the DWM1000 UWB transceiver
and the Arduino Pro Mini microcontroller, a network layer
that was specifically designed to deploy an ad-hoc network
along with an integrated ranging protocol, and a compu-
tational layer that processes the distance measurements to
yield accurate position estimates in real time.

A. Hardware Design

The key hardware components of the system are the
Arduino Pro Mini and the Decawave DWM1000 transceiver
modules. The Arduino Pro Mini was used for its low cost,
light weight and easy availability especially with open-source
platforms. The 5.0 V Arduino Pro Mini was integrated with
the 3.3 V DWM1000 module through level shifting circuitry,
cf. [11]. The tags and the anchors were homogeneous in
terms of hardware. To perform controlled testing of station-
ary and mobile performance, the tag Arduino-DWM1000
circuits were attached to ground robots.



Fig. 1: System modules: custom motes arranged in anchors
(on top of 3D printed white towers) and tags (aboard mobile
robots).

B. Ranging Protocol

As discussed, a two-way ranging ToF protocol was used to
calculate the distance between anchor and tag devices. This
was calculated via an asymmetric two-way ranging scheme
using an existing library [12]. In order to boost the measure-
ment fidelity, a calibration mechanism was developed so as
to remove the bias in the measurements. The final ranging
protocol consists of two messages that include timestamps
to estimate Time-of-Flight (ToF) measurements.

C. Network Management

The network configuration involves tags communicating
using broadcast messages with anchors that respond in a
sequential order based on predefined MAC addresses. Tags
were programmed to self-organize autonomously to alleviate
interference and crosstalk. Tags are allowed to enter or leave
the network at any time. Although this process makes the
time of each update cycle proportional to the number of
devices in the network, it is more robust than a random order
communication as originally implemented in [12].

D. Implementation

The multilateration and RLS algorithms defined in equa-
tions (2)-(4) and (5) respectively were programmed to the
Arduino Pro Mini on each tag device. Moreover, KF was
implemented according to the state and observation equations
(6) and (7). However, instead of on-board runs, KF was
emulated offline using post processing of the raw data
collected from the motes; this was due to the incapability
of the robot IMU to produce reliable heading estimates.

E. System Evaluation

A Bluetooth module was used to transmit the distance,
acceleration, heading, and real-time position estimates for
offline analysis and documentation. An overview of the
system is illustrated in Fig. 1. To produce controlled mobile
behavior, the robot was made to follow black lines that define
a desired trajectory on a pale surface using an open-source
library developed by Pololu [13].

Fig. 2: Configurations for testing impact of number of
anchors on localization performance. Left: 3 anchors; right:
4 anchors; one tag was used in both cases, placed in three
different positions marked as 1,2,3.

Fig. 3: RMSE evaluation for localization system with 3 and
4 anchors.

IV. EXPERIMENTAL RESULTS

To evaluate the impact of the number of anchors on
localization performance, two configurations were tested.
Anchors were distributed around a circle with radius 2 m and
the tag was placed in random positions around the center of
the circle. The configurations of anchors and tag positions
are shown in Fig. 2. We have gathered 100 localization
samples produced by RLS, using λ = 0.9, for each tag
position. We plot the Root Mean Square Error (RMSE) for
the three configurations under study in Fig. 3; it is evident
that increasing the number of available anchors improves
localization accuracy.

To evaluate stationary performance for each algorithm
(multilateration, RLS and KF), the tag was placed on the
origin of the setup shown in Fig. 4 and 900 samples were
collected for Root Mean Squared Error (RMSE) and Stan-
dard Deviation (SD) analysis. For mobile evaluation, 1000
position samples were collected as the robot followed the
square track shown in Fig. 4. In order to measure the RMSE
and SD, data from each experiment was divided into four
parts where each part corresponds to one of the straight line
segments in the square track. The position samples in the
left and right segments were used to measure the RMSE and
SD in the x-dimension. The top and bottom segment samples



Fig. 4: Experimental setup: the Zumo robot is moving along
the square trajectory marked as “true path.” A path recon-
struction based on RLS applied on collected measurements
is also plotted in red.

Fig. 5: Distribution of error for stationary position estimates.

were used for the y-dimension. One of the experimental runs
involving the RLS algorithm is shown in Fig. 4 for reference.
We have used λ = 0.75 for this experiment; a decrease in λ is
appropriate to account for mobility by substantially reducing
the impact of past measurements in position estimates. We
have also implemented finite-horizon processing, but do not
expose the results here due to length limitations.

The experimental results with the stationary tags are
summarized in Table I below. The distribution of absolute
error is also plotted for the case of a stationary tag in Fig. 5.
The error and standard deviation are also depicted for mobile
tag localization, cf. Table II.

V. CONCLUSION

We have developed a custom solution for indoor localiza-
tion based on UWB ranging. The motes that we built possess
an Arduino microprocessor and an UWB transceiver, and run

Algorithm RMSE (cm) SD (cm)

x y x y
Multilateration 1.1 1.4 1.1 1.1

RLS 0.8 1.1 0.7 0.8
KF 1.4 1.7 1.1 1.1

TABLE I: RMSE and SD evaluation of each algorithm for
stationary tag localization.

Algorithm RMSE (cm) SD (cm)

x y x y
Multilateration 3.9 4.3 1.8 2.5

RLS 3.5 3.7 1.0 1.5
KF 3.7 4.0 2.4 3.5

TABLE II: RMSE and SD evaluation of each algorithm for
mobile tag localization.

protocols for network management and range acquisition. We
have devised online algorithms to process range measure-
ments based on Recursive Least Squares that substantially
boost the performance over multilateration while maintaining
low complexity. Besides, we have leveraged IMU data to
provide a tracking mechanism of mobile tags based on
Kalman Filtering. Our experimental findings showcase online
localization and tracking within a few centimeters, which
supports a low-cost solution for cyberphysical systems.
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